
Comparison of Computational Frameworks

A.Y. Pankin

Tech-X Corporation, CO, USA

Acknowledge discussions with
S.E. Kruger (Tech-X Corp.), A.H. Kritz, T. Rafiq (Lehigh U.)

Computational Frameworks
Framework is a real or conceptual structure intended to serve as a
support or guide for the building of something that expands the
structure into something useful

[IT standards and organizations glossary]

A software framework, in computer programming, is an abstraction
in which common code providing generic functionality can be
selectively overridden or specialized by user code providing specific
functionality. Frameworks are similar to software libraries in that
they are reusable abstractions of code wrapped in a well-defined
API

[Wikipedia]
In computer systems, a framework is often a layered structure indicating what kind
of programs can or should be built and how they would interrelate. Some computer
system frameworks also include actual programs, specify programming interfaces,
or offer programming tools for using the frameworks. A framework may be for a set
of functions within a system and how they interrelate; the layers of an operating
system; the layers of an application subsystem; how communication should be
standardized at some level of a network; and so forth. A framework is generally
more comprehensive than a protocol and more prescriptive than a structure

Computational Frameworks
Software frameworks have these distinguishing features
that separates them from libraries or normal user
applications:

1) inversion of control - Unlike libraries or normal user applications,
in a framework the overall program's flow of control is not dictated
by the caller, but by the framework

2) default behavior - A framework has a default behavior. This
default behavior must actually be some useful behavior and not a
series of no-ops

3) extensibility - A framework can be extended by the user usually
by selective overriding or specialized by user code providing
specific functionality

4) non-modifiable framework code - The framework code, in
general, is not allowed to be modified. Users can extended the
framework, but not modify its code

Definitions of frameworks were not
helpful to FSP framework discussions

● Lots of arguments devolved into what is a
framework, and what is not a framework

● Try simplifying definitions:
 Strong Frameworks: Frameworks with which you

would want to rewrite TRANSP
 Loose Frameworks: Frameworks with which you

would not want to rewrite TRANSP

Recent Integrated Modeling Efforts in US
oThree computational frameworks are developed

o FACETS Framework in the FACETS pro ject is used to couple the core-
edge-wall region in the plasma

o EFFIS (End-to-end Framework for Fusion Integrated Simulation) is used to
couple the neoclassical kinetic, turbulence gyro-kinetic and extended MHD
codes in the CPES/EPSI project

o The Integrated Plasma Simulator (IPS) Framework has been developed in
the CSWIM project

o Two different coupling schemes (tight in FACETS and loose in EFFIS
and IPS) are investigated

o New visualization and front-end interfaces such as FACETS Composer

o New standards for IO and coupling interfaces are developed
o PlasmaStates (NETCDF based) in IPS and FACETS

o XML based input in FACETS

o HDF5 based in FACETS

o ADIOS IO in EFFIS

Computational Frameworks
Framework defines
 Mechanisms to include tasks

 Physics modules
 Data modules
 Visualization modules

 Interfaces
 Access to experimental data
 Storage of simulation results (Restart capability)
 Physics model verification and regression analysis
 Physics model validation (Synthetic diagnostic)

 Interrelation between tasks – Workflows
 Communication between tasks

 Coupling schemes
 Data flows

7

1D Core Transport Equations



1
 ′V
∂
∂t ′V + ˙ ρ ∂

∂ρ
⎡
⎡ ⎡

⎡
⎡ ⎡
 n + 1

 ′V
∂

∂ρ ′V Γn[] = Sn



1
 ′V 5 / 3

∂
∂t ′V 5 / 3 + ˙ ρ ∂

∂ρ
⎡
⎡ ⎡

⎡
⎡ ⎡

nT
γ −1

 + 1
 ′V
∂

∂ρ ′V ΓE[] = Qnet



1
 ′V
∂
∂t ′V + ˙ ρ ∂

∂ρ
⎡
⎡ ⎡

⎡
⎡ ⎡

 LT + 1
 ′V
∂

∂ρ ′V ΓΩ[] = SΩ



 ∂
∂t

ψ p − η ||
nc

μ0

Δ+ψ p = Sψ

Sources

TransportCore Profiles
(dependent variables)

Equilibrium

NEUTRAL BEAM
INJECTION,…

PELLET
INJECTION

GLAQUELC,…

SOURCES

PLASMA TRANSPORT

2D EQUILIBRIA
(Includes coils)

TEQ, VMEC, EFIT, ..

