
Heat Flux Model Validation Utilizing

Convolutional Neural Networks and

Sub-surface Thermocouples for

NSTX-U

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Thomas Patrick Looby

December 2018

c© by Thomas Patrick Looby, 2018

All Rights Reserved.

ii

Abstract

A proof of concept convolutional neural network (CNN) has been developed to assist in

operating tokamaks outside of existing empirical scalings for the heat flux width, λq [lambda-

q]. NSTX-U has designed new plasma facing components (PFCs) to withstand increased halo

current forces as well as elevated heat fluxes driven by increased poloidal field and neutral

beam power compared to NSTX. Larger graphite tiles are castellated to 2.5 cm [centimenter]

x 2.5 cm [centimeter] to reduce bending stresses. Maintaining PFCs below engineering limits

will be an important consideration for operation of NSTX-U. Sub-surface thermocouples will

be utilized to demonstrate validation of the heat load model, using the castellated designs

to quantify the shot-integrated energy deposited in the NSTX-U divertor. A Convolutional

Neural Network (CNN) has been trained using ANSYS simulations of PFC response to a

variety of time-varying heat flux profiles. The CNN accepts time evolving thermocouple

data and various 0-D engineering parameters and outputs heat flux model parameters, such

as the poloidal field scaling of the heat flux width, λq [lambda-q]. The CNN enables high

accuracy validation of the heat flux model despite a limited number of simulated NSTX-U

shots, noise, and systematic errors in the thermocouple data. This application of machine

learning to nuclear fusion diagnostics provides an alternative method to traditional analytical

solution inversion, and may be ported over to other diagnostics in the future.

iii

Table of Contents

1 Introduction 1

1.1 Background Information . 1

1.2 Project Objectives . 2

2 Background Physics and Engineering 4

2.1 Eich Heat Flux Model . 4

2.2 Neural Networks . 7

2.3 Convolutional Neural Networks . 14

3 Simulating NSTX-U Graphite Tile Response to Heat Flux 20

3.1 Hardware . 21

3.2 Tile Assumptions . 23

3.3 Constant Heat Flux Results . 23

3.4 Simplified Eich Model . 31

3.5 Monte Carlo Heat Flux Generator . 36

3.6 ANSYS ACT Solver . 43

4 Deriving Eich Scaling Parameters 47

4.1 Creating a Closed Loop System . 47

4.2 Trade Study . 49

4.3 Tools for CNN Implementation . 55

4.4 CNN Architecture . 56

4.5 Degeneracies . 64

iv

4.6 The Final NSTX-U Thermocouple CNN . 67

4.7 Simulating Systematic Error . 74

5 Concluding Remarks 78

5.0.1 Potential Improvements / Further Applications 79

Bibliography 82

Appendix 88

A Monte Carlo Flux Generator - Fortran95 . 89

B ANSYS ACT Script - Python . 98

C ANSYS ACT Script - XML . 107

D Data Cleaner Script - Perl . 108

E Tensorflow Training Script - Python . 109

F Tensorflow Predictor Script - Python . 133

Vita 156

v

List of Tables

4.1 Statistical results from five publication datasets. Each publication dataset consist of

100 NSTX-U shots with common Eich Parameters, but the Eich parameters differ

between different publication datasets. CNN trained to 95% accuracy where an

accurate prediction is defined as within 0.5% of predicted variable (S, λq) with respect

