

Supported by



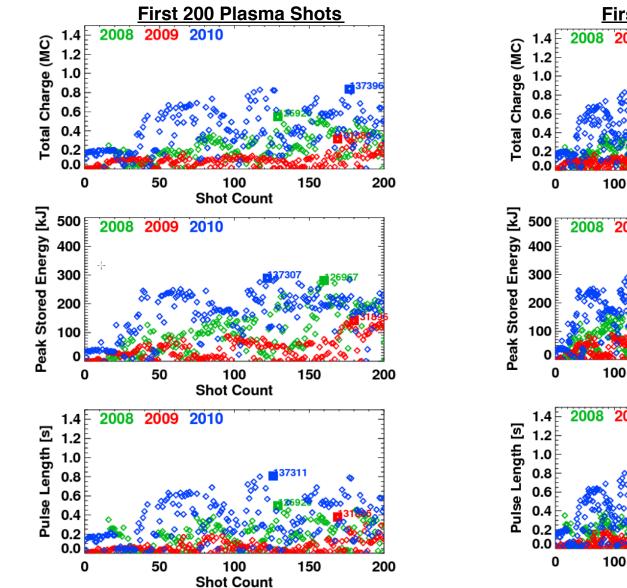
## Some Comments on Starting-Up and **Operating With Lithium and Boronization**

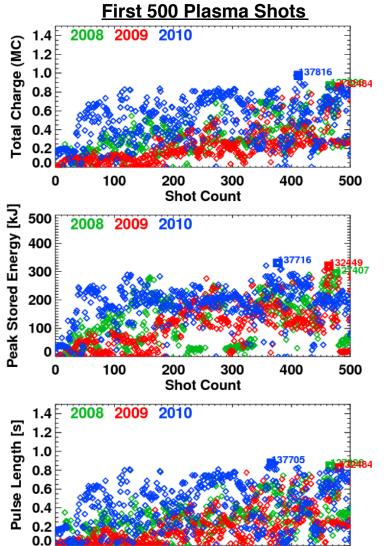


Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science


## Hi!


- Lithium had many benefits to NSTX operations.
  - Enabled a 10 minute shot cycle with reliable plasmas.
    - Allowed more science to get done.
  - Improved confinement.
  - Eliminated ELMs.
    - Though this is also a bad thing.
  - Controlled the deuterium inventory!!!
  - Reduced the density in front of the antenna.
  - Probably more...

- This short presentation.
  - Compare the 2010 startup with LITER to previous startups.
  - Comments on these benefits in the context of NSTX-U



