

KSTAR simulation with TRANSP

L. JUNG & B.H. PARK NFRI – Daejeon, South Korea

TRANSP User's Group Meeting March 23, 2015

- I. KSTAR Introduction
- **II. Generating UFILEs from KSTAR data**
- **III. TRANSP simulation**
- IV. Issues
- V. Perspectives Integrated modeling
- **VI.** Conclusion

I. KSTAR Introduction

KSTAR [1] = Korea Superconducting Tokamak Advanced Research

[www.nfri.re.kr]

PARAMETERS	KSTAR	ITER
Major radius, R ₀	1.8 m	6.2 m
Minor radius, a	0.5 m	2.0 m
Elongation, κ	2.0	1.7
Triangularity, δ	0.8	0.33
Plasma volume	17.8 m ³	830 m ³
Plasma surface area	56 m ²	680 m ²
Plasma cross section	1.6 m ²	22 m ²
Plasma shape	DN, SN	SN
Plasma current, Ip	> 2.0 MA	15 (17) MA
Toroidal field, B ₀	> 3.5 T	5.3 T
Pulse length	> 300 s	400 s
β _N	~ 5.0	1.8 (2.5)
Plasma fuel	H, D-D	H, D-T
Superconductor	Nb ₃ Sn, NbTi	Nb ₃ Sn, NbTi
Auxiliary heating /CD	~ 28 MW	73 (110) MW
Cryogenic	9 kW @4.5K	

I. KSTAR Introduction

Diagnostic:

Black : installed Blue : plan for 2015

• Magnetic diagnostics (NFRI, ASIPP)	• mm-Interferometer (NFRI)	• XICS (NFRI, PPPL, ASIPP)
• Edge probe sensors (NFRI, HYU)	• Thomson Scat. (NFRI, JAEA, NIFS)	Charge Exch. Spec. (NFRI, NIFS)
• Recip. Langmuir Probe (NFRI)	• ECE (NFRI, KAERI, NIFS, Kyushu U.)	• ECEI (2 sets) (POSTECH, UCD)
	Reflectometer (NFRI)	• MIR (UNIST, UCD)
 Visible TV (3 sets) (NFRI) 		• X-ray Pinhole (KAIST, KAERI, NFRI)
• Survey IRTV (NFRI)	• Hard X-ray (NFRI)	• SXR (KAIST, Far-Tech, JET, ENEA)
	• Ellipsometry (NFRI)	• BES (Wigner)
D-alpha Monitor (NFRI)	Deposition (NFRI, HYU)	• Li-beam (Wigner)
Visible Spectrometer (NFRI)	Neutron (NFRI, HYU, ITER KO)	Coherence Image, iMSE (NFRI, ANU)
Visible Filterscope (ORNL)	Fast-ion loss (NFRI)	Divertor IR TV (NFRI)
• VUV Survey Spec. (ITER KO, KAIST)	• NPA (KAERI)	• FIR Interferometer (NFRI, SNU)
Resistive Bolometer (NFRI, NIFS)		• DBS (NFRI, SWIP)
Imaging Bolometer (NIFS)		• MSE (NFRI, TU/e)

I. KSTAR Introduction

Long-pulse discharges & ITER urgent issues was the main thrusts for 2013

5

□ Main research goal of KSTAR =

Demonstrate steady-state operation of high-performance Advanced Tokamak (AT) modes

We need :

- Understand the plasma comportment.
- Need to use a transport analysis code.
 - \Rightarrow TRANSP [2] : successfully used with other Tokamaks (TFTR, DIIID, Jet & NSTX, ...).

TRANSP = Interpretive Code ⇒ Input Data are necessary

□ Work is to generate UFILEs, by using as much experimental data as possible.