to variable domain. µ = Mean; σ = Standard Deviation 73

vi

List of Figures

2.1 Toroidal Cross Sections from [1] . 5

2.2 Example Eich heat flux profiles fit to experimental data [2]. 7

2.3 Comparison of biological and artificial neural networks 8

2.4 Perceptron architectures inspired by [3] . 10

2.5 Neural network with forward propagation mathematics 11

2.6 Deep neural network with two hidden layers 12

2.7 Neural network with backpropagation mathematics 14

2.8 CNN with 2 conv + pool layers and 4 FC layers. 8 feature maps per conv

layer and pooling layers downsampled by 2 17

2.9 Flow chart of a simplified neural network training algorithm 18

3.1 Castellated Inboard Horizontal Divertor Tile w/ dimensions: January 2018

version . 22

3.2 Castellated Inboard Horizontal Divertor Tile w/ dimensions: January 2018

version . 22

3.3 Reduction of full CAD model to reduced model 24

3.4 Example Heat Flux Applied to Single Castellation with Results 25

3.5 Temperature Cross Section for Uniformly Applied 7.75 MW m−2 Heat Flux . 26

3.6 Maximum principal stress cross section for uniformly applied 7.75 MW m−2

heat flux (tile surface reaches 1600◦C). Note: deformation exaggerated. . . . 26

3.7 Minimum principal stress cross section for uniformly applied 7.75 MW m−2

heat flux (tile surface reaches 1600◦C). Note: deformation exaggerated. . . . 26

vii

3.8 Comparison of opposite idealized thermal resistances at lower tile surface for

varying thermocouple elevation. 29

3.9 High resolution vs. low resolution FEM output 30

3.10 Low resolution mesh residual when compared to high resolution mesh. 31

3.11 Original Eich heat flux profile from [2] . 33

3.12 Simplified Eich heat flux profile . 34

3.13 Tile surface discretized into 50 slices . 39

3.14 Example heat fluxes varying C4 only. Fixed strike point. 40

3.15 Example heat fluxes varying Eich parameters and machine specs 41

3.16 Histograms for each Eich Parameter Generated 42

3.17 ANSYS ACT Flux Importation GUI Button 44

3.18 Example flux generator output . 46

3.19 Example thermal solution to flux applied by ACT flux importation algorithm 46

4.1 Closed Loop Process Flow Chart . 48

4.2 Open Loop Process Flow Chart . 49

4.3 Trade Study Matrix . 54

4.4 Visual Example of Thermocouple Data as an Image 58

4.5 TC Array vs Handwritten Digit . 59

4.6 CNN Architecture June 2018 . 60

4.7 Accuracy as a Function of Epoch for an Early Revision CNN 63

4.8 Predictor CNN Degeneracies . 65

4.9 Predictions for S and λq from a single shot are possible 67

4.10 Final CNN Architecture . 70

4.11 Final CNN prediction results for (a) 1 set of 3 shots and (b) 10 sets of 3 shots. CNN

trained to 95% accuracy where an accurate prediction is defined as within 0.5% of

range of predicted variable (S, λq) . 71

4.12 C1 error contours: noise injected on thermocouple 2 76

4.13 C2 error contours: noise injected on thermocouple 2 76

4.14 C3 error contours: noise injected on thermocouple 2 77

viii

4.15 C4 error contours: noise injected on thermocouple 2 77

ix

Chapter 1

Introduction

1.1 Background Information

As researchers attempt to demonstrate net thermal power production from nuclear fusion,

a myriad of engineering problems emerge. One such problem is the development of plasma

facing components (PFC) that can withstand the incredible heat loads that exist inside a

fusion reactor, and the simultaneous development of monitoring systems for these PFCs. The

design, validation, and monitoring of PFCs will be necessary for successful operation of a

fusion reactor within its engineering limits. One particular magnetic confinement design, the

tokamak, has been adopted by researchers worldwide. Many tokamaks have been constructed

across the globe, as researchers attempt to harness the energy from nuclear fusion reactions.

The largest of these projects is ITER, an international scientific collaboration to construct

the largest tokamak on earth. In a demonstration (DEMO) fusion reactor that will be

capable of producing consumable power, the heat loads may reach 50 MW m−2, and teams

of scientist and engineers are actively working to develop the technologies necessary to ensure

reliable operation of PFCs [4, 5].

The National Spherical Tokamak eXperiment (NSTX), is a nuclear fusion experiment

that has been operating since the late 1990s at low aspect ratio, which is characteristic

of spherical tokamaks. The NSTX Upgrade (NSTX-U) Project has developed new heat

flux requirements for PFCs, which are necessary to accomodate a narrower scrape off layer,

increased heating power, larger halo currents, and increased pulse duration. A plasma facing

1

tile redesign took place, resulting in a castellated graphite concept that greatly minimizes

thermal stress, while managing electromagnetically induced stresses. A critical component

to the operation of NSTX-U at maximum performance will be maintaining these graphite

tiles within their allowable engineering tolerances. As a means of quantifying the evolution of

these Plasma Facing Components (PFCs) relative to their respective engineering limits, an

investigation into PFC monitoring systems was necessary. An explicit goal from the NSTX-

U PFC Working Group Memo 014 (Goal 3 from Milestone R18-1/3) was to demonstrate a

pathway for heat flux model validation utilizing sub-surface temperature measurements [6].

The extreme environment inside a tokamak severely constrains the diagnostic options.

To measure the heat flux to PFCs in NSTX-U, thermocouples will be embedded below the

tile surface in the the divertor. Due to the fact that the new castellated design arrests

transverse thermal diffusion across multiple castellations, it is now possible to approximate

the shot-integrated deposited energy within each castellation via a thermocouple. That being

said, there is limited temperature information available. During the shot, electromagnetic

noise will likely result in erroneous thermocouple signals due to induced voltages, so it is

necessary to omit thermocouple data recorded while nearby electromagnets are energized.