## The 2010 "MegaEvaporation" Startup Was Far Better Than the Previous Two Boronized Startups



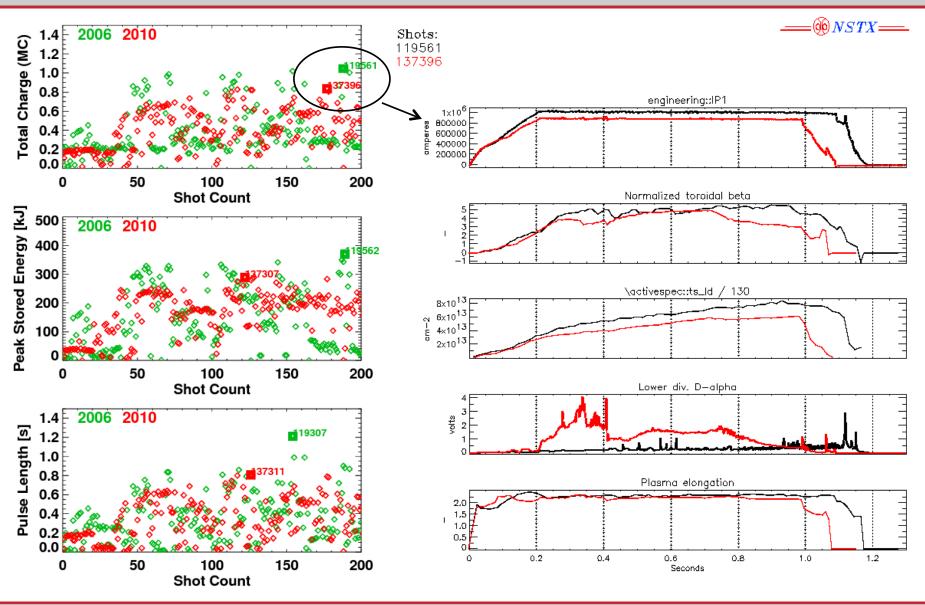


200

Shot Count

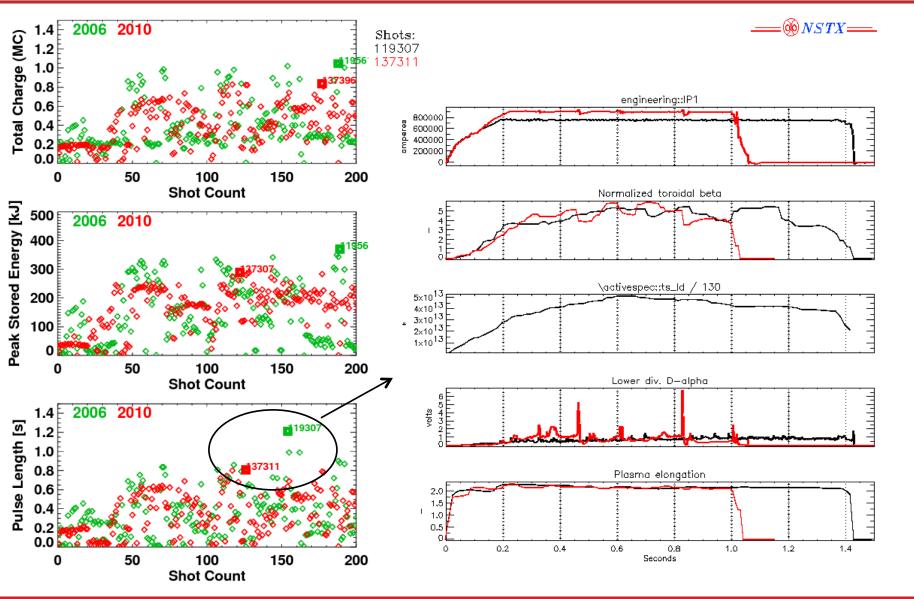
300

400


500

PC TF Meeting - Thoughts on Li and B, S.P. Gerhardt (1/20/2015)

## **So Why Was 2010 is So Much Better?**


- 2010: Large lithium evaporations to fill LLD.
  - No boronizations at all.
- 2009: We didn't clean out the previous years lithium.
  - Required lots of Ar, He glow to improve the plasma performance.
    - See: http://nstx.pppl.gov/DragNDrop/XP\_Folder/XP\_Schedule/FY09/ Run\_Overview\_09.pdf
  - Ultimately used LITER to recover good performance.
    - Hair of the dog...
- 2008: New control computer had a lot of teething problems.
  - Will in some sense be closer to 2015 than other cases, with many modifications to the control/protection systems.
- So, go back much further to see what a "good" Boron startup looked like.
  - Take 2006 as the example.
  - And yes, the goals of the first ~300 shots were different in those years, but it remains an interesting comparison.

