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ITER-like Wall at JET 
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Beryllium  

 

 

 

 

Tungsten 

• The internal wall at JET has been changed in 2010 to conduct dedicated studies for 

ITER i.e. Be first wall and W divertor 

• The main subjects of current JET research are to 

1. exploit the ITER-Like Wall to develop robust operation scenarios for ITER.  

2. demonstrate an acceptable core W concentration for the foreseen ITER regimes. 

3. investigate the interaction between plasma and ITER-like wall 

<JET ITER-Like Wall> 
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Energy confinement issues in baseline JET plasmas  

with ITER-Like Wall 

M. Beurskens et al, PPCF (2013) 

Baseline 
plasmas 

• Global confinement in ILW baseline (βN=1.5-2) plasmas is degraded. 

• Edge Te in ILW plasmas is decreased compared to C wall plasmas, and this leads to 

a decrease in core Te. 

• Is the core confinement also changed in baseline plasmas with ILW? 

M. Beurskens et al, NF (2014) 

Baseline 
plasmas 
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Counterpart discharge pairs for comparative 

analysis between JET-ILW and JET-CW 
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Ip=2.5MA 

 Bt=2.7T 

PNBI=14~16MW 

<ne>=7~9.8x1019m-3
 

δ=0.2 or 0.4 

• Database for 

Comparative analysis 

between ILW and CW  

• Selected to match 

‘engineering’ variables 

(i.e.  Ip, Bɸ, PNBI,<ne>,q95 , 

and δ) by T. Koskela. 

• 10 pairs of Baseline (𝛽𝑁 

=1.5~2) high ne H-mode  

• 3 shots of N2 seeded ILW 

discharges 
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Core Te and edge Te are well correlated with a linear fit 

• Both ILW and CW data are well aligned to the same linear fit. 
• N2 seeding moves the profiles towards the CW counterparts, 

along the same linear fit.  

Baseline JET plasmas with 
Ip=2.5 MA,  
Bt= 2.7T,  
PNBI=14-17MW, 
ne = 7~9 e19m-3 
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• Te = HRTS 

• ne = HRTS  

• Ti=Te (reasonable for high ne) 

• Zeff = Visible Bremsstrahlung  

i.e. NZEFMOD=2 and NLZFIN=.T 

• ICRH = TORIC 

• NBI = NUBEAM  

• Bulk Radiation = Bolometry measurement 

• D plasma with C or Be impurity 

• q profile =  EFIT/q i.e. NQMODA=4 

• Equilibrium  = TRANSP equilibrium solver (TEQ) i.e. LEVGEO=11 

Input and assumptions in TRANSP 

<ne> ~ 9x1019 m-3 

HRTS Te 

CX Ti 
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Effective core heat conductivities at ρ=0.5 are not decreased 

in JET-ILW, compared to the CW counterparts. 
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Core (ρ=0.5) confinement in JET-ILW: Xi↓ and Xe↑ 

qe 

qi 

Xe 

Xi 
Pi

NBI 

Pe
NBI 

ILW 

CW 

ILW 

CW 

• The transport change of electron and ion in JET-ILW  
results from the change of NBI heat deposition.  
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NBI power deposition depends on Te profile.  

• The higher               , the higher fraction of electron heating (and the lower 
fraction of ion heating). 

• Beam energy is almost similar for all discharges i.e. about 50KeV 
• Lower core Te in ILW results in smaller core Pi

NBI and higher core Pe
NBI. 

b eT

b eT

J. Wesson, TOKAMAKS  
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Core energy confinement time 

• The changed core NBI heating fraction to electrons and ions in JET-ILW  
(i.e. higher Pe

heat and lower Pi
heat) leads to reduced τe

core and similar τi
core , 

compared to CW counterparts. 

• Total core energy confinement time τe+i
core is slightly reduced in JET-ILW. 
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Core Wth 

ρ 

Wth 

τcore= core Wth  /  Pheat 



Conclusion – TRANSP application 1 

• Comparative analysis of ILW versus CW (baseline high ne H-mode) 

• HRTS Te profile analysis finds 

• Te profile peaking is found to be similar, and weakly dependent on edge Te  

• When ILW discharges are seeded with N2, core and edge Te both increase  

maintaining a similar Te  peaking. 

