
PT_SOLVER speedup with Deep Neural
Network
Xingqiu Yuan

Princeton Plasma Physics Lab

Presented at TUG transp Users meeting on May 5th 2017

current progress on DNN

Many super company made big progress in speed up deep-learning package, include Nvidia, Cray,
IBM, BAIDU, and INTEL

google TPU

Deep Neural Network is accurate but often overfiting

current status of PT_SOLVER

• Multilevel parallelization (over ky inside TGLF, and flux surface), no limitation on the
number of flux surface, upto more than 1k cores can be used on NERSC.

• TGLF is slow, and gives discontinuous fluxes, not good for convergence. (over a
week to finish ITER 400s discharge case)

• Many runs have been performed for different devices, and different parameter regions
(easy to establish database)

• Feedforward propagation deep learning neural network is very fast and accurate as an
alternative of TGLF to provide turbulent fluxes.(10 to 100 times faster than TGLF)

• Continuous fluxes function from DNN, better convergence.
• However, it is hard to train a deep neural network (overfiting, gradient vanishing,

local minimum, massively parallelization, big database, etc).

current implementation of DNN package

• many of the open source packages allow CPU/GPU hybrid computing
• but using offload mode, the optimization work was given for GPU for

efficient matrix operation (vectorization or data parallelization).
• the foundmental class is layer (in paddle-paddle, caffe, and so on),

expcept tensor flow.
• the levels of parallelism are limited (scalability?)

• however, the current exascale computing requires many levels of
parallelization, and many runtime concurrency.

• actor based programming paradigm gives many levels of parallelism,
 and suitable for hybrid computing.

Parallel Programming Paradigms for Heterogeneous Architecture
• 1): asynchronous programming
 a): global synchronization is expensive and waste of cpu time
 b): local synchronization is allowed.

• 2): hybrid task & data parallelism
 a): OpenMP, TBB, Cilk and OpenACC etc are only allow data
 parallelism (vectorization)
 b): task parallelism is difficult

• 3): actor based programming paradigm
 a): actors are reactive object, dynamically created/destroied
 b): actors execute concurrently
 c): actors are small tasks that are scalable.
 d): examples, such as HPX, intel OCR, Legion, CAF, and Kepler

Actors are similar to c++ objects, but more...

Actor-Dataflow
Orientation

vs
Object-

Control flow
Orientation

actor based programming paradigm
(with application to DNN)

1): Actors and its connectivity form graph G=(V,E)

2): Actors can be partitioned to different processors

3): Actors can be any small tasks, for example,
 neurals in neural network,
 numerical integration task in FEM,
 or particle push task in Monte Carlo calculation,
 and many more.

4): Actors can dynamically create/destroy daughtor actoress

5): asynchronous (non-block) communication

actor1 actor2

actor3

actor4 actor5 actor6

actor7

cpu-0

cpu-1

actor based DNN algorithm

1): deep learning network is many hidden
 layers neural network
2): each layers have many foundmental
 unit that called neuron
3): neuron has input, output which form
 the connectivity
4): neurons and its connectivity form
 graph G=(V,E)

neuron is naturally an actor objects

neuron actor

optimization actor

actor name
actor rank
processor ID
number of daughtor actress
pointer to daughtor actress
action (instructions)
number of threads
number of cores
connectivity

an actor model for neuron
(actor is the basic and foundmental class)

input operation
actor

gradient calculation
actor

communication
actor

Each neuron actor can execute instructions in parallel, this arrangement give
use many levels of parallelism.
All the neuron actor in the network form a graph G=(V,E), and can be partitioned
to different computer node with minimum communication.

Output Layer
Hidden Layers

Input Layer

Put all neurons together to form a graph

Input

Output

1x

2x

Layer 1

……

Nx

……

Layer 2

……

Layer L

……

…
…
…
…

…
…

……

y1

y2

yM

actor1

actor2

edge1 edge2

An actor is a node in graph,the connectivity is the edge
(actor_1,actor_2,....actor_n,edge_1,edge_2,...edge_n)

Graph based partition for parallel computing

many ways to partition an unstructured mesh
(metis,parmetis,scotch,pt-scotch)

1): multilevel graph partitioning
2): recursive bisection graph partitioning
3): greedy algorithm
4): spectral partitioning
5): Kernighan-Lin algorithm

Put every actors together

cpu0

GPU

cpu1

1): Weighted actors can
be used.
2): one actor can be
mapped to two or more
nodes if necessary.

One-batch Training

TrainOneBatch

NeuralNet

Layer

stop

Back-propagation (BP)
Input

Hidden

Loss

labels

Feedforward models (e.g., CNN)

14

Distributed online Training

Cluster Topology

Worker

Server

Node

Group

Inter-node
Communication

Neural Net

Worker Worker Worker

Legends:

15

Worker

Server

Node

Group

Inter-node
Communication

Legends:

16

Distributed minibatch Training

Cluster Topology

Cluster Topology

Worker

Server

Node

Group

Inter-node
Communication

Legends:

17

Distributed minibatch Training

Neural Net

Worker Worker Worker

summaries and discussions

• An efficient way to implement deep neural network (DNN) can improve the
network training.

• Using of deep neural network has the potential of speedup PT_SOLVER by a
factor of 10-100, and better convergence an be expected without loss of accuracy

• Database need to be established based on the current PT_SOLVER TGLF runs.

• Many potential applications of DNN in fusion research, including DNN-EPED,
experimental data analysis, and so on

the end

thank you very much !