Additionally, within each castellation three dimensional thermal diffusion will result in a

spatially integrated energy deposition. Therefore, post-shot thermocouple measurements

in which temperatures are representative of the castellation’s entire spatial and temporal

domain can be used to validate (or invalidate) plasma heat flux models and associated

engineering. As the diagnostic operational domain is further constrained by physical

processes, heat flux model validation begins to take the shape of an engineering problem

with well defined boundaries.

1.2 Project Objectives

In response to the aforementioned NSTX-U milestone [6], an investigation into methods

for heat flux validation commenced. T. Looby was tasked with evaluating if sub-surface

thermocouples could be utilized to derive heat flux scaling parameters with a limited number

of plasma discharges [7]. Looby was also tasked with engineering the systems necessary to

2

provide a proof of concept demonstration of deriving heat flux scaling parameters from

subsurface thermocouple data. It is this proof of concept that is the subject of the presented

masters thesis. Eventually, this system may be integrated into operational systems at NSTX-

U, in a pre-shot, inter-shot, or post-shot, capacity.

As a means of simplifying the aforementioned task, three project objectives were identified

to serve as waypoints and guide the investigation. The objectives are as follows:

1. Simulate the response of NSTX-U graphite PFCs to spatially and time varying heat

fluxes.

2. Demonstrate how unknown heat flux model parameters can be derived with various

sampling mechanisms within a given parameter space.

3. Demonstrate objective 2, but now add demonstrated uncertainties to measurement and

model support parameters.

These objectives provided modularity, which enabled the larger heat flux validation

objective to be broken down into smaller isolated tasks. This systems engineering approach

also enables any of the individual technologies developed to be utilized independently of the

greater system. Together the modules serve to answer the primary research question: can

subsurface thermocouple measurements alone provide sufficient information to validate the

assumed heat flux profile incident upon NSTX-U divertor tiles?

3

Chapter 2

Background Physics and Engineering

2.1 Eich Heat Flux Model

Many techniques have been investigated as a means of enhancing energy confinement in

magnetically confined plasmas. Most modern magnetic confinement concepts, such as

tokamaks and stellerators, attempt to leverage some of the inherent magenetohydrodynamic

(MHD) phenonomena to increase net energy gain. High confinement H-mode has been

demonstrated in many fusion experiments of the past several decades [8]. H-mode plasmas

exhibit increased energy confinement times, increased particle confinement, and reduced

turbulence, when compared to other confinement regimes (such as low-confinement mode)

[9]. The world record for fusion energy production was produced with a Deuterium-Tritium

(DT) fueled tokamak operating in H-mode at the Joint European Torus (JET) in the UK

[10]. This record shot produced 16.1 MW from 24 MW of input power, corresponding to a net

fusion energy gain, Q, of 0.67. Because of the successes observed when operating tokamaks

in H-mode, many future machines plan to employ H-mode as the operational standard.

A characteristic of these H-mode plasmas is the development of an edge transport barrier,

which appears in the form of a large pressure gradient just inside the last closed flux surface

(LCFS) [11]. While this transport barrier is excellent for enhancing fusion energy gain, a

byproduct is an occasional release of energy across the gradient, termed an Edge Localized

Mode (ELM). In large fusion devices these ELMs can contain sufficient energy to damage

the machine if not properly managed. Outside of the LCFS is the scrape off layer (SOL),

4

(a) Plasma current, Ip, induces magentic field while
external divertor coil current, ID controls diversion shape.

(b) Toroidal cross section of divertor
region

Figure 2.1: Toroidal Cross Sections from [1]

a thin layer of plasma where magnetic field lines are not closed, but rather intersect the

wall (see figure 2.1). In most modern tokamaks, these open field lines (ideally) terminate

at a surface engineered to tolerate high heat loads, in a region called the divertor, which

serves as a sort of exhaust system for the entire tokamak. This surface is often referred

to as a tile, and is typically carbon or tungsten. The SOL - LCFS boundary is called the

seperatrix. The separatrix extends around the entire plasma, and intersects the divertor

surface at a location called the strike point. The region inboard of the strike point is the

private plasma region, and the region outboard of the strike point is the common flux region.

Because the divertor tiles must tolerate large heat loads, it is of critical importance that the

nature of these heat loads be understood during the tile design. Additionally, knowledge of

where the device is operating relative to the limitations of the tile is necessary to ensure safe

engineering operation. The heat flux applied to the tile constrains the allowable domain of

tile operation.