□ For Now, we use **experimental data obtained** from different diagnostic devices: Reflectometer (NE), Charge Exchange Spectrocopy (TI, VT), Thomson Scattering (TE, NE), Electron Cyclotron Emission (TE), X-ray Crystal Spectrometer (TE, TI, VT) and Interferometer (NE)

- I. KSTAR Introduction
- **II. Generating UFILEs from KSTAR data**
- **III. TRANSP simulation**
- IV. Issues
- V. Perspectives Integrated modeling
- VI. Conclusion

II. Inputs - MDSPlus Tree

Exp. data stored in MDSPlus Tree[3].

Data extracted & converted into UFILE[4]

Input Data used UFILE Format :

- More than 150 kinds
- In practice, only a few 2D (radial profile vs time NE) and

1D (scalar vs time - current) used

KŚTAR

- For electron density profile, we can use the Interferometer data
 But, data = line average density.
- \Box Synthetic profiles => 2 Different Methods:

Available in KSTAR MDSPlus Tree (NE_INTER01)

□ For Electron density and temperature profiles,

=> we can use the **Thomson Scattering** data

Available in KSTAR MDSPlus Tree (COREX_NE, COREX_TE)

□ For Ion temperature and Plasma toroidal velocity profiles,

=> we can use **Charge Exchange Spectroscopy (CES)** data

Available in KSTAR MDSPlus Tree (CES_Tixx, CES_VTxx)

□ For Electron temperature profile,

=> we can use the **Electron Cyclotron Emission** (ECE) data

Available in KSTAR MDSPlus Tree (ECExx)

□ For Electron & Ion temperature and plasma toroidal velocity profiles,

13

- => we can use X-ray Crystal Spectrometer (XCS) data
- => But, data only in the core plasma.
- □ Use synthetic profiles,

=> we need to extrapolate the data by using a parabolic function

In KSTAR MDSPlus Tree (TXCS_TE053, TXCS_TI053, TXCS_VR053)

II. Generating UFILEs - Smoothing

Experimental data are noisy

=> Need for smoothing

□ UFILEs can be smoothed by using:

II. Generating UFILEs - Smoothing

- **kprofiles** : Spline interpolation, but we need :
 - run EFIT
 - smooth the data for each time step
- gsmoo2 : Simpler interpolation, but treat all the data in 1 step and no need for EFIT **KSTAR**

II. Generating UFILEs - Other UFILEs

□ In order to make the UFILE generation process easy to use,

I created a GUI (python) that generates UFILE

by calling different Fortran programs that extract data

from KSTAR MDSPlus Tree (previously presented programs + others)

💌 UFile generat	or		
File Option	Help		
Shot:	Tstart		Tend dt
	_ Sampler File:	corr	rt
☐ DFL	gene1		coef
□ RBZ	FO FO	Fa	File
USF	_ gene2		I NE Interf
□ PRS	nu VO	Ya	nu
_ QPR	F0	Fa	INE Thom File
🗆 PSI	⊐ NBI Nb source		I TE Thom
	💷 ЕСН		File
🗆 LID	□ ICRF	SCR2 EQ	LI TE ECE
🔲 Q95			
□ NXT			File
			I TE XCS I TI XCS VT XCS
	Generate	Quit	

- I. KSTAR Introduction
- **II. Generating UFILEs from KSTAR data**
- **III. TRANSP simulation**
- IV. Issues
- V. Perspectives Integrated modeling
- **VI.** Conclusion

III. TRANSP simulation - Preparation

□ In order to run TRANSP, we need to follow these steps :

- Prepare UFILEs (ikstar)
- Smooth(if needed): gsmoo2 or kprofiles (ikstar)
- Copy all the files on Hydra2
- Prepare the input file (*TR.DAT) (Hydra2)
- Test input+UFILEs (Hydra2): trdat shot_number
- Create execution file (Hydra2): pretr shot_number
- Run (Hydra2): runtr shot_number

=> Need to juggle with 2 different clusters

Output :

K§TAR

- A lot of results (more than 1000)
- Visualization: rplot shot_number

=> Not straightforward (lot of options) :