MHD Linear
Stability

DCON, ELITE,
MARS, …

MHD Transport
Models

ISLAND, ELM,
Sawtooth, …

Kinetic Stability

GS2, …

Component often classified by how they fit
into WDM paradigm

Turbulent:

Coppi-Tang,…

Neoclassical

Chang-Hinton,
…GLF23,

MMM95
NCLASS

Component list at:
http://fspcomp.web.lehigh.edu/index.php/Existing_components
Lists 67 components

TGLF, MMM81 NEO

GYRO, GEM,
…

NBEAM

NUBEAM

RF HEATING
AND CURRENT
DRIVEGENRAY, TORAY

TORIC

AORSAIncreasing
computational
cost FUSION HEATING

http://fspcomp.web.lehigh.edu/index.php/Existing_components

Simplified Framework for Modeling of
Plasma Core

Standardized Interface to Solvers

Interface to Equilibrium Modules

NBEAM

NUBEAM

GENRAY

TORIC

AORSA

o Layered code organization
o Standardized interfaces for

solvers, sources, transport and
equilibrium modules

● Specify dependences,
inputs and output,
units

o Set standards for team
of developers

o Simplify development
and implementation of new
models

o Simplify maintenance,
verification and debugging of
modules

o Make the code less dependent
on a particular module
developer

FACETS experience shows issues
● Answers

 UEDGE: could be compiled under Linux by a LLNL
employee who was not a UEDGE developer. No regression
tests in repo

 NUBEAM: McCune could compile on laptop, but some other
FACETS/PPPL team members could not

 GYRO: All developers can build on their laptops. Set of
standard tests with accepted results.

● Fastest time to incorporation within FACETS:
GYRO, NUBEAM, UEDGE in order
 Exact opposite from most expectations
 Similar experience for CSWIM: NIMROD was quickly

incorporation, CQL3D was longer time scale

Coupling of Core and Edge Regions in FACETS

NEUTRAL MODEL

UEDGE, DEGAS, …

RADIATION

CRETIN, …

WALL MODELING

WALLPSI, REDEP, …

3D TRANSPORT

BOUT++, XGC1, …

2D TRANSPORT

UEDGE,
TEMPEST,XGC0

“Edge region” acts as boundary
condition for core region
Change of magnetic topology, different temperature regime causes
very different physics: Harder problem in many ways

Many ways
harder than
core
plasmas

Coupling of Core and Edge Regions in FACETS
o In coupled core-edge

simulations of DIII-D
discharges, neutral was
varied to investigate its
effect on plasma profiles
o Neutral influx has been varied

up and down from this
analysis value, 250 MA

o Plasma density profile shown
in purple crosses corresponds
to the neutral influx found
from the UEDGE analysis
simulations

o Experimental plasma density
profile is shown as solid green
curve.

o Plasma quantities rapidly
become one dimensional,
validating the coupling
algorithm

Workflow: EPSI Computational Framework
Coupled XGC0-ELITE-NIMROD
framework is used in simulation of
H-mode pedestal formation and
ELM cycle dynamics

• Extended MHD M3D code is
also available for ELM study
within EPSI framework

The End-to-End Fusion Framework
for Integrated Simulation (EFFIS)
is used to couple the CPES codes
together in one framework
Equilibrium that is based on XGC0
plasma profiles is passed to the
ELITE and NIMROD/M3D codes
The XGC0, ELITE and NIMROD
codes are described below

no

XGC0 is
initialized with

eqdsk equilibrium

Plasma profiles are
advanced in time

New equilibrium
is generated

(TEQ or M3D-OMP)

