
B to Li Transition in NSTX-U

- Likely operational issues with Li based on past experiences:
 - Increased fueling to avoid locked modes
 - $-\beta_N$ limits

 \bigcirc

- ELM elimination leading to Carbon Accumulation
- How best to introduce new Li sources?
 - Evaporation into lower divertor from LiTERs (NSTX standard)
 - When is upward evaporator available and introduced?
 - Li Granule Injector? NSTX-U

Needed[?] XPs before Li Introduction

- Commissioning XMPs:
 - Strike point control
 - BetaN control
 - drsep control
- Early Run (B only operation)
 - SOL Power balance with B vs Li
 - Fueling Optimization and Scan with and without Li
 - Increased CS fueling has historically been required when using Li evaporation
 - Baseline machine performance with boron in a variety of plasma shapes and fueling scenarios we're likely to encounter with Li
 - Leading edge power fluxes ITPA (DSOL-31)
 - Eases IR interpretation with out Li
 - Regular (eg boronized), ELMy discharges would be ideal
 - Inform high-Z operation w/o Li
 - Asymmetries between inner and outer strike point ELM power loading (DSOL-35)
 - B and Li
- Other XPs that would benefit from no Li operation or comparison with no Li baseline shots?

Can expect variety of changes to plasma performance as Li is introduced based on past experiences

- Collaboration among divertor diagnostics to measure divertor response to Li is essential during Li introduction
- Li introduction XP should be NSTX-U team XP
 - Simultaneously capture edge, pedestal and core measurements
 - How best to introduce Li into NSTX-U?
 - Which diagnostics are important?
 - Which plasma control algorithms are important?