I created a program that extracts interesting data

from the result file (NETCDF format) and converts into ascii

III. TRANSP Results : Shot 9422 during L/H transition

KSTAR

KSTAR shot 9422

- L/H transition (around 2.3s)
 - Simulation from 2 to 2.6 s
- Heating
 - 2 NBI sources
- Profiles
 - TI and VT from CES
 - TE from ECE
 - Ne from interfer. + TS

III. TRANSP Results : Inputs

Confinement Time:

- Increase of confinement time during L/H transition
- H-mode = 2 times higher than L-mode

III. TRANSP Results

□ Electron and Ion diffusivities:

Electron & Ion diffusivities decrease during L/H transition => confinement improved

22

K§TAR

III. TRANSP Results

Diffusivities decrease during L/H transition => confinement improved

Until now, we were using TRANSP installed in NFRI (2007 version) But, we can use TRANSP-GRID (PPPL server) [5]

□ Most recent version of the code

- Less bug
- Predictive TRANSP
- New features

. . .

- GENRAY code
- GLF23, MMM08

III. TRANSP Results

□ KSTAR shot 7300 Comparison: Our TRANSP vs TRANSP GRID

Electron Heat Diffusivity

Ion Heat Diffusivity

- I. KSTAR Introduction
- **II. Generating UFILEs from KSTAR data**
- **III. TRANSP simulation**
- IV. Issues
- V. Perspectives Integrated modeling
- **VI.** Conclusion

□ In order to run TRANSP, we need good UFILEs but also a good TR.DAT file. For now, we are using a TR.DAT file adapted from an old NSTX case.

 \Box How to check output data (figure of merit, ...)

=> Need to learn how to run TRANSP

"Ignorance is a wonderful thing- it's the state you have to be in before you can really learn anything" – Terry Pratchett

IV. Issues - TRANSP GRID

□ In order to run TRANSP-GRID,

- Prepare UFILEs/input file on ikstar
- Copy the files on Hydra2
- Check the data: trdat runID
- Copy the files on PPPL's server
- Prepare the run: tr_start runID
- Submit the launch (send data and run):
 tr_send_pppl.pl runID KSTR NOMDSPLUS
- Check the run: <u>http://w3.pppl.gov/transp/transpgrid_monitor</u>
- Get the data: tr_fetch KSTR.yy runID
- Copy the result files on Hydra2
- Visualize: rplot runID

=> Need to juggle with 3 different clusters

Hope to solve the connection problem NFRI/PPPL

K§TAR

- I. KSTAR Introduction
- **II. Generating UFILEs from KSTAR data**
- **III. TRANSP simulation**
- IV. Issues
- **V. Perspectives Integrated modeling**
- **VI.** Conclusion

V. Perspective – Integrated modeling

K§TAR

- I. KSTAR Introduction
- **II. Generating UFILEs from KSTAR data**
- **III. TRANSP simulation**
- IV. Issues
- V. Perspectives Integrated modeling
- **VI.** Conclusion

VI. Conclusion

 For now, we succeeded to create the main UFILE from the KSTAR experimental data
 However, the results depend strongly on these input data

- Need for accurate experimental data
- Simple smoothing => Big differences

 When new diagnostic devices are available, we must generate new kinds of UFILEs (the more, the happier)
 Next step => to use TRANSP GRID and PTRANSP

□ Later: use PTRANSP for benchmarking our integrated code

Acknowledgement: We would like to thank S.G. Lee for providing some slides and all the KSTAR experimental team for the experimental data used for the simulations

Thank you for your attention

Bibliography

- [1] G.S. Lee, et al., Nucl. Fusion **41** (2001)
- [2] R. V. Budny, et al., Nucl. Fusion **35** (1995)
- [3] J. Stillerman, T.W. Fredian, Fus. Eng. and Design 43 (1999)
- [4] http://w3.pppl.gov/~pshare/help/ufiles.htm
- [5] http://w3.pppl.gov/transp/ComputeServerAccess.html
- [6] D. McCune, Status of TRANSP, presented at APS-DPP 2010