Linear stability
analysis

with ELITE code

ELM unstable

Extended MHD
nonlinear simulation

of ELM crash

yes

X
G

C
0

E
L

IT
E

N
IM

R
O

D
/

M
3D

Workflow: Coupling of XGC0, FACETS and ELITE
Codes to Study the Transient Effects Triggered by
Sawteeth
• Simulation starts with DIII-D equilibrium
• Pedestal buildup is modeled with XGC0
• ELM stability is monitored with ELITE
• XGC0 simulation is interrupted when pedestal

reaches quasi-stable state below peeling-
ballooning stability boundary

• New equilibrium is generated using M3D-OMP
• New equilibrium is sent to FACETS
• Plasma core profiles are advanced using

FACETS with boundary conditions at the top of
the pedestal

• The effect of sawteeth on the pedestal
structure are studied by short increase (200
μs) of fluxes from plasma core in XGC0

• Stability of modified pedestal is studied with
ELITE

XGC0

ELITE

FACETS

XGC0

ELITE

Eq. Solver

Loose frameworks
● There are 3 loose frameworks under consideration in

the fusion community:
● KEPLER: EPSI, EPS

● Java based
● IPS: Used by SWIM and others

● Python
● OMFIT: GA, AToM

● Python
● Without trying to start a flamewar, these statements

can generally be made:
● Python is the most widely used scripting within the scientific

community
● Scientific users have been able to adapt to the python-based

frameworks for this reason

OMFIT

 OMFIT excels at:
 Local setup with remote execution and local

analysis
 Excellent file management
 Simple extensibility
 Integrating within an experimental environment

IPS

 IPS excels at:
 Time-dependent simulations with time loop

controlled by python
 Using coarse-grained components where the

components are written in fortran (handling
multiple runs with lack of output file namespacing)

 Parallel load balancing of coarse-grained
simulations

 Queue structure that allows task-farming type
simulations such as those needed for UQ analysis

Strong Framework Desired Properties

• Provides infrastructure (for writing quick
codes) and super-structure (for coupling codes)

• Units of code (components or even sub-
components) be allowed to:
 Compile independently of framework
 Be tested independently of framework
 Use common version control system

FACETS Framework
• Superstructure (code coupling): 703 lines
• Infrastructure: 40k lines
• Interfaces for codes + internal components: 31k lines
• Infrastructure was robust enough to write first parallel

core transport code

Load balancing is well-known obvious
problem

Uedge

Nubeam

WallPSI

Core (glf23)

Bout w/ transport
Bout

GYRO

Uedge (4x8)

Uedge (2 pt)

Bout/Uedge

 Nubeam Core UEDGE
WallPSI
(Nubeam and UEDGE are
relatively balanced)

 Core UEDGE (lowres) WallPSI
(Adjust the resolution of
UEDGE to match core)

 Core Two point WallPSI
(faster edge model to match
Core's speed)

 GYRO out (various) WallPSI
(GYRO and Bout are roughly
balanced)

 This assumes that
components themselves are
robust

Example: FACETS versus TRANSP

• TRANSP included many codes over the years
and had a larger code base than FACETS

• Generally:
 TRANSP: Test at the TRANSP level
 FACETS: Test individually, and then at FACETS

level as well
 TRANSP: Build all components
 FACETS: Flexibility in component

building/composition

FACETS goal: WDM for core-edge-wall using HPC
resources

Profile
advance

Dynamic
Eq.

Parall
el NB

Parall
el RF

Parallel
reduced
flux
calcs

Embed
Turb.