## **Compare The 2010 and 2006 Startups**





## **Compare The 2010 and 2006 Startups**





## **Compare the Early Run Conditioning**

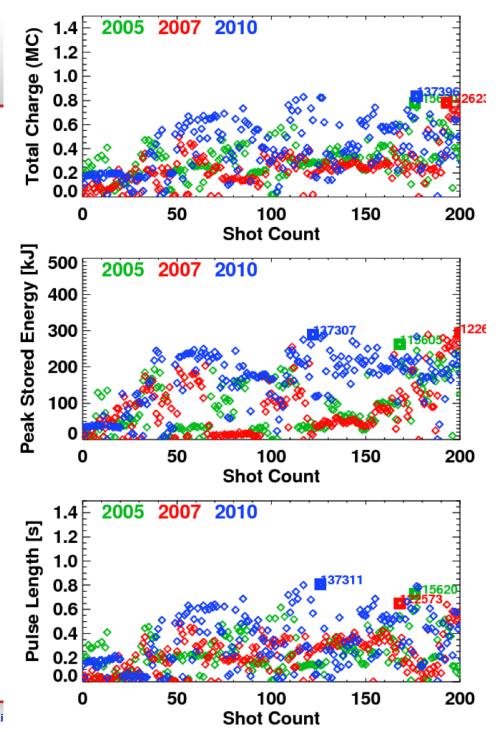
| NSTX Operation FY'06 |                                |                                             |                                           |                                    |                                                        |  |  |  |
|----------------------|--------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------|--------------------------------------------------------|--|--|--|
| Week                 | <b>Monday</b>                  | Tuesday                                     | Wednesday                                 | Thursday                           | Friday                                                 |  |  |  |
| Sep 19,05<br>– Feb 3 | Outage                         |                                             |                                           |                                    |                                                        |  |  |  |
| Feb 6 – 10           | ISTP-1<br>Coil tests           | ISTP-1<br>Coil tests<br>Plasma shot         | MP-20<br>Startup plasmas                  | MPTS calibration                   |                                                        |  |  |  |
| Feb 13 –<br>17       | Maintenance                    |                                             | MP-20<br>Calibration &<br>Startup plasmas | Maintenance                        | Bakeout                                                |  |  |  |
| Feb 20 –<br>24       | Bakeout                        |                                             |                                           | Maintenance                        |                                                        |  |  |  |
| Feb 27 –<br>Mar 3    | MP-20<br>Startup plasmas       | MP-20<br>Startup plasmas<br>Boronization 50 | XP-616<br>Movable Glow<br>Probe           | XP-616<br>Movable Glow             | XP-605<br>Divertor detach't                            |  |  |  |
|                      |                                |                                             |                                           | Probe<br>MP-3<br>Magnetics calib'n | XP-626<br>SGI fueling                                  |  |  |  |
| Mar 6 – 10           | <b>XP-606</b><br>Transient CHI | XP-606<br>Transient CHI                     | XP-603<br>Long-pulse DN                   | XP-604<br>Density scan             | <b>XP-602</b><br>Long pulse with<br>error field corr'n |  |  |  |
|                      |                                | XP-533<br>CHI+induction<br>Boronization 51  | XP-626<br>SGI fueling                     | XP-626<br>SGI fueling              |                                                        |  |  |  |

#### NSTX Operation FY'10 (1)

| Week                 | Monday                                                     | Tuesday                                                 | Wednesday                                 | Thursday                                                                 | <u>Friday</u>                                                                                  |  |  |
|----------------------|------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Aug 2009<br>- Feb 12 | Outage                                                     |                                                         |                                           |                                                                          |                                                                                                |  |  |
| Feb 17 –<br>Mar 8    | Bakeout                                                    |                                                         |                                           |                                                                          |                                                                                                |  |  |
| Mar 15 –<br>19       |                                                            | Outage                                                  | ISTP-1                                    | ISTP-1                                                                   |                                                                                                |  |  |
| Mar 22 –<br>26       | ISTP-1                                                     | MP-3<br>Magnetic calib'n                                | <b>LLD prefill</b><br>~15g LITER evap.    | MP-64<br>Initial operation<br>First plasmas                              | MP-64<br>Initial operation<br>First NBI                                                        |  |  |
| Mar 29 –<br>Apr 2    | MP-64<br>Initial operation<br>MP-66<br>Strike-point cntrl. | MP-66<br>Strike-point cntrl.                            | MP-66<br>Strike-point cntrl.              | MP-66<br>Strike-point cntrl.                                             | MP-66<br>Strike-point entrl.<br>XP-1000<br>LLD characteriz'n<br>LLD 250°C                      |  |  |
| Apr 5 – 9            | XP-1000<br>LLD characteriz'n<br>LLD 250°C                  | XP-1000<br>LLD characteriz'n<br>(ELM free)<br>LLD 250°C | XP-1000<br>LLD characteriz'n<br>LLD 320°C | XP-1000<br>LLD characteriz'n<br>(R <sub>OSP</sub> to 0.70m)<br>LLD 320°C | LITERs empty<br>MP-3<br>Magnetic calib'n<br>MP-33<br>MSE calib'n<br>XP-1004<br>Early EF corr'n |  |  |

The FY-05 log shows a boronization 48 as the last one, so maybe #49 occurred in FY06?

In any case, not particularly aggressive in the boronizations.


