TRANSP Pellet Ablation Model

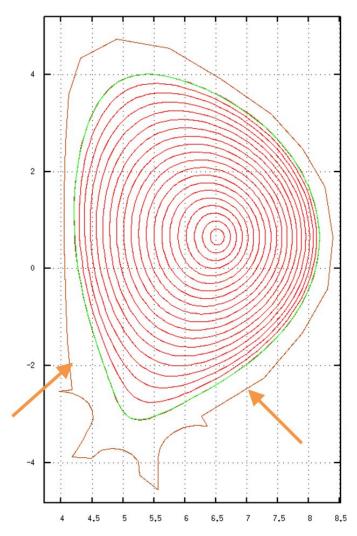
J. S. Sachdev

TRANSP User Group Meeting 2017

May 4-5, 2017

Computational Plasma Physics Group

Princeton Plasma Physics Laboratory


J. S. Sachdev | Pellet Ablation | TUG 2017 | May 4, 2017 | Page 1 of 11

Motivation and Objective

- The ability to model pellet injection is important for a number of tokamaks
- NSTX-U, DIII-D, and EAST use Lithium Granule Injection (LGI) for wall conditioning and Edge-Localized Mode (ELM) mitigation
- MAST-U, ASDEX-U, JET, and ITER will be using pellet injection for both fueling and ELM mitigation
- Original pellet ablation model removed from TRANSP many years ago
- Some code infrastructure supporting pellet events left in place, including:
 - Input parameters
 - Code that schedules and performs pellet events
 - \circ $\,$ Actual model used not retained in SVN or CVS repositories $\,$
- The objective of this project is to reinstate a pellet ablation capability and extend to more modern models

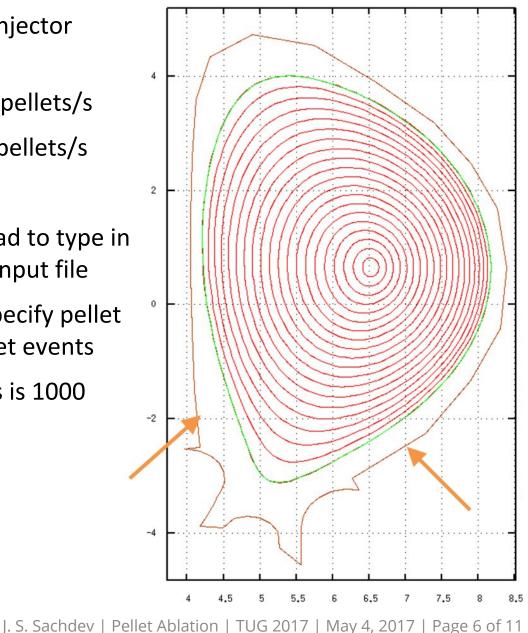
Pellet Injection

- In TRANSP, pellet injection is treated as an 'event'
 - Pellet injection schedule is checked at the beginning of a time-step
 - The pellet is 'popped' if time for the next injection has been reached
 - Similar to how saw-tooth events are processed
- Event steps:
 - Pellet event is triggered
 - Pellet trajectory through plasma is computed
 - Electron density and temperature profiles along the trajectory are saved
 - Marching done in physical space; compute ablation along path
 - Ablation along the path is computed until the pellet radius is zero or leaves the plasma
 - Change in electron density and temperature is mapped back into flux coordinates

Pellet Ablation Models

- Started with pellet ablation model from the Tokamak Simulation Code (TSC)
- Switched to a FORTRAN module developed by Houlberg/Baylor/Parks
 - Includes several ablation models for hydrogenic and impurity pellets
 - Module will be updated as new models are devised
 - Objective: Use module as is, only bug fixes
- Parks' baseline model for hydrogenic pellets:

 $\frac{dN}{dt} = 1.12 \times 10^{16} \, n_e^{0.333} \, T_e^{1.64} \, r_p^{1.333} \, M^{-0.333}$