• TRANSP analysis shows that  

• Effective heat conductivities Xeff in the core (ρ=0.5) in JET-ILW is not changed.  

• Xe and qe are higher, and Xi and qi lower in the core in JET-ILW.  

• This is consistent with the higher Pe
NBI and the lower Pi

NBI in JET-ILW where 

core Te is lower. 

• The overall core energy confinement time is similar or slightly reduced in   

JET-ILW compared to C-wall counterparts.  

• It is likely that high Te, comparable to that in CW counterparts, would be achieved 

if the edge Te is recovered in JET-ILW.  

• Hyun-Tae Kim et al, accepted to PPCF, 2015 
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Four cases for heating power scan study 
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• To avoid W accumulation in core, high D gas injection rate is 
required for JET-ILW compared to JET-CW. 

• Even without any D gas injection, C-wall high δ has the 
highest Dα  in the database. 

• Dα increases with absorbed power,  only in C-wall high δ. 
• D neutrals might play a key role in confinement? [1] 
• Heating Power (=Ohmic + NBI) scan  for four cases 
1. CW or ILW  
2. low δ or high δ 

[1]Joffrin EPS 2014 & Joffrin IAEA 2014 



• Te = HRTS or LIDAR (C-wall low δ ) 

• ne = HRTS or LIDAR (C-wall low δ ) 

• Ti= Charge Exchange Radiation measurement 

• D plasma with C or Be impurity 

• Zeff = Visible Bremsstrahlung i.e. NZEFMOD=2 and NLZFIN=.T 

• NBI = NUBEAM  

• Bulk Radiation = Bolometry measurement 

• q profile =  EFIT/q i.e. NQMODA=4 

• Equilibrium  = TRANSP equilibrium solver (TEQ) i.e. LEVGEO=11  

 

 

 

 

 

Input and assumptions in TRANSP 
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Data consistency check : 
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Weaker confinement degradation with Pheat than 
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Conclusion – TRANSP application 2 

• Power degradation of confinement was weak in both of the ILW configurations and 

the C-wall low δ plasmas, much weaker than the IPB98(y,2), resulting in elevated 

H98 only at high power and, therefore, high βN. 

• This is consistent with the general observation of higher H98 in high βN ‘hybrid’ 

plasmas compared with the low βN ‘baseline’ plasmas in these configurations. 

• However, the high δ C-wall plasmas show elevated H98 over a wide power range 

with strong, IPB98(y,2)-like, power degradation. This exceptional case appears to 

have been affected by a source of neutral particles in the main chamber. 

• C. Challis et al, submitted to NF, 2015 

• C. Challis, IAEA Fusion Energy Conference, 2014,  EX/9-3 
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Disruption due to core W accumulation 

Hyun-Tae Kim | TRANSP User Group meeting  | Princeton, US  | 23th Mar 2015 | Page 21 

• ne peaking   W peaking  core Te cooling  ST amplitude reduced  W expelling reduced  

                                           dramatic cooling  disruption! 

• ICRH is required to prevent ne peaking for stationary condition in JET-ILW 



• Te = HRTS  

• ne = HRTS  

• Ti = Te 

• D plasma with Be and N impurity i.e NLZSIM=.T 

nBe = 1% of ne and nN = CX measurement .  

• Zeff  is calculated by impurity input data i.e. NZEFMOD=10,  

• NBI = NUBEAM, ICRH=TORIC with 3% H minority (similar profile with ne) 

• Bulk Radiation = Bolometry measurement 

• q profile =  Poloidal Field Diffusion equation solved to calculate E║, 

and in turn Vware i.e. NQMODA=1 

• Equilibrium  = TRANSP equilibrium solver (TEQ) i.e. LEVGEO=11 

 

 

 

 

 

Input and assumptions in TRANSP 
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ICRH increases particle diffusion, and 
reduces central W peaking.  
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Conclusion – TRANSP application 3 

• N-seeded high δ in JET-ILW is not stationary and can result in disruption 

due to W accumulation in the core. 

