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TRANSP for
gyro-kinetic
Ssimulation input




TRANSP analysis for Gyro-kinetic simulation with
TRINITY

* Can ETG turbulence explain electron thermal transport in MAST?

Goal:

* Provide input data for global, gyro-kinetic simulations using TRINITY
* TRINITY transport solver: multiple GS2 simulations of ETG transport

* TRANSP output file provides required input profiles, e.g. T, ., n; ., Q; ., €tC

i,e’

* Aim to compare two cases: with/without anomalous, ion-scale ITG transport, i.e.
comparing L-mode (periphery) and H-mode plasmas

* lon-scale turbulence measurements available on MAST with imaging BES to
confirm level of ion-scale turbulence

Preparation:
* TRANSP input files generated using MC3 (MAST Chain Control Code)
* MC3 uses MSE constrained EFIT++ (run from MC3) to map kinetic profiles

* Full suite of world-class, high-resolution diagnostics on MAST (TS, CXRS,
Bremstrahlung imaging for Z, linear D, camera, etc)
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MAST Chain-Control Centre (MC3)

mc3 version 2.08 (Medusa) | BUILD: MEDUSA 2.08 | R.Akers x6323
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Integrated analysis
chain prepares TRANSP
input data

Re-runs EFIT++,
including pressure and
MSE constraints

Profile fitting of TS...

...CXRS, etc, including
rotational asymmetry

Z . from analysis of
visible bremsstrahlung
imaging (ZEBRA)

Neutral source from
analysis of D, emission
profile (LINCAM)
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Target L & H-mode discharges

Shot: — 27268 —— 27275 H-mode analysis time L-mode analysis time
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Kinetic Profiles

L-mode
MAST TRANSP Data: Shot #27268, Run F13, 0.250 s

H-mode
MAST TRANSP Data: Shot #27275, Run F06, 0.235 s
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dynamics

#27268: FO2,
including
anomalous Fl

diffusion
(~2m?/s)

Slide 7

Data Con5|stency Fl losses

Fast-ion MHD fishbone
modes drive significant
anomalous fast ion-losses

Modelled by invoking D, ~
few m?2/s

‘Diagnostics’ for Fl pressure
are:
— Total neutron rate, Ry,
— Plasma pressure, Wy,p
— Shafranov shift, R,




Data consistency — Fl losses
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Comparison with turbulent heat flux

L-mode H-mode
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* In L-mode, Qi/Qi,Nc > 1 in plasma periphery, where Q'i,BES < Qipp

* InH-mode, Q; pp is within a factor 2-3 of Q; y¢ across the whole profile
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Current
diffusion
studies
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Test of current diffusion modelling In current
ramp-up

« Specific experiment carried out in campaign M7 making use of newly
commissioned MSE system.

« Series of MSE “snapshots” taken of an ohmic plasma current ramp using
many repeated shots:
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Test of current diffusion modelling In current
ramp-up

« Specific experiment carried out in campaign M7 making use of newly
commissioned MSE system.

« Series of MSE “snapshots” taken of an ohmic plasma current ramp using

many repeated shots: 800F e —
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* (g5 diverges rapidly at start of simulation
due to rapid inward current diffusion but
starts to converge again later on as current
diffuses deeper into core.
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Test of current diffusion modelling In current
ramp-up

 Use of sawtooth model in this simulation

allows simulated g-profile to convergeto £ gy}
the MSE-constrained-EFIT values, § 400 /’"
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Test of current diffusion modelling In current
ramp-down
« Same technique used to

Investigate Ip ramp-down
during campaign M8.

 This time, current at
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I

* (, diverges rapidly from start
value dropping below 1 soon

after start of simulation and z_of_
remains below 1 (no o |
sawtooth model used) 15
« LLM appear at 0.235s, STs Lol . .
from 0.27s (~150Hz) 92 st G °°
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Test of current diffusion modelling in current
ramp-down

« Use of ST model gets 3 T
closer to EFIT derived g- N N
profile points but still not a 3 4of -
match 5T
Y28

26447K03 - EFIT—derived g profile
26447K15 = Calculoted g-profile

0.2 0.4 0.6 0.8 1.0 0.20 025 030 0.35 0.40
time(s) time

TRANSP user group meeting - 24th March 2015

Slide 15



Implications for MAST-U baseline scenarios

MAST-U baseline scenario performance has been based on a series
of interpretive TRANSP simulations with the following features:

n./T, profile shapes based on NSTX-like H-mode.

n. o chosen to match particular Greenwald fraction, T, , chosen to
produce Hgg(y,2)~1

NBI geometry chosen to give most control over g-profile through
particular NB current-drive profiles.