- Other ablation models for hydrogenic pellets:
 - Kuteev's model for hydrogenic pellets for high plasma parameters
 - Macaulay's model for hydrogenic pellets (fit from 2D simulations)
 - Parks' Q-model, determines ablation rate assuming constant heat-flux
 - Parks' IPADBASE model, computes ablation rate from generated fits
 - Neutral Gas Shielding (NGS) model of Houlberg***
- Impurity pellet models:
 - Kuteev's model for Li, Be, B, C, Ne, Ar, Ti, Kr, Mo, Xe, and W
 - Parks' model for Ne, Ar, Kr, and Xe

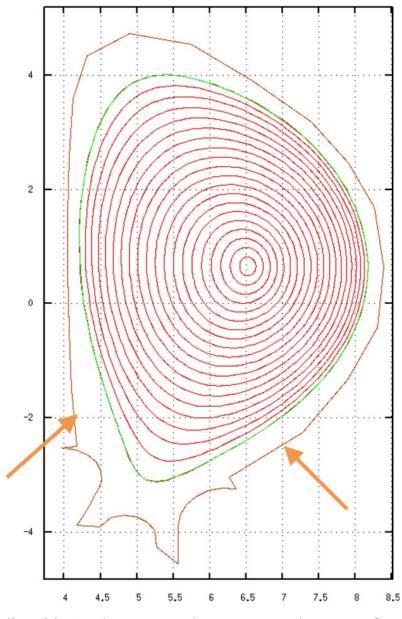
Schedule and Tasks

		9	10	11	12	1	2	3	4	5	6	7	8
1	Understanding current infrastructure for pellet injection				٠								
2	Add baseline pellet ablation models												
3	Extend inputs to include injectors												
4	Verification with ITER fueling scenario									٠			
5	Validation with JET fueling scenario										٠		
6	Upgrade OMFIT to include pellet inputs										٠		
7	Implement advanced ablation model											٠	
8	Application to DIII-D ELM mitigation with lithium pellets												
9	Documentation and tutorial												

Pellet Input Parameters for TRANSP

- Figure shows approximate pellet injector locations for an ITER scenario
- High-Field Side injector fires at 16 pellets/s
- Low-Field Side injector fires at 40 pellets/s
- 56 pellets injected after 1 s
- Previously, the user would have had to type in
 56 pellet events into the TRANSP input file
- Added capability for the user to specify pellet injectors instead of individual pellet events
- Note: maximum number of pellets is 1000

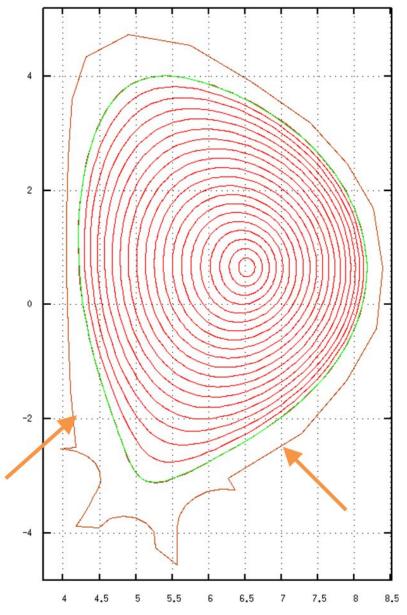
Pellet Input Parameters for TRANSP, cont'd


Variable	Туре	Description
ipelinp	integer	Pellet input model: 0 = event-based, 1 = injector-based
npel	integer	Number of pellet events OR number of pellet injectors
tpel	real(npel)	Time pellet popped OR time pellet injector starts firing [s]
tpelend	real(npel)	Time pellet injector stops firing [s]
freqpel	integer(npel)	Frequency pellets are injected [Hz]
aplrsta	real(npel)	Pellet starting r-position [cm]
aplysta	real(npel)	Pellett starting y-position (+ve above midplane) [cm]
aplphia	real(npel)	Toroidal aiming angle [degrees]
aplthea	real(npel)	Poloidal aiming angle (+ve up) [degrees]
apel	real(npel)	Atomic weight of pellet material
pelrad	real(npel)	Initial pellet radius [cm]
pelvel	real(npel)	Magnitude of pellet velocity [cm/s]
kpellet	integer(npel)	Pellet ablation model