Appears that many of the good shots started at about 50 shots in, as part of XP-616

### 15 g of LITER evaporation before the first plasma!!!

## And then continued heavy evaporation.

## 2005 & 2007 Startup Were Not as Good as 2006

- Can see the impact of very different experimental programs.
  - 2007: Ohmic locked mode experiment & HHFW coupling
- But around the 35<sup>th</sup>-60<sup>th</sup> shot, similar performance across the years.
  - And similar tracking of the peak stored energy and pulse length across the first 40 shots.
- Caveat: these do not analyses do not look at the radiated power, H-mode timing, and rotating MHD...which may or may not have been different in 2010.
  - So I'm not saying that the B startup was strictly better, only that it might not have been strictly worse.





## **Relevant Changes from NSTX -> NSTX-U**

- Bakeout:
  - Old System: Upper divertor was not baked well because the upper ceramic break could not be properly cooled.
  - New System: Ceramic breaks at top and bottom can be cooled, allowing symmetric bake.
- Boronization System:
  - Old System: Single gas inlet at the midplane
  - New System: Gas inlets at each of upper divertor, lower divertor, and midplane.
- CS Fuelling:
  - Old System: 1/8" lines for both the shoulder and midplane injectors.
  - **New System:** 1/8" and 1/4" lines for each of the shoulder and midplane locations.
- GDC:
  - New System & Old System: 2 GDC electrodes
  - Very Old System (2006): Also had a movable glow probe.
- OH Coil:
  - Old System: Could cool fast enough to support 10 minute shot cycle.
  - New System: Very very complicated story...but unclear if it will support operations faster than 15 minutes.
- Shape & Position Control
  - Old System: Mature ramp-scenario, control schemes, library of shots to reload...PFC conditions generally set the pace of the startup.
  - New System: Must redevelop null, ramp, shape and position control...

## **Other Notes**

- Likelihood of an emergency vent?
  - Lithium does not play will with air.
  - We don't know the chances of needing a "quick vent" early in operations, but we do know that it will be harder to recover from if Li is in NSTX-U.
- LITER shutters and lithium inventory?
  - FY10 run started in mid-late March, and we were struggling by mid September w/ the LITER shutters.
    - About 1 month lost in there due to OH coil repairs.
    - Ultimately ran the final month w/ evaporation early in the AM, and reluctance on the part of session leaders to take afternoon sessions.
  - If we contemplate a longer run, then we should be very cognizant of early LITER usage.
- Fire and forget conditioning.
  - Boronization requires resources during the glow, but none during the run day.
  - LITER will take significant technician and engineer resources during the run day.
- PAC:

0

Sufficient time for systematic studies introducing lithium conditioning in a methodical way would be desirable. This approach is important both in the assessment of the impact of more lithium coverage (e.g. with the introduction of the granule injector and upward-facing evaporator system) and running fiducial experimental shots that elucidate boronization contemplating future use of a cryo-pump. From the standpoint of the engineering design of a cryo-pump system planned for FY17, it will be critical to evaluate particle balance under both non-lithiated conditions and those with different Li coating conditions providing a unique database that steps

## **Personal Recommendations**

- The NSTX-U TSG leaders should break XPs into three groups.
  - Those that specifically require boronized conditions
  - Those that specifically require lithium conditioned PFCs.
  - Those that simply need specific plasma conditions, that might be achieved with either technique...these in the "gray area"
- The NSTX-U team, under the guidance of the PC TF, should pursue an aggressive program to optimize the boronized state.
  - Optimization Targets
    - Minimal deuterium inventory evolution at 0.5<f<sub>GW</sub><0.8 (or whatever)
    - Controlled  $Z_{eff}$  <2 (or 2.5, or whatever)
  - Optimization Tools
    - Mega-boronization?
    - Optimized fuelling with new injectors?
    - Revisit He GDC pressures/durations?
  - And then should pursue the same goals with LITER conditioning.
- The timing of the (first) boron -> lithium transition should be determined by:
  - The count of XPs that specifically require either conditioning technique.
  - The ability of the "gray area" XPs to achieve their goals under boronization.
  - Our confidence in not needing a vent.
  - The anticipated duration of the run.

# Thanks!



PC TF Meeting - Thoughts on Li and B, S.P. Gerhardt (1/20/2015)