Heat flux entering the SOL has a characteristic decay length, λq, termed the power decay

length or SOL heat flux width. This power decay length is crucial in understanding the peak

heat load that will be applied to the tile, which impacts the operational constraints of the

5

tokamak. A multi-machine λq parametric scaling was experimentally determined in 2011

using data from JET and the Axially Symmetric Divertor Experiment (ASDEX) [12]. At

the divertor entrance, λq exhibits an exponential decay in the radial direction (away from

LCFS), which can be derived via application of (1-dimensional) Fick’s law to determine

particle cross field diffusion [1]. This decay can be described by the equation,

q(s̄) = q0exp

(
−s̄
λqfx

)
(2.1)

where q0 is the heat flux crossing the separatrix, s̄ is the radial distance from the confined

plasma (s̄ = s− s0), and fx is the magnetic flux expansion (from the seperatrix to a point 5

mm beyond it in the radial direction). As heat travels from the divertor entrance to the tile,

thermal diffusion occurs, which results in heat flux leakage into the private flux region. The

final heat flux equation is derived by the convolution of the exponential power decay with a

thermal diffusion gaussian,

q(s̄) =
q0
2

exp

[(
S

2λqfx

)2

− s̄

λqfx

]
erfc

(
S

2λqfx
− s̄

S

)
+ qBG (2.2)

where S represents the width of the gaussian and qBG represents the background heat flux

[12, 13]. Examples of fitting this heat flux profile to experimental data from various machines

are provided in figure 2.2 from from [2]. For the remainder of this work, equation 2.2 will be

referred to as the Eich heat flux profile.

Employing multivariate empirical regression, a parametric scaling for λq was derived by

utilizing equation 2.2 and data from six devices,

λq[mm] = C0B
CB
T q

Cq

cylP
Cp

SOLR
CR
geo (2.3)

where BT is the toroidal field measured in T, qcyl is the cylindrical safety factor, PSOL is

the power crossing into the SOL measured in MW, and Rgeo is the tokamak major radius

measured in m [12]. This formula indicates that λq is governed by five scaling parameters,

C0, CB, Cq, Cp, and CR. Objective 2 of this thesis is to resolve these scaling parameters via

subsurface thermocouples. In other words, can subsurface thermocouple measurements alone

6

Figure 2.2: Example Eich heat flux profiles fit to experimental data [2].

provide sufficient information to determine these scaling parameters, thereby resolving λq

and the corresponding Eich heat flux profile? A discussion of previous methods for validation

of equation 2.3 is provided in chapter 4. In this case, machine learning was used to determine

these scaling parameters. More specifically, a convolutional neural network was constructed

that can determine the scaling parameters after receiving subsurface thermocouple data and

various machine parameters as inputs.

2.2 Neural Networks

Machine Learning and Artificial Intelligence are gaining widespread popularity across a

myriad of industries outside of computer science. These algorithms, when paired with

modern microprocessing power, have yielded exceptional results with regard to pattern

recognition, object detection, and regression. Medical imaging systems, drug discovery,

autonomous vehicles, financial market forecasting, search results, and text prediction are

but a few of the thousands of examples of engineers using these systems to solve real world

pattern recognition problems [14, 15, 16]. Additionally, machine learning algorithms are

aptly suited to handle massive amounts of data that would seem daunting to a human.

7

Figure 2.3: Comparison of biological and artificial neural networks

Combining pattern recognition capabilities with data mining algorithms has enabled these

machines to surpass human capabilities in many domains where patterns must be derived

from large datasets.

In some machine learning algorithms, engineers hand pick specific characteristics that

they intend the network to learn, and set about explicitly coding these characteristics into a

machine learning algorithm. When learning simple systems this method may suffice, but with

more complicated systems the engineer can overlook the intricate details that are necessary

to characterize the system. To circumvent human bias, many modern machine learning

techniques employ representation learning, in which the engineer designs the algorithm

architecture, but does not explicity specify what the algorithm should learn. The engineer

then feeds large datasets to the algorithm, gives the algorithm an objective (such as

error minimization), and the algorithm adjusts internal parameters to find the optimum

configuration to maximize the objective. Because the engineer supervises the data input to

the algorithm, and defines the ultimate objective, this class of algorithm is considered to be

supervised learning.