2D Edge
Transprt

Wall
modeling

TRANSP YES YES YES YES NO NO NO NO

TSC YES YES YES NO YES NO NO NO

XPTOR YES YES NO NO NO NO NO NO

CORSICA YES YES NO NO NO NO NO NO

TRINITY NO NO NO NO NO YES NO NO

TGYRO NO NO NO NO YES YES NO NO

IPS/TSC YES YES YES YES YES NO NO NO

FACETS YES ~6
months

YES ~6
mo.

w/ IPS

YES YES YES ~6
months

Some Lessons from Recent SciDAC projects
• Modern integrated modeling code should

o Take an advantages from the developments in other
science communities such as applied math and
computational scientists
o UQ and new tools for design optimization
o Porting to GPU platforms
o Advances in frameworks and workflow developments
o New techniques to store simulation data

o Have a predictive capabilities for discharge optimization
studies and for the design of future fusion reactors

o Be flexible with respect to the discharge plasma regions
that are simulated (core, pedestal, and SOL)

o Computational requirements
o Portable
o Modular
o Enhanced options to build and debug
o Regression analysis
o Optimized for speed (load balancing)

Summary
 Integration of fusion codes offers a way of computing at

the extreme scale …
… while offering an extreme scale of physics fidelity.

 Challenges to code integration is often more about the
sociological issues that determine code quality of
legacy components than any math/computer
science/physics issue
 Challenges tend to be ugly stuff no one wants to here

about or work on
 Loose coupling frameworks excel at more rapid

integration and offer additional benefits for
collaboration

 Strong coupling frameworks introduce additional
challenges but the payoff is to handle a wider disparity
of code chunks at higher performance

Summary
 Integration of fusion codes offers a way of computing at

the extreme scale …
… while offering an extreme scale of physics fidelity.

 Challenges to code integration is often more about the
sociological issues that determine code quality of
legacy components than any math/computer
science/physics issue
 Challenges tend to be ugly stuff no one wants to here

about or work on
 Loose coupling frameworks excel at more rapid

integration and offer additional benefits for
collaboration

 Strong coupling frameworks introduce additional
challenges but the payoff is to handle a wider disparity
of code chunks at higher performance

Frameworks are plumbing. They are important, but it’s still just
plumbing.

 [David Keyes, speaking at SIAM CSE]

Definitions of frameworks were not helpful to
FSP frameworks discussion

● Still not entirely helpful as there are always people
that say that they CAN do anything

● Emphasizing on what you would WANT to do

• In other words: No “three-legged races”
• So consider definitions sufficient

Kernighan (one of the originators of Unix and C):
In college, before video games, we would amuse
ourselves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing
program. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN was
the language of choice for the same reason that three-
legged races are popular.

There are many issues for all code-coupling
efforts
• All code coupling efforts face generic coupling issues

 “Librarification” or “componentization”
 Generation of “glue code” for componentization
 Interface definitions
 Mathematical formulation
 Human communication challenges
 Dependency minimization

• In-memory coupling (strong framework) has additional
challenges beyond file-based coupling

 Interlanguage interoperability
 Compiler consistency for Fortran
 Build complexity (link lines, build provenance, …)
 Symbol collisions

Other common issues for all code coupling
efforts that impacts framework

• Is source code access allowed or are just
provided binaries sufficient?
 FACETS, TGYRO: Source code only
 CSWIM, EPSI/CPES: Source code preferred

• Units of code (components or even sub-
components) be allowed to:
 Compile independently of framework?
 Be tested independently of framework?
 Use common version control system?

• These issues are often ignored in discussion,
but have impact on productivity

Common issues for using legacy
components

• Useful questions to ask:
 Are the software developers able to compile the code

on their laptops without help from another team
member?

 Are there software users from an outside institution?
If yes, how do they build the code: build themselves,
or use pre-built versions at select machines?

 Are the test cases that are routinely run to ensure
correct answers?

	Slide 1
	Slide 2
	Slide 3
	Definitions of frameworks were not helpful to FSP frameworks discussion
	Slide 5
	Slide 6
	1D Core Transport Equations
	Slide 8
	Slide 9
	FACETS experience shows issues
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Loose frameworks
	OMFIT
	IPS
	Strong Framework Desired Properties
	Load balancing is well-known obvious problem
	Example: FACETS versus TRANSP
	FACETS goal: WDM for core-edge-wall using HPC resources
	Slide 23
	Slide 24
	Slide 25
	This definition is still not entirely helpful
	There are many issues for all code-coupling efforts
	Other Common issues for all code coupling efforts that impacts framework
	Common issues for using legacy components

