TRANSP Users Group Meeting, 23rd March 2015, PPPL, USA

TRANSP applications to JET plasmas

<u>Hyun-Tae Kim</u>, M Romanelli, J Conboy, I Voitsekhovitch, C Challis, C Giroud, H Weisen, T Koskela, D King, I Nune, JET contributors

EUROfusion consortium, JET, Culham Science Centre, Abingdon, UK

Aalto University

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

ITER-like Wall at JET

- The internal wall at JET has been changed in 2010 to conduct dedicated studies for ITER i.e. Be first wall and W divertor
- The main subjects of current JET research are to
 - 1. exploit the ITER-Like Wall to develop robust operation scenarios for ITER.
 - 2. demonstrate an acceptable core W concentration for the foreseen ITER regimes.
 - 3. investigate the interaction between plasma and ITER-like wall

Content

1. TRANSP applications

- 1) Comparative core confinement analysis in ILW and CW
- 2) Effects of heating power on confinement
- 3) ICRH deposition to avoid W accumulation

2. Future plans

- 1) Neutron deficit issue
- 2) DT campaign in 2017
- 3) Suggestions

Content

1. TRANSP applications

- Comparative core confinement analysis in ILW and CW
 → Hyun-Tae Kim et al, accepted to PPCF, 2015
- 2) Effects of heating power on confinement
- B) ICRH deposition to avoid W accumulation
- 2. Future plans
 - 1) Neutron deficit issue
 - 2) DT campaign in 2017
 - 3) Suggestions

Energy confinement issues in baseline JET plasmas with ITER-Like Wall

- Global confinement in ILW baseline (β_N =1.5-2) plasmas is degraded.
- Edge T_e in ILW plasmas is decreased compared to C wall plasmas, and this leads to a decrease in core T_e.
- Is the core confinement also changed in baseline plasmas with ILW?

Counterpart discharge pairs for comparative analysis between JET-ILW and JET-CW

CCFE

- Database for Comparative analysis between ILW and CW
 Selected to match 'engineering' variables (i.e. I_p, B_φ, P_{NBI}, <n_e>,q₉₅, and δ) by T. Koskela.
- 10 pairs of Baseline (β_N =1.5~2) high n_e H-mode
- 3 shots of N₂ seeded ILW discharges

Core T_e and edge T_e are well correlated with a linear fit

- Both ILW and CW data are well aligned to the same linear fit.
- N₂ seeding moves the profiles towards the CW counterparts, along the same linear fit.

CCFE

JET

Input and assumptions in TRANSP

- $T_e = HRTS$
- n_e = HRTS
- $T_i = T_e$ (reasonable for high n_e)
- Z_{eff} = Visible Bremsstrahlung
- i.e. NZEFMOD=2 and NLZFIN=.T
- ICRH = TORIC
- NBI = NUBEAM
- Bulk Radiation = Bolometry measurement
- D plasma with C or Be impurity
- q profile = EFIT/q i.e. NQMODA=4
- Equilibrium = TRANSP equilibrium solver (TEQ) i.e. LEVGEO=11

Effective core heat conductivities at $\rho=0.5$ are not decreased in JET-ILW, compared to the CW counterparts.

Core (ρ =0.5) confinement in JET-ILW: $X_i \downarrow$ and $X_e \uparrow$

• The transport change of electron and ion in JET-ILW results from the change of NBI heat deposition.

CCFE

JEI

NBI power deposition depends on T_e profile.

- The higher \mathcal{E}_b/T_e , the higher fraction of electron heating (and the lower fraction of ion heating).
- Beam energy is almost similar for all discharges i.e. about 50KeV
- Lower core T_e in ILW results in smaller core P^i_{NBI} and higher core P^e_{NBI} .

Core energy confinement time

- The changed core NBI heating fraction to electrons and ions in JET-ILW (i.e. higher P^{e}_{heat} and lower P^{i}_{heat}) leads to reduced τ^{e}_{core} and similar τ^{i}_{core} , compared to CW counterparts.
- Total core energy confinement time τ^{e+i}_{core} is slightly reduced in JET-ILW.