8

In artificial neural networks (ANN), sometimes also called multilayer perceptrons, the

process is analogous to the biological counterpart. Figure 2.3 provides an illustration of a

biological and an artificial neural network. In both cases, information flows into the inputs,

then through a summation node and a nonlinear modulator, and finally out to the next

neuron [17]. While the basic building block for a biological neural network is the neuron,

the basic building block of an artificial neural network is the perceptron [3]. Figure 2.4

illustrates a simple perceptron. Inputs, xi, arrive from the previous perceptron or from the

environment, and are multiplied by a weight that corresponds to each input, wi. The output

from this perceptron, y, is the linear combination of these N inputs multiplied by their

corresponding weights where xi, wi ∈ R,

y =
N∑
i=1

wixi + w0, where w0 is a bias term [3]. (2.4)

It may be apparent that if there is only a single input, then the perceptron produces the

equation for a line. Ergo, the most basic perceptrons can be utilized for linear regression

by iteratively feeding inputs to the perceptron, adjusting the weights, and maximizing some

objective function of y. When the number of inputs is greater than one, then the perceptron

defines a hyperplane, and can achieve multivariate linear regression [3]. The corresponding

multivariate matrix representation is

y = wTx, where x = [1, x1, ..., xN]T and w = [w0, w1, ..., wN]T . (2.5)

If multiple outputs must be calculated from the same set of inputs, then a parallel

architecture is necessary, as shown in figure 2.4. This parallelization enables multiple

perceptrons to be connected in a network called an Artificial Neural Network (ANN), where

the number of output variables corresponds to the number of parallel perceptrons in the

network. While these parallel systems are versatile, they are still only capable of learning

the weights associated with linear systems. To learn a non-linear system it is necessary

to introduce a non-linearity to the network. This non-linearity is called an activation

function and comes in many forms, the most historical being the sigmoid function. After

the summation of weighted inputs is computed, this value is passed through the activation

9

(a) Basic perceptron

(b) Perceptrons with multiple outputs

Figure 2.4: Perceptron architectures inspired by [3]

10

Figure 2.5: Neural network with forward propagation mathematics

function to generate the final output. This process can be described by the following

equations, which map inputs xi to outputs yj, through the activation function, f(x).

z = wTx (2.6)

zj =
∑
i

wijxi (2.7)

yj = f(zj) (2.8)

If the sigmoid activation function is used, then the output becomes,

yj(xi) = f(zj) =
1

1 + exp[−zj]
=

1

1 + exp[−
∑

iwijxi]
(2.9)

While the sigmoid activation function has historical significance, most modern neural

networks employ half wave rectification as the activation function of choice. Perceptrons

that employ half wave rectifier activation functions are called Rectified Linear Units (ReLU).

Outputs to these perceptrons are given by the equation,

yj = f(zj) =

0 if zj ≤ 0

zj if zj > 0

Figure 2.5 illustrates the forward propogation (from input to output) of a three perceptron

parallel network with these mathematical formulations overlayed.

11

Figure 2.6: Deep neural network with two hidden layers

An engineer must determine the number of parallel perceptrons, or the width, of the

network in addition to number of serial perceptrons, or layers, that constitute the network

depth. Many of the recent successes utilizing neural networks can be attributed to wide

(many parallel perceptrons) and deep (many serial perceptron) algorithms. When there are

multiple layers between the input and output neurons, the middle layers are said to be hidden

and the system is considered a deep neural network capable of Deep Learning. Figure 2.6

illustrates a deep neural network that can learn multivariable functions, although it is not

very deep. In modern deep neural networks, there can be millions of weights in the weighting

matrix.

Once a neural network has been constructed, it must be trained. The training process

consists of adjusting the weights such that the neural network represents the system that it

is intended to model or learn. This is achieved by first defining an error function, E, which

can be described by the simple equation,

Ej = (yj(x)− y′j(x))2 (2.10)

where y(x) represents the value(s) that the neural net generated, and y′(x) represents the

target value that the neural net should have generated. It is also possible to use any other

error metric, such as Mahalanobis distance or absolute difference. Once the error has been

12

calculated, the weights must be adjusted to minimize the error. For each weight in the weight

matrix, a gradient vector is computed, which indicates the change in error that would occur

if that weight was changed by a small amount. This gradient vector represents changes

in error per changes in each respective weight and can mathematically be represented by

cascade partial derivatives given in equation 2.11.

∂E

∂wij
=
∂E

∂yj

∂yj
∂zj

∂zj
∂wij

(2.11)

After the input has been fed into the network and an output yj has been generated,

the error is calculated. Starting at the output layer, a partial derivative of the error (E) is

taken with respect to the output (y). Next, a partial derivative of the output (y) is taken

with respect to the output of the activation function, (z). Finally the partial derivative

of the activation function output is taken with respect to the weights (w) in the final

layer. Via the chain rule, the derivative of error with respect to the weight in this layer can

be calculated by the cascade (multiplicative) combination of these results (again, equation

2.11). This process is continued at each of the previous layers until the gradient vectors are

backpropagated through the entire network. Figure 2.7 illustrates backpropagation, where

superscripts correspond to layers of the network.