J. S. Sachdev | Pellet Ablation | TUG 2017 | May 4, 2017 | Page 7 of 11

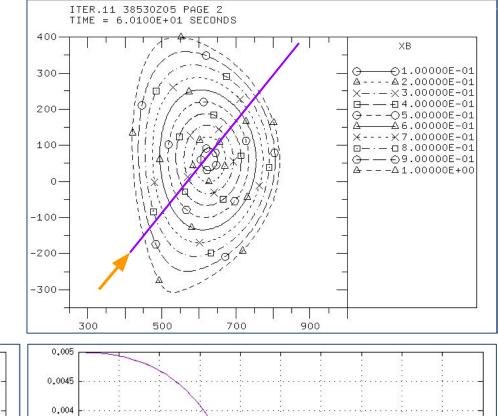
Pellet Input Parameters for TRANSP, cont'd

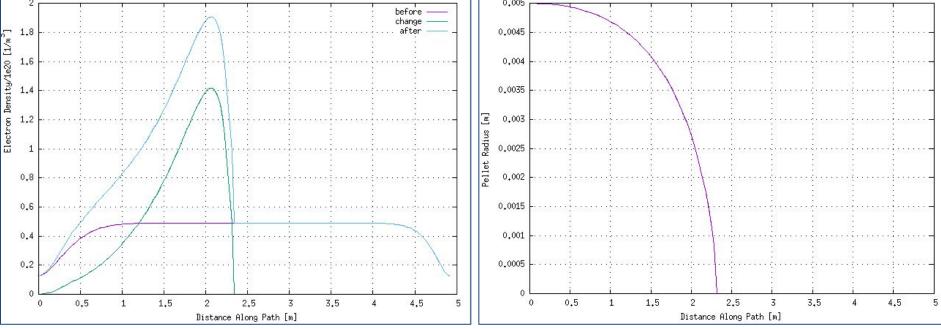
- Example inputs for HFS and LFS injectors
- User specifies 2 injectors instead of 56 events


ipelinp	=	1,
npel	=	2,
tpel	=	2.0, 4.0,
tpelend	=	3.0, 5.0,
freqpel	=	16, 40,
aplrsta	=	415.0, 700.0,
aplysta	=	-200.0, -245.0,
aplphia	=	132.77, 67.8,
aplthea	=	0, 0,
apel	=	2.0, 2.0,
pelrad	=	0.5, 0.3,
pelvel	=	3.0e5, 3.0e5,
kpellet	=	4, 4,

J. S. Sachdev | Pellet Ablation | TUG 2017 | May 4, 2017 | Page 8 of 11

Verification with ITER Scenarios


- Have been using the ITER scenario to verify:
 - Pellet code framework is working as expected
 - Pellet event scheduling
 - Pellet trajectory tracing
 - **...**
 - Pellet ablation models are being called correctly and give qualitatively realistic results
 - Code restarts correctly
 - Still need to add output profiles to NETCDF file
- Issues to be aware of:
 - Multiple pellet injections between UFILE data points (likely not disastrous)
 - Multiple pellet injections during a time-step (likely trouble ... not-allowed)



J. S. Sachdev | Pellet Ablation | TUG 2017 | May 4, 2017 | Page 9 of 11

Preliminary Results

- ITER shot number 38530
- Plasma shown at 60.1 s (L-mode)
- Profiles along path for HFS injector
 - Electron density before, change and during from HFS injector
 - Pellet radius
- Qualitatively the code is working...

J. S. Sachdev | Pellet Ablation | TUG 2017 | May 4, 2017 | Page 10 of 11

Next Steps

- Continue verification with ITER scenarios
 - F. Poli has provided additional cases which will isolate the effect of the pellets
- Validation with JET fueling scenario
 - Working with F. Poli to compare TRANSP results with a JET experiment and pellet ablation code
- Upgrade TRANSP module in OMFIT
 - Include pellet inputs
 - Add capability to test pellet aiming by plotting trajectory against plasma state at different times
- Implement advanced pellet ablation models
 - NGS model of Houlberg
 - New model from Parks
- Implement diagnostics that would be beneficial for comparison with experiments
- Application to DIII-D ELM mitigation with lithium pellets
 Will be working with A. Bortolon to compare with other codes he has run
- Documentation and tutorial (for an OMFIT based set-up)