Conclusion – TRANSP application 1

- Comparative analysis of **ILW versus CW** (baseline high n_e H-mode)
- HRTS T_e profile analysis finds
 - T_e profile peaking is found to be similar, and weakly dependent on edge T_e
 - When ILW discharges are seeded with $\rm N_2$, core and edge $\rm T_e$ both increase maintaining a similar $\rm T_e$ peaking.
- TRANSP analysis shows that
 - Effective heat conductivities X_{eff} in the core (ρ =0.5) in JET-ILW is not changed.
 - X_e and q_e are higher, and X_i and q_i lower in the core in JET-ILW.
 - This is consistent with the higher ${\sf P^e}_{\sf NBI}$ and the lower ${\sf P^i}_{\sf NBI}$ in JET-ILW where core ${\sf T}_e$ is lower.
 - The overall core energy confinement time is similar or slightly reduced in JET-ILW compared to C-wall counterparts.
- It is likely that high T_e, comparable to that in CW counterparts, would be achieved if the edge T_e is recovered in JET-ILW.
- Hyun-Tae Kim et al, accepted to PPCF, 2015

Content

1. TRANSP applications

- 1) Comparative core confinement analysis in ILW and CW
- 2) Effects of heating power on confinement
- → C. Challis, IAEA Fusion Energy Conference, 2014, EX/9-3
- \rightarrow C. Challis, NF submitted 2015
- B) ICRH deposition to avoid W accumulation

2. Future plans

- 1) Neutron deficit issue
- 2) DT campaign in 2017
- 3) Suggestions

Four cases for heating power scan study

- D_{α} increases with absorbed power, only in C-wall high δ .
- D neutrals might play a key role in confinement? [1]
- Heating Power (=Ohmic + NBI) scan for four cases
- 1. CW or ILW

#84792 (low δ)

CCFE

2. low δ or high δ

[1]Joffrin EPS 2014 & Joffrin IAEA 2014

Input and assumptions in TRANSP

- $T_e = HRTS \text{ or LIDAR (C-wall low } \delta)$
- $n_e = HRTS \text{ or LIDAR (C-wall low } \delta)$
- T_i= Charge Exchange Radiation measurement
- D plasma with C or Be impurity
- Z_{eff} = Visible Bremsstrahlung i.e. NZEFMOD=2 and NLZFIN=.T
- NBI = NUBEAM
- Bulk Radiation = Bolometry measurement
- q profile = EFIT/q i.e. NQMODA=4
- Equilibrium = TRANSP equilibrium solver (TEQ) i.e. LEVGEO=11

Data consistency check: $W_{dia} = \frac{3}{2} \int (p_{th\perp} + p_{fast\perp}) dV$

Based on the good agreement i.e. $W_{dia}^{measure} \approx W_{dia}^{TRANSP}$, TRANSP results are used for the following analysis.

Weaker confinement degradation with P_{heat} than $= 0.05621 I_{P}^{0.93} B_{T}^{0.15} P_{heat}^{-0.69} n_{e}^{0.41} M^{0.19} R^{1.97} \varepsilon^{0.58} \kappa^{0.78}$

Hyun-Tae Kim | TRANSP User Group meeting | Princeton, US | 23th Mar 2015 | Page 18

Conclusion – TRANSP application 2

- Power degradation of confinement was weak in both of the ILW configurations and the C-wall low δ plasmas, much weaker than the IPB_{98(y,2)}, resulting in elevated H₉₈ only at high power and, therefore, high β_{N.}
- This is consistent with the general observation of higher H_{98} in high β_N 'hybrid' plasmas compared with the low β_N 'baseline' plasmas in these configurations.
- However, the high δ C-wall plasmas show elevated H₉₈ over a wide power range with strong, IPB_{98(y,2)}-like, power degradation. This exceptional case appears to have been affected by a source of neutral particles in the main chamber.
- C. Challis et al, submitted to NF, 2015
- C. Challis, IAEA Fusion Energy Conference, 2014, EX/9-3

Content

1. TRANSP applications

- 1) Comparative core confinement analysis in ILW and CW
- 2) Effects of heating power on confinement
- 3) ICRH deposition to avoid W accumulation
- → C Giroud 2015 PPCF 57 035004

2. Future plans

- 1) Neutron deficit issue
- 2) DT campaign in 2017
- 3) Suggestions

Disruption due to core W accumulation

ICRH is required to prevent n_e peaking for stationary condition in JET-ILW

CCFE

Input and assumptions in TRANSP

- $T_e = HRTS$
- n_e = HRTS
- $T_i = T_e$
- D plasma with Be and N impurity i.e NLZSIM=.T

 n_{Be} = 1% of n_{e} and n_{N} = CX measurement .