Once the gradient vectors have been backpropagated through the network, the weights

are updated via a learning rate, η > 0. The resulting modification that must be applied to

each weight is calculated to be

∆wij = −η ∂E
∂wij

(2.12)

and the updated value for wij is calculated to be

w
[k]
ij = w

[k−1]
ij + ∆wij (2.13)

where the superscript indicates the (forward then back propagation) iteration number. This

entire process is often called gradient descent, because it is synonymous to descending a

topological surface (the function to be modeled) as the network seeks a minimum (minimum

error).

13

Figure 2.7: Neural network with backpropagation mathematics

2.3 Convolutional Neural Networks

While a straighforward neural network is excellent at multivariable non-linear regression,

engineers and computer scientists have implemented a myriad of variations on this basic

deep neural network architecture. One particular class of neural network that is of particular

interest to this investigation is the convolutional neural network (CNN). Convolutional neural

networks are excellent at pattern recognition and object detection. They are utilized in many

image recognition tasks such as facial recognition of pictures or computer vision systems for

self driving cars. The power of these networks lies in their ability to translate abstract

features of the image in question into concrete vectors than can be manipulated by the

neural net. In this manner, CNNs are feature extractors, or pattern recognition tools. After

feature extraction is completed by the CNN, the resulting vector is used as the input to a

deep neural network, which can then extract the nonlinear model and formulate predictions

related to the content of the input data.

14

The CNN is a proven tool for extracting features from multidimensional arrays [18]. To

describe the architecture of a CNN, and to clarify why this architecture may be advantageous

for analyzing thermocouple data on NSTX-U, an example is helpful. Consider an image

which consists of pixels, organized in 2D (x,y). Each pixel has three channels: red, green,

blue, which each have an 8 bit value (0-256). The CNN is tasked with identifying specific

human faces in each image. In other words, the images are inputs to the CNN, and the

desired output is the name of the person who the CNN has identified in the image. A typical

CNN consist of several layers that each perform a specific function. First, the image is fed

to a convolution layer. In the convolution layer, parallel perceptrons are each responsible

for identifying specific motifs within the image that characterize human faces. For humans,

the abstraction of facial pattern recognition is so far removed from conscious thought that it

would be extremely difficult to code this abstraction. Indeed, the human pattern recognition

algorithm is contained in the interconnection of billions of neurons in the human brain [17].

Instead, the motifs are learned by the CNN with no explicit guidance from the engineer,

except for the objective function, such as error minimization.

During the neural network training process, various motifs are explored by the neural

network in the form of weights and backpropagation weight adjustments within the

convolution layer perceptrons [18]. These motifs are called features, and the perceptrons

that learn these features combine with perceptrons in the next layer to form feature maps.

In each feedforward pass (input image is fed into the network), the convolution layer searches

the input image for any of the features it has stored in its feature maps. It performs this scan

with a digital signal processing (DSP) discrete cross correlation (technically not convolution

unless signal/kernel is symmetric) which is defined by,

(f ? g)[n] =
∞∑
−∞

f ∗[m]g[m+ n] (2.14)

where f ∗ is defined as the complex conjugate, f [] and g[] are the signals being cross

correlated, and m,n represent discrete timesteps. Cross correlation is a technique utilized

to determine the similarity between two signals, and in CNNs it is utilized to determine if

the input image contains the feature associated with that feature map.

15

Once the convolution layer has cross-correlated the input image, or determined how

similar the input image is to the feature it has learned to identify, the results are fed to

the next layer in the CNN, a pooling layer. The pooling layer consolidates, or pools, local

features in order to eliminate redundant positive feature identifications. Slight rotations in

the image, locating a feature at different (x,y) locations within the image, or systematic

noise, can manifest into multiple positive feature detections for the same feature. To reduce

these redundancies the pooling layer scans the convolution layer output and combines local

positive identifications into a single identification [18]. Usually, multiple convolution +

pooling layer combinations are placed in cascade, as a means of extracting every abstract

feature. The output from the final pooling layer is the input to a fully connected layer

(FC), which is another name for a typical layer in the basic deep neural network previously

discussed. If the layer is considered fully connected, then it is implied that every perceptron

is connected to every perceptron in the layers in front and behind it (see figure 2.6). Figure

2.8 illustrates a CNN used for pattern recognition in an image: two convolution layers are fed

into a four layer deep neural network. It should be noted that in this figure (2.8) and in the

remainder of this work, layers of perceptrons are indicated by long rectangular boxes rather

than individual perceptrons (as in figure 2.6). This additional level of abstraction makes

it more conventient to illustrate complicated neural network schemes, but the underlying

mechanism is the perceptron.