Plasma boundary from FIESTA equilibrium using MAST-U PF
coll set.

Full TF (0.785T)

Simulations run to 5s simulation time to allow full relaxation of
current profile.

The big question: given the uncertainty in modelling g-profile
evolution in MAST, is this technique sufficient to give us confidence
that the MAST-U baseline scenarios represent a reasonable
prediction of likely MAST-U performance?

TRANSP user group meeting - 24th March 2015
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TRANSP modelling of stationary state

« Experiments carried out to measure g-profile in stationary state. TRANSP
modelling carried out using Sauter neoclassical resistivity, with and without
sawtooth reconnection model
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Baseline scenarios — g-profiles

« 2 baseline scenarios are of particular note: Scenario A1 (ng,/n
~0.58) and scenario A2 (ng,/n ~0.23).
« (-profiles in the core-scope versions of these runs indicate that (in

the absence of Anomalous Fast-lon Diffusion, i.e. redistribution by
MHD), g=1 surface should be avoidable or of minimal extent:

25T .
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15F
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Baseline scenarios with/without sawtooth model

« Successful stationary state interpretive MAST simulations required use of
sawtooth model.

« Simulations re-run with MAST H-mode kinetic profiles (shot 22788/315ms) —
blue lines, small effect in Hi n, scenario

« ... and again with Kadomtsev sawtooth model — green lines, small effect in

Lo n, scenario
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Fl redistribution
by fishbones




Background - Experiment

« Low power or off-axis NBI found to mitigate the FI redistribution/expulsion
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« Graphs* show:

— At low power, neutron emission prediction matches measurements ->
no FI redistribution.

— At high power on axis injection, neutron emission prediction much
higher than measurements -> Fl redistribution.

tangency radius [m)

— At high power off-axis, neutron emission prediction close to
measurements -> FI redistribution mitigated.
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Background - Theory

* The growth rate of fishbone modes is related
to gradients in the FI distribution function!-:

Fishbone mode y X W

growth rate

Gradient w.r.t. canonical
angular momentum

Energy gradient-> negative

-> damping term approximate

Canonical angular P(P ~ m(p +
momentum

Radial gradient -> negative
-> driving term

1Chen L. et al 1984 Phys. Rev. Lett. 52 (13) 1122, 2Heidbrink W.W. 2008 Phys. Plasmas 15 055501
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Density/Power scan
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8 plasma shots with near-identical Ip ramp-
up and shaping.
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Den5|tv/Power scan
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MHD activity

1-Beam 2-Beam

Low density

Mid-Low density

Mid-High density

High density
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Time (s) Time (s)

TRANSP user group meeting - 24th March 2015

Slide 25



MHD activity

1-Beam 2-Beam

* Higher power shots
have larger amplitude
and/or more frequent
MHD activity.

Low density

Mid-Low density

Mid-High density

High density
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Time (s) Time (s)

TRANSP user group meeting - 24th March 2015

Slide 26



Mid-High density Mid-Low density Low density

High density

1-Beam

MHD activity

2-Beam

* Higher power shots
have larger amplitude
and/or more frequent

MHD activity.

* Lower density shots

have larger amplitude
and/or more frequent
MHD activity
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I\/IHD activity and neutrons

o ; Ilﬁ * In agreement with previous

2R % observations, MHD activity is

5 100 [ -3 correlated with drops in the neutron
= - T .

g - 8 signal.

g ” ..« MAST is equipped with both a

Fission chamber providing global
neutron emission and a “scanning
neutron camera” providing highly
collimated lines-of-sight and thus
spatially discreet neutron emission
measurements*,

“Global” neutron emission

Neutron count rate (arb.)

