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TRANSP is a time-dependent, 1 % D tool for interpretive
and predictive analysis of tokamak, ST and RFP plasmas

INPUT: Experimental data and
model/calculation assumptions

- S~
- ~
~

Equilibrium solver

NB source ——— Neutral transport ‘:" (TOFI:IFCS[(I)(?I-rI?eLSC

(NUBEAM) \ i

Fully validated Plasma transport solver TORAY,

For D-T ops GENRAY [ECH,
R ﬂ LHCD])

Gyrokinetic codes

MHD, *AE stability codes,
= [OUTPUT | = | TC-NEO, GYRO, GS2, GTS...)

ELITE, IPS, SciDACs, etc.
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Output of TRANSP (Plasma State File) is standardized for simplifying
input to other computationally intensive codes )




Kernel of the code is the solution of the particle,
energy and momentum transport equations
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Comparisons of inferred transport coefficients against those from models
can be made in “interpretive” mode




The compute intensive parts of TRANSP
now make use of parallel processing

PTSOLVER: is a modular multivariable Newton-based solver used in
the predictive mode that advances T, T,, n, ® from one plasma-state
to the next.
Choice: NCLASS, NEO, TGLF, GLF23, CDBM, RLW, MMM, ....

* TGLF is parallel over wave-numbers and flux surfaces

e Scales well to over 1000 cpu at NERSC

» Stand-alone version for benchmarking XPTOR/TGYRO

NUBEAM: can now be run with 1000’s of processors to allow much
improved statistics over past versions

 Recent benchmark performed with PENCIL and BBNBI

e GPU version under development

TORIC: MIT parallel version of TORICS is used that is parallel over
poloidal modes

GENRAY and CQL3D: Parallel versions are being interfaced




Free boundary equilibrium solver, ISOLVER, implemented —
essential for full TRANSP predictive applications
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Free boundary TRANSP “validated” against high
elongation NSTX discharge

eindex=-4

142305101

PF-1AU E5PF-2U

20|

’.-D EPF-zL

'PF-1‘AL |

PF-1AU ESPF-2U
== PF-3U
=

‘PF-1‘AL

b))

00 05 1.0 15 2.0
R[m]

00 05 10 15 2.0
R [m]

PF-1 AL ‘

00 05 1.0 15 20
R [m]

Used ISOLVER, TRANSP
predictive simulations to
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Validation has been
performed against TSC

Now have ability for users to

supply Fortran control
algorithms
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Control algorithms are presently being
developed for NSTX-U

Uses Expert file for

— Rotation profile control (NBI, NTV through application of 3D fields as
actuators) — NTV physics model incorporated in algorithm (plan to
implement in code proper)

— Plasma current profile control (NBI, current ramp rate as actuators)
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Multi-zone PT_SOLVER (with model or user input) used for
benchmarking physics models

* Rebut-Lallia-Watkins model (utearing-based) successful in
predicting T, profiles in NSTX plasmas where utearing is calculated
to be unstable

low collisionality high collisionality
0.6; ballooning 7 0_4:, E
g (hybrid—KBM) 3 ' microtearing 1
o : T 0.3F e
Ecn 04? E ;m ;
> ; : 0.2 ]
0.2¢ E
E e — 5o — X 0.1 -]
3 ExB ExB
Ou | I [ | O’HHM | Loy |
0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7
p p
T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T
E Low v* H-Mode 0.8 n High v* H-Mode ]
4 129041 - 120967
1.0 0.45s 8 0.51s
%\ / %\ B Measured 1
< | Measured X 4 ] Predicted ]
) 7 7 ) :
- ] . = ]
05 1 ]
7 b —| Ad-hoc %, ]
1 1 20-30 m%s
1 Predicted (RLW) 7| (GAE proxy) % (RLW) g
0.0 v T 00— T T T T
00 02 04 0.6 0.8 1.0 00 0.2 04 0.6 0.8 1.0

X= (/D 4)1/2 X=(D/d)112 S. Kaye




TGLF prediction of JET hybrid discharge

* Prediction of ion & electron temperature, density and

rotation profiles
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MMM model used as basis for predicting requirements for
fully non-inductive discharge operation in NSTX-U

« Uses GENRAY (ECH), TORIC (HHFW), NUBEAM (NBI) modules

non inductive

bootstrap |
NBCD

current (MA)

F. Poli




Operational Items

Triage support

— All failed runs are examined by a member of the support staff and
users are notified...normally the same day

Code Verification
— Daily regression tests
User Group Meetings
— Normally meet yearly at APS-DPP meeting (not in 2014)
— Dedicated meeting planned for week of March 23 at PPPL

Strategic Planning
— Group is preparing a report for PPPL Director by July 1

Interfacing with IDM

— FY15: develop translator from Plasma State <= |IDM
— FY15: make standalone NUBEAM and GENRAY compatible with IDM
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TRANSP: status and progress

2013

2014

2015

RF EC: TORAY, GENRAY| LH: GENRAY EC: TORBEAM
IC: TORIC LH: GENRAY+CQL3D
LH: LSC HHFW:GENRAY+CQL3D
NUBEAM Halo neutrals for | GPU support

multiple CX events
Fast ion diffusion
due to MHD

SOL beam ionization
(upgrade 2D neutrals,
TF ripple loss model)

RF Coupling to

TORIC - NUBEAM

RF coupling:

Fast lons TORIC € NUBEAM

Isolver FB Evolve g and IP Shape control. Include toroidal

equilibrium consistent with coil Neo added to g- rotation in equilibrium
and vessel currents | advance solution

PT-Solver MMM, GLF23, TGLF,| Density feedback | Developing flux-based

RLW, NEO, Chang-
Hinton, Paleo

(with gasflow rate
and wall recycling)

implicit solver (with
AMG) to speed
convergence of TGLF

Black: available to users

Red: under development




TRANSP use has shown a sharp increase over the last two
years - # runs and # cores
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TRANSP is being used worldwide to analyze and predict

performance on present and future devices
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Summary

TRANSP has incorporated state-of-the-art source and transport
models for use as either an interpretive or predictive analysis tool

— Driven by community input and needs

Treatments and solvers are becoming increasingly sophisticated
and comprehensive

Provide links to other computationally intensive codes (macro-,
micro-fast ion stability, RF full wave, etc.)

Extensive use of TRANSP capabilities (presently and planned) by a
large number of institutions around the world

Running TRANSP on FusionGrid allows for timely support and quick
debug turnaround by PPPL Computational Plasma Physics Group
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The objective of this workshop is to make TRANSP more
powerful and user-friendly

e Discuss present and future use of TRANSP
— Short & long-term needs, desires

 What upgrades will make TRANSP more valuable to the
international community, including ITER
— Upgrades to physics modules

— Code modernization and framework (i.e., single executable?
Modularize? Both?

— Attempted to leave plenty of time for discussion

e |dentify and encourage development external to PPPL

e Discussions will aid in the development of the TRANSP
strategic plan, which is to be presented to PPPL Director on
July 1

— Strategic plan will detail (additional) personpower resources and
funding levels needed to address goals
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Extra vugraphs
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Use of experimental data is integral to TRANSP

Input

0-D Device geometry (walls, limiters, NB/RF source
configuration, powers,...), neutral density b.c.,

1-D |,(t), By outer boundary, ¢, V
recycling coefficient,....

oops Pas NEULrons,

2-D ne(p't)' Te,I' nimp or Zeff' Pheat' Prad' ch,er Be/qu
neutrons, full equilibrium (option)
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Coupled TRANSP-TSC predictions have been done for ITER

PF coil currents from equilibrium analysis

Feedback system setup

 Use free-boundary, plasma \
control capabilities of TSC Discisfgecetaro
TSC
* Source, tra nsport solver Prescribded_ hea'finf?I and .
efe, o current drive profiles
capabilities of TRANSP " ' Tna(RD, | TRANSP
* Examine performance offne
° efe analysis
(CO nﬁ !1 e m e ntl M H D _Sta b I.l Ity) Heating and current drive profiles
of various heating mixes in
ITE R ITB p I a S m a S thermal diffusivity profiles (predictive mode)
(a) | (b) \32!?5525\ kink+ballooning | | (c) IR AICHH (BMW NB)
Vvv VY v unstable ! ;> 7 IC+LH (33MW NB)
o ** \ '-gk stable \ N;:'v k: v ;:v i o
o - v
0~ \. av vy BN A 8 4 g%V Vm " %ol -
o 25 ‘0‘ A \‘ — A 7 scenarios with LH L T
¢
- @Oo\ ios with LH © 4oL~ / A 50 '
! 80@ scenarios wi PaN o OO o 5— , - ) /O/Ooo o
scenarios with IC+EC \ Q?g"\,/\ - scenarios
15 , , , broad profiles . peaked profiles . _ - . with IC+EIC
05 1 15 2 25 22 2.4 2.6 2.8 3 06 0.8 1 1.2
Amin p(0)/<p> internal inductance

Poli, 2013




TRANSP has been used to validate data and identify
issues with diagnostics

Analysis of early (~ FYO0) NSTX
discharges revealed energy balance
results that were difficult to believe

Large negative ion heat diffusivity
Large electron heat diffusivity
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Results reflected large T-T, near edge
Led to recalibration of both CHERS (T,
) and MPTS (T,, n,) diagnostics
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electron and ion energy balance
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Robust transport solver “PT_SOLVER” implemented and
being used for TGLF-based verification and prediction

Te [keV]

(keV]

TRANSP predictive calculation using TGLF has been
benchmarked against stand-alone TGLF in XPTOR
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TRANSP calculations can lead to identifying important physics, such
as microinstability driven fast ion transport in ASDEX-U

TRANSP computed classical NBCD at
the end of the off-axis NB phase higher

than measured value in MHD-free Anomalous fast ion diffusivity
discharge necessary to achieve agreement
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII _ #18703 — attributed to microinstabilities
oL . _ T (further work on AUG, DIII-D,
on-axis off-axis
JET)

Microinstability-based (TGLF)
anomalous fast ion diffusivity
being implemented in TRANSP

-056  TRANSP with NBCD o
Py =00 i (collaboration with R. Waltz [GA])

no diffusion of fast particles
------- with D__= 0.5 m?/s

fast

Gunter et al., Nuc. Fusion, 2007 21




Comparisons of measurements with diagnostic simulation
results give confidence in accuracy of calculation

Non - flux averaged

Flux averaged
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non flux averaged neutron
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experiments
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Modeling of hybrid discharges for EAST with both present
and future capabilities is being conducted with TRANSP
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Hybrid operation is one of the major goals of EAST operation
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