In order for a neural network to be successful in generating predictions, it must train.

For training, the engineer must compile a dataset consisting of examples that the neural

net should recognize. Each entry in the dataset must be labeled with the target prediction

that the neural network should learn. In other words, each data entry should consist of the

data to process as well as the correct output value (or class). Continuing with the facial

recognition example from above, the engineer would compile images that are each labeled

with the appropriate name(s) of the person(s) in the image. In supervised learning, preparing

the dataset is indeed the most complicated challenge. The input data should not be biased,

it should sample the entire domain of the variables to be predicted, and it should be labeled

correctly. Once the data has been prepared, it is randomly divided into three sets: the

training set, the test set (also sometimes called validation set), and the publication set [3].

16

Figure 2.8: CNN with 2 conv + pool layers and 4 FC layers. 8 feature maps per conv layer
and pooling layers downsampled by 2

The publication set is reserved for use after all training is complete, and will serve as a final

metric of the neural network.

Once the data has been assembled, labeled, and broken into sets, the training process

commences. The engineer feeds a dataset entry into the neural net, and the input is forward

propagated to the output resulting in a prediction. The prediction is compared against the

label (or target), and an error metric such as equation 2.10 is utilized to quantify the error.

This error is then backpropagated from the output back to the input, in the form of cascade

partial derivatives representing the error with respect to each inter-perceptron weight, as

described in equation 2.11 and figure 2.7. The weights are then updated by multiplying this

partial derivative with a learning rate, and adding it to the current weight, as described

in equations 2.12 and 2.13. The process of forward propagation, backpropagation, then

updating the weights is called an iteration.

Here, an analogy can be beneficial to intuitively describe the function of the learning rate.

If the training (gradient descent) process is perceived as analogous to descending a mountain

on foot, then the learning rate represents the size of steps taken as the mountaineer descends

the mountain. Smaller learning rates enable greater resolution of the topological surface,

at the cost of longer descent time. With very small steps the mountaineer can descend

17

Figure 2.9: Flow chart of a simplified neural network training algorithm

into smaller saddles, squeeze into narrow chimney features, and follow the contours of the

mountain more closely. Large learning rates may enable a speedy descent, but may not be

capable of descending deep enough into the minimum that corresponds to maximizing the

objective function. The mountaineer cannot squeeze into narrow chimney features with large

strides. If the only way down into the valley below is through a narrow chimney feature,

then the mountaineer will become stuck. However, if there are no local constrictions, the

mountaineer taking large steps may descend to the valley below with great alacrity. The

engineer must choose a learning rate that learns the system quickly, but does not get stuck in

local minimums. Once this learning rate is multiplied by the negative partial derivative with

respect to each weight, backpropagation for that dataset entry is complete. This process is

repeated for every entry in the training dataset. When all entries in the training dataset have

been forward propagated and backpropagated through the network, an epoch has completed.

Epochs of training are completed iteratively until the inter-perceptron weights have been

adjusted such that an accuracy threshold, ε, is reached.

It is also possible to input dataset entries to the network in batches. Instead of feeding

dataset entries to the network one at a time, it may be desireable to feed multiple dataset

entries into the network simultaneously. The batch size defines the number of dataset entries

input into the network per iteration. For each dataset entry in the batch, the neural network

forward propagates then backpropagates, resulting in a gradient vector for each weight, but

does not update the weights via the learning rate yet. Rather, for each weight the neural

18

network averages the gradient vectors for that weight, and then uses the average to compute

the update weight. Using batches enables the neural network to learn multiple dataset entries

in a single iteration, but obviously comes at the cost of longer CPU time. The engineer must

select a batch size that reduces noise via the averaging mechanism, but still completes epochs

in a reasonable time. The training process is summarized in a flow chart in figure 2.9.

After a certain number of epochs, it is common for the engineer to take a measurement

of the neural network’s accuracy. To do this, the validation set is used. A single dataset

entry from the validation set is fed into the neural network, and the error is calculated. The

utilization of the validation set for accuracy checking is termed cross validation [3]. Using

the information provided by this measurement, the engineer can determine the performance

of the network. Printing the current network performance enables the engineer to monitor

the network as it is trained, and this information may also be utilized for statistics or plotting

the neural network’s accuracy as a function of epoch number.

