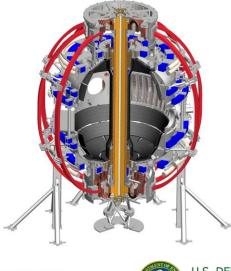
PC-TF early run campaign experiment discussion


PC-TF Pre Forum Meeting Jan 20, 2015

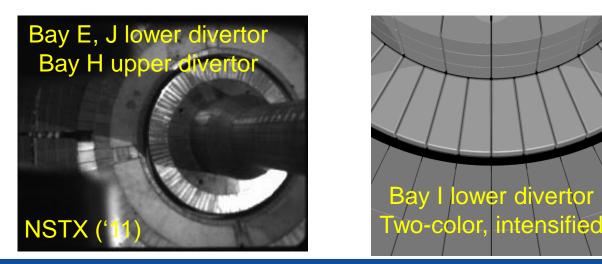
Lawrence Livermore National Laboratory

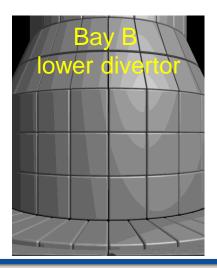
Filippo Scotti

NSTX Upgrade

Office of Science

LLNL-PRES-XXXXXX


This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences.. Lawrence Livermore National Security, LLC


Sources evaluation and mitigation to be addressed in particle control task force

- PC-TF experiments scope include (among others):
 - Wall coating and preparation/optimization for increased particle pumping
 - Reduction/control of impurity ion source rates
 - Natural and paced ELMs for impurity and main ion flushing
- Impurity mitigation XPs need an established impurityaccumulating target (Li-conditioned, ELM-free? B with infrequent ELMs?) and profile diagnostics between shots
 - Will it happen within first two months?
- Impurity sources to be mostly evaluated in piggy-back
 - Better characterization of the mixed material environment
 - Cross-cutting with MP-TSG (and DivSOL-TGS)

Upgraded LLNL diagnostics for full poloidal coverage of impurity emission

- Wide angle filtered camera views: lower (2 views), upper divertor
- Two-color, intensified high-resolution lower divertor view
- Radial divertor view (lower dome)
- 1D CCD cameras with lower divertor, center stack views
- Lower divertor spectrometers VIPS2, DIMS

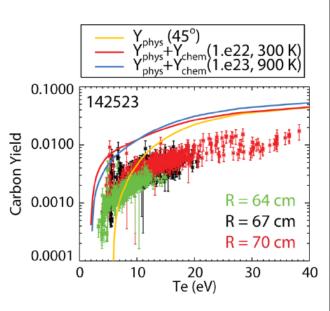
Simultaneous monitoring of different lines for divertor impurity influxes

- Simultaneous measure of divertor carbon influxes (plasma parameter-independent), chemical and physical contribution to carbon sources in lower divertor
 - C II lines with different dependencies on plasma parameters

 $\rightarrow C^{1+}$ influx determination

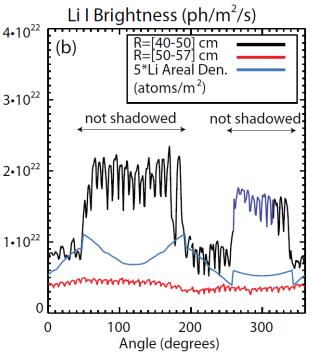
- Gerö band (CD) and C II line \rightarrow chemical vs physical contribution
- 430 nm region (VIPS2) \rightarrow complement two-color view for Yc
- 909 nm region (DIMS) \rightarrow C⁰⁺ influx, evaluation of f_{chem}/f_{phys}
- 1D-CCD to provide routinely D- α , Li I emission profiles
- Upper divertor camera will inform on evolution of upper divertor PFCs

Proposed XPs


- Carbon/lithium sources evolution from boron to lithium conditioning (piggy-back on Li first introduction XP)
- Characterization of toroidal asymmetries in carbon/lithium sources (piggy-back)
- Evaluation of tile edges effects on carbon sources with new tiles (piggy-back, XMP?)
- Divertor gas puff for core impurity mitigation (XP)

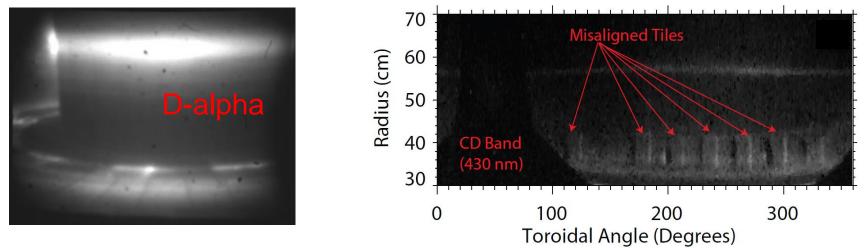
5 📗

1: Carbon/lithium sources evolution from boron to lithium conditioning


- Reduction in C sputtering yield observed after large lithium depositions in NSTX
- Carbon inventory increase attributed to ELM disappearance, weaker screening, unknown role of wall sources
- Improved diagnostic suite to measure evolution of impurity sources (C and Li) during first transition to lithiated PFCs
- Contribute to first lithium introduction XP
- Experiments in helium would further inform on role of physical vs chemical effects

2: Characterization of toroidal asymmetries in carbon/lithium sources

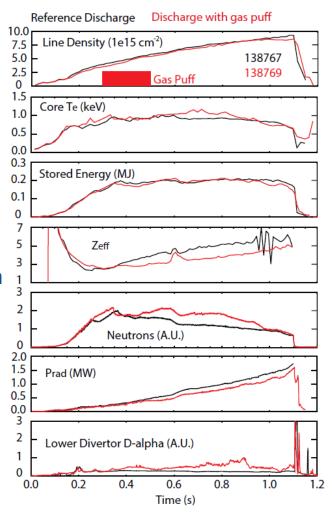
- Toroidally-asymmetric lithium influxes observed following lithium deposition profile
 - T-enhanced sputtering, droplet ejection?
- Toroidal asymmetries in carbon influx not observed (but routine monitoring of C¹⁺)
- Wide angle views (C I) to evaluate toroidal asymmetries in divertor carbon influxes due to boronization, lithium-conditioning
- Combined with boron/lithium erosion imaging 1.10²²
- Wide-angle IR camera will help understand mechanisms driving asymmetries



7 👢

3: Evaluation of tile edges effects on carbon sources with new tiles

- Tile-to tile misalignments evident on NSTX CS, first row and outboard tiles, leading to tile edges effects
- New tiles installed with emphasis on better tile-to-tile alignment
- Wide angle cameras, two-color camera, radial view to determine effects of tile-misalignment on carbon sources
 - As a function of OSP radius, flux expansion, etc...



4: Divertor gas puff for core impurity mitigation

- Divertor deuterium gas puff reduced core carbon inventory by up 30% in XP1002
 - MIST modeling indicates reduction of edge source
 - Experimental data (+ UEDGE) indicated improved screening rather than reduced impurity influx
 - Added benefit of heat flux mitigation

ISTX-L

- XP1002 extension in ELM-free NSTX-U discharges:
 - Re-establish gas puff levels for impurity mitigation
 - Optimization of gas timing to maintain source reduction
 - Move gas puff as early as divertor formation to avoid low $\rm n_e$ divertor with poor trapping in early H-mode
 - Improved diagnostic to evaluate changes in sources (phys. vs chem.) on lithiated graphite as $\rm T_e$ is reduced
 - If successful, add triggered ELMs (LGI or RMPs), to combine source reduction and core flushing