- Z_{eff} is calculated by impurity input data i.e. NZEFMOD=10,
- NBI = NUBEAM, ICRH=TORIC with 3% H minority (similar profile with n_e)
- Bulk Radiation = Bolometry measurement
- q profile = Poloidal Field Diffusion equation solved to calculate E_{\parallel} ,

and in turn V_{ware} i.e. NQMODA=1

• Equilibrium = TRANSP equilibrium solver (TEQ) i.e. LEVGEO=11

ICRH increases particle diffusion, and reduces central W peaking.

Conclusion – TRANSP application 3

- N-seeded high δ in JET-ILW is not stationary and can result in disruption due to W accumulation in the core.
- According to Neoclassical theory, W peaking is proportional to n_e peaking.
- n_e peaking can be reduced by core deposition of ICRH, which increases outward n_e diffusion without significant change of inward ware pinch.
- C. Giroud 2015 PPCF 57 035004

Content

1. TRANSP applications

- 1) Comparative core confinement analysis in ILW and CW
- 2) Effects of heating power on confinement
- 3) ICRH deposition to avoid W accumulation

2. Future plans

- 1) DT campaign in 2017
- 2) Neutron deficit issue
- 3) Suggestions

Since 1997 DT campaign, the heating power at JET has been improved a lot!

- $P_{NBI} = 20MW \rightarrow 34MW$
- $P_{ICRH} = 3MW \rightarrow 6MW$

Since 1997 DT campaign, the heating power at JET has been improved a lot!

- $P_{NBI} = 20MW \rightarrow 34MW$
- $P_{ICRH} = 3MW \rightarrow 6MW$
- ✓ 15MW of fusion power for 5 sec?
- TRANSP will play a key role in 2017 DT campaign

Neutron rate calculation in TRANSP

• The TRANSP database shows that TRANSP-calculated neutron rate is higher than the values measured by fission chamber

i.e. Measured neutron rate < Calculated neutron rate

 Note, the deficit fraction is consistent i.e. (≈30%) in the database where key plasma parameters i.e. I_p, B_t, P_{NBI}, n_e are constrained.

Neutron deficit issue in a large database of JET plasmas

- Measured < Calculated (by CHEAP i.e. without fast ion orbits and beam-beam neutrons)
- Good agreement within 10%, using a multi-parameter regression fit with 'plasma parameters'. This shows that the 'deficit' is a matter of physics (rather than random factors)
- If anomalous fast ion transport is not modelled, the neutron rate is over calculated in TRANSP (for high n_e JET plasmas in Yuri Baranov, PPCF 2009, 51 4 044004)

Future work with TRANSP at JET

- Investigation on neutron deficit in measurement
- Reprocessing the TRANSP runs in 1997 DT campaign

Interpretative simulations of 2017 JET DT campaign

Suggestions from JET TRANSP users

- Interaction between RF and fast ions i.e. TORIC and NUBEAM.
- FI diffusion coefficient as a function of time and radius i.e. D_{FI}(t,rho)
- TRANSP runs for a large database
- More synthetic diagnostics data? e.g. MSE, gamma ray

Main conclusion

- TRANSP is one of the key tools to conduct dedicated studies with ITER-like wall, as shown by the recent TRANSP applications at JET,
 - 1. Comparative core confinement analysis in ILW and CW
 - 2. Effects of heating power on confinement
 - 3. ICRH deposition to avoid W accumulation
- There are further TRANSP applications not addressed in this talk e.g. 1. input data preparation for gyrokinetic code and MHD stability codes, 2. data consistency tests, 3. current diffusion simulations, 4. predictive transport modelling with theory-base transport models,
- JET DT campaign is planned in 2017, so the role of TRANSP will be even more important!
 - 1. Investigation on neutron deficit
 - 2. Reprocessing the TRANSP runs in 1997 DT campaign
 - 3. Interpretative simulations of 2017 DT campaign
- hyun.kim@ccfe.ac.uk

and etc.

NBI power deposition profile

JET-ILW discharges have, compared to CW counterparts in the database,

- Smaller core P^{tot}_{NBI} due to the higher edge deposition resulting from higher n_{e,ped}
- Smaller difference between core P^e_{NBI} and core Pⁱ_{NBI}

CCFE

JE

i.e. Higher core P^{e}_{NBI} and lower core P^{i}_{NBI} than JET-CW

Core energy confinement time (= W_{th}/P_{total})