Core neutron emission

. R e . =l Half-radius neutron emission  *for more details see
Time (s) next presentation by

Marco Cecconello
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Global neutron emission — comparison with

Total Meutron Emission
Rate (1013 s-1)

modelling

The 8 shots in the scan were analysed using the TRANSP code:
Interpretive transport code with Monte Carlo NBl module NUBEAM.

Given basic magnetics and kinetics data to describe the plasma and
details of the NBI injection, TRANSP predicts the neutron emission
which can be compared with experimental measurements.
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Examination of FI distribution Function

« Radial gradient of FI Dfn (outboard mid-plane) assessed from TRANSP
output.

« The FI Dfn. Is typically noisy due to finite Monte Carlo particles -> some
smoothing used and time-average of FI Dfn taken at 250, 260 and 270ms.

* Used processed Mirnov coil signal (estimate of |B,, | due to MHD) to
assess growth rate of fishbone modes.
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Studies
Investigating
future MAST-U
NBI system




The MAST-U Double Beam Box

The Double-beam-box, to be added to MAST-U in the next stage of
the upgrade, provides capability for an extra on-axis beam and an
extra off-axis beam, together with the existing on-axis beam.

It was proposed that if the on-axis beam is angled upwards to an
Intermediate on/off axis position, the beam system would be capable
of producing a radial fast-ion pressure profile with reduced radial
gradient.

Current

geometry

2.7 deg

beam tilt

lower
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The MAST-U Double Beam Box

 The Double-beam-box, to be added to MAST-U in the next stage of
the upgrade, provides capability for an extra on-axis beam and an
extra off-axis beam, together with the existing on-axis beam.

» |t was proposed that if the on-axis beam is angled upwards to an
Intermediate on/off axis position, the beam system would be capable
of producing a radial fast-ion pressure profile with reduced radial
gradient.

New position
7.8° tilt
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Details of simulations

« Standard TRANSP simulations have been carried out as part of the
physics basis for MAST-U.

 These were used to assess the effect of the proposed re-orientation
of the on-axis DBB beam.

e Current DBB beams ﬁ:
w—— Modified DBB beams ;

:  Arange of beam
: | angles and plasma
- | density were tested
H |

 In all cases, bulk

Vertical
displacement

of Ry

-
|
|
|
|
|
|
|

?Z;'::\m : 1 plasma. temperature
g ; ‘ was adjusted to
- ﬁ\\ maintain HHpgy, »~1
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Graph showing effect of mitigation

« Radial gradients of the FI Dfn were assessed as before and
compared with experiments.
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Graph showing effect of mitigation

Radial gradients of the FI Dfn were assessed as before and
compared with experiments.
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Graph showing effect of mitigation

Radial gradients of the FI Dfn were assessed as before and
compared with experiments.
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Graph showing effect of mitigation

« Radial gradients of the FI Dfn were assessed as before and
compared with experiments.
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F.I. Dfn gradient term: 8f /0P,

Graph showing effect of mitigation

« Radial gradients of the FI Dfn were assessed as before and
compared with experiments.
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F.I. Dfn gradient term: 8f /0P,

Graph showing effect of mitigation

« Radial gradients of the FI Dfn were assessed as before and
compared with experiments.
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Conclusion

« TRANSP has been, and remains, one of the

principal tools used in analysis of MAST
experiments

— Detailed physics, especially NUBEAM module
— Synthetic diagnostic output

« TRANSP has also been used to assess likely
performance of MAST-U scenarios,
particularly in relation to NBI heating and CD.
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Wishlist

« A synthetic FIDA diagnostic (i.e. inbuilt FIDAsImM),
although I.P. might be an issue, or a reduced output
consisting of beam/halo emission.

* Could the beam-stopping and excitation cross-
sections used in TRANSP be made more easily
available in publicly accessible repositry? This would
help when comparing/benchmarking TRANSP
results with other codes (e.g. FIDAsIm).

* A simpler mapping between different radial co-
ordinates (R-Ry)/a , X, Xl and particularly poloidal
flux (tools exist for post-processing but easier if
iIncluded in output).
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