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IBM Linux Servers Designed to Accelerate
Artificial Intelligence, Deep Learning and
Advanced Analytics

* New IBM POWERS Chip with NVIDIA NVLink(TM) Enables Data Movement
5x Faster than Any Competing Platform

» Systems Deliver Average of 80% More Performance Per Dollar than Latest
x86-Based Servers(1)

* Expanded Linux Server Lineup Leverages OpenPOWER Innovations
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Many super company made big progress in speed up deep-learning package, include Nvidia, Cray,
IBM, BAIDU, and INTEL
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>Deep Neural Network is accurate but often overfiting
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>current status of PT_SOLVER

* Multilevel parallelization (over ky inside TGLF, and flux surface), no limitation on the
number of flux surface, upto more than 1k cores can be used on NERSC.

* TGLF 1s slow, and gives discontinuous fluxes, not good for convergence. (over a
week to finish ITER 400s discharge case)

* Many runs have been performed for different devices, and different parameter regions
(easy to establish database)

* Feedforward propagation deep learning neural network 1s very fast and accurate as an
alternative of TGLF to provide turbulent fluxes.(10 to 100 times faster than TGLF)

* Continuous fluxes function from DNN, better convergence.

* However, 1t 1s hard to train a deep neural network (overfiting, gradient vanishing,
local minimum, massively parallelization, big database, etc).




)current implementation of DNN package

* many of the open source packages allow CPU/GPU hybrid computing

* but using offload mode, the optimization work was given for GPU for
efficient matrix operation (vectorization or data parallelization).

* the foundmental class is layer (in paddle-paddle, caffe, and so on),
expcept tensor flow.

* the levels of parallelism are limited (scalability?)

* however, the current exascale computing requires many levels of
parallelization, and many runtime concurrency.

* actor based programming paradigm gives many levels of parallelism,

</
e —

and suul




)Parallel Programming Paradigms for Heterogeneous Architecture

* 1): asynchronous programming
a): global synchronization is expensive and waste of cpu time
b): local synchronization is allowed.

* 2): hybrid task & data parallelism
a): OpenMP, TBB, Cilk and OpenACC etc are only allow data
parallelism (vectorization)
b): task parallelism 1s difficult

* 3): actor based programming paradigm
a): actors are reactive object, dynamically created/destroied
b): actors execute concurrently
c): actors are small tasks that are scalable.

gamples, such as HPX;imeLQCR, Legion, CAF, and Kepler e




>Act0rs are similar to ct++ objects, but more...

* Object orientation:

What flows through
SEFDLEIRG an object is
data sequential control
r methods 1
call return
« Actor orientation: What flows through
an object is
actor name streams of data
data (state)
‘ parameters ‘
Input data e Output data




actor based programming paradigm
(with application to DNN)

1): Actors and its connectivity form graph G=(V,E)
2): Actors can be partitioned to different processors

3): Actors can be any small tasks, for example,
neurals in neural network,
numerical integration task in FEM,
or particle push task in Monte Carlo calculation,
and many more.

4): Actors can dynamically create/destroy daughtor actoress

5): asynchronous (non-block) communication




)actor based DNN algorithm

1): deep learning network 1s many hidden
layers neural network

2): each layers have many foundmental
unit that called neuron

3): neuron has input, output which form
the connectivity

4): neurons and its connectivity form

graph G=(V,E)

Neural Network
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Deep means many hidden layers




> neuron is naturally an actor objects

an actor model for neuron
(actor is the basic and foundmental class)

actor name
actor rank
processor 1D

number of daughtor actress

pointer to daughtor actress gradient calculation
action (instructions) actor

number of threads

number of cores
connectivity

communication
actor

input operation
actor

optimization actor

Each neuron actor can execute instructions in parallel, this arrangement give

use many levels of parallelism.

All the neuron actor in the network form a graph G=(V,E), and can be partitioned

to different computer node with minimum communication. s




> Put all neurons together to form a graph

Input Layer 1 Layer 2 Layer L
edge Output
— Y1
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Hidden Layers

An actor is a node in graph,the connectivity is the edge
1 (actor_1,actor_2,....actor_n,edge 1,edge 2,...edge _n)
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> Graph based partition for parallel computing

many ways to partition an unstructured mesh
(metis,parmetis,scotch,pt-scotch)

1): multilevel graph partitioning

2): recursive bisection graph partitioning
3): greedy algorithm

4): spectral partitioning

5): Kernighan-Lin algorithm




) Put every actors together
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1): Weighted actors can

be used.
2). one actor can be

mapped to two or more
nodes if necessary.




) One-batch Training
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Distributed online Training
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Distributed minibatch Training
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) Distributed minibatch Training
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) summaries and discussions

* An efficient way to implement deep neural network (DNN) can improve the
network training.

* Using of deep neural network has the potential of speedup PT SOLVER by a
factor of 10-100, and better convergence an be expected without loss of accuracy

* Database need to be established based on the current PT _SOLVER TGLF runs.

* Many potential applications of DNN 1n fusion research, including DNN-EPED,
experimental data analysis, and so on




the end

thank you very much !