• According to Neoclassical theory, W peaking is proportional to ne peaking. 

• ne peaking can be reduced by core deposition of ICRH, which increases 

outward ne diffusion without significant change of inward ware pinch.   

• C. Giroud 2015 PPCF 57 035004 
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JET DT campaign with ITER-like wall is planned in 2017!  

Hyun-Tae Kim | TRANSP User Group meeting  | Princeton, US  | 23th Mar 2015 | Page 26 

Since 1997 DT campaign,  
the heating power at JET has been 
improved a lot! 

 
• PNBI= 20MW  34MW 
• PICRH= 3MW  6MW 
 



JET DT campaign with ITER-like wall is planned in 2017!  
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Since 1997 DT campaign,  
the heating power at JET has been 
improved a lot! 

 
• PNBI= 20MW  34MW 
• PICRH= 3MW  6MW 
 

 15MW of fusion power for 5 sec? 
 

 TRANSP will play a key role in 2017 DT 
campaign 



Neutron rate calculation in TRANSP  
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• The TRANSP database shows that TRANSP-calculated neutron rate is higher than the 
values measured by fission chamber  

i.e. Measured neutron rate < Calculated neutron rate 
• Note, the deficit fraction is consistent i.e. (≈30%) in the database where key plasma 

parameters i.e. Ip , Bt, PNBI, ne are constrained. 

• Baseline JET plasmas with 
 Ip=2.5 MA,  
 Bt= 2.7 T,  
 PNBI=14-17 MW, 
 ne = 7~9 e19 m-3 



Neutron deficit issue in a large database of JET plasmas 
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• Measured < Calculated  (by CHEAP i.e. without fast ion orbits and beam-beam neutrons)  

• Good agreement within 10%, using a multi-parameter regression fit with ‘plasma parameters’. 

This shows that the ‘deficit’ is a matter of physics (rather than random factors) 

• If anomalous fast ion transport is not modelled, the neutron rate is over calculated in TRANSP 

(for high ne JET plasmas in Yuri Baranov, PPCF 2009, 51 4 044004) 
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H. Weisen, EPS 2015  



Future work with TRANSP at JET  

• Investigation on neutron deficit in measurement  

• Reprocessing the TRANSP runs in 1997 DT campaign  

 

• Interpretative simulations of 2017 JET DT campaign  
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Suggestions from JET TRANSP users 

• Interaction between RF and fast ions i.e. TORIC and NUBEAM. 

• FI diffusion coefficient as a function of time and radius i.e. DFI(t,rho)  

• TRANSP runs for a large database 

• More synthetic diagnostics data? e.g. MSE, gamma ray  
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Main conclusion 

• TRANSP is one of the key tools to conduct dedicated studies with 

ITER-like wall, as shown by the recent TRANSP applications at JET, 

1. Comparative core confinement analysis in ILW and CW  

2. Effects of heating power on confinement 

3. ICRH deposition to avoid W accumulation 

• There are further TRANSP applications not addressed in this talk  
e.g. 1. input data preparation for gyrokinetic code and MHD stability codes, 2. data consistency tests, 

3. current diffusion simulations, 4. predictive transport modelling with theory-base transport models, 

and etc. 

• JET DT campaign is planned in 2017, so the role of TRANSP will 

be even more important!  

1. Investigation on neutron deficit   

2. Reprocessing the TRANSP runs in 1997 DT campaign  

3. Interpretative simulations of 2017 DT campaign  

• hyun.kim@ccfe.ac.uk 
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NBI power deposition profile 

JET-ILW discharges have, compared to CW counterparts in the database, 
• Smaller core Ptot

NBI due to the higher edge deposition resulting from higher ne,ped 

• Smaller difference between core Pe
NBI  and core Pi

NBI  
i.e. Higher core Pe

NBI  and lower core Pi
NBI  than JET-CW 

Ptot
NBI  

CW ILW 

N
N
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Core energy confinement time (= Wth/Ptotal) 

• Total core energy confinement time in JET-ILW is similar or slightly reduced 
with JET-CW. 
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