The engineer defines the accuracy threshold required for any neural network based upon

the context of the system the neural network is designed to model. For most regression

problems, accuracy is defined as an allowable tolerance window above or below the value to

be predicted. After the system has been trained to sufficient accuracy on the training and

validation datasets, the model can be saved and converted to a system that does not train,

but only makes predictions. The engineer then tests the neural network on the publication

dataset, to determine how well the system performs on data that it has never seen. If the

system performs well on the publication set, then it can be concluded that the training

dataset sufficiently represented the entire model domain and the neural network has learned

the correct model. If the system performs poorly on the publication dataset, then the

engineer must either increase the training time, or increase the database size. Once a neural

network performs well on the publication dataset, it may be applied in a production or an

industrial environment.

19

Chapter 3

Simulating NSTX-U Graphite Tile

Response to Heat Flux

The first project objective (chapter 1) is stated as: Simulate the response of NSTX-U

graphite PFCs to spatially and time varying heat fluxes. Before a method for heat flux model

validation could be developed, material-dependent limitations needed to be determined and

verified. As a means of determining engineering limits beyond which tile damage may occur,

simulations with machine-scale heat fluxes were completed. This engineering analysis of

the thermal response of graphite tiles to applied heat fluxes manifested into the allowable

operational domain of a heat flux model validation system. NSTX-U has also performed

physical testing of these materials at electron beam facilities as a means of experimentally

validating the material limitations [19]. Although these physical testing results are outside

the scope of this thesis, they generally confirm the findings here. After basic material

limitations were established, a system for generating temporally and spatially varying heat

flux profiles was created using the Eich heat flux model [11]. These heat flux profiles became

the inputs to an ANSYS multiphysics simulation which produced temperature and stress

results. These results could then be passed to a system that would extract necessary

parameters for heat flux model validation, objective 3, discussed in chapter 4.

20

3.1 Hardware

The NSTX-U tile redesign employs a castellated structure to reduce internal thermal stresses.

Additionally, the castellated design arrests thermal diffusion across large distances within

the tile. An image of the InBoard Horizontal Divertor (IBHD) tile is given in figures 3.1, 3.2.

The castellations are approximately 3 cm by 3 cm, and each ’cube’ is separated by a 1 mm

gap. The entire tile spans approximately 15 cm (approximately 7◦) in the toroidal direction

and 15 cm in the radial direction. It should be mentioned that the tile revision utilized for

this investigation is from January 2018, and does not reflect the current engineering revision

for the IBDH. That being said, the January 2018 revision is sufficient for the purposes

of subsurface temperature simulation. The final NSTX-U tile design can be found here:

https://sites.google.com/pppl.gov/20180926pfcs-pempfdr/home.

While there are a myriad of high performance graphites available on the market today,

the tile simulations performed for this study utilize Sigrafine R6510 graphite (SGL6510),

which will likely be the final selection for the NSTX-U tiles [20]. Sigrafine R6510 is an

isostatically pressed fine grain graphite, with grain sizes of approximately 10 µm in diameter.

SGL6510 features an ultimate compresive strength (UCS) of approximately 130 MPa, an

ultimate flexural strength (UFS) of approximately 60 MPa, and a thermal conductivity of

105 W m−1 K−1 at 20◦C.

Thermocouples are inserted into 1 mm diameter holes bored into the bottom of the

tiles, which extend to a distance of approximately 1 cm from the tile surface. When

installed in this manner, the thermocouples are insulated from the main scrape off layer

(SOL) plasma, yet close enough to the tile surface to have a large (∆T) response peak

to changes in heat flux to the tile surface. The thermocouples used for this study are

manufactured by Omega Engineering (S/N CASS-116G-12-NHX), and consist of a type K

(nickel-chromium) junction insulated by Magnesium Oxide and protected by a metal sheath

[21]. These thermocouples are capable of withstanding temperatures up to 1370◦C and have

a voltage range of approximately 50 mV across the allowable temperature domain.

21

https://sites.google.com/pppl.gov/20180926pfcs-pempfdr/home

Figure 3.1: Castellated Inboard Horizontal Divertor Tile w/ dimensions: January 2018
version

Figure 3.2: Castellated Inboard Horizontal Divertor Tile w/ dimensions: January 2018
version

22

3.2 Tile Assumptions

Because this proof of concept is largely simulation based, it was decided that simplification

of the model would be beneficial to increase computation speed. Starting with a reduced

model enables rapid prototyping with regards to software and solver architecture, makes the

simulation possible on a workstation computer instead of a cluster of CPUs, and avoids the

high performance computing licensure needed for some commercial multiphysics packages.

The original CAD model (figures 3.1, 3.2), while not extremely large, was simplified with

the help of a few reasonable geometric assumptions. A future goal of this project will be to

apply the system to the original complete model.

The following assumptions were incorporated into the CAD model:

• Fish-scaling and chamfering of tile surfaces can be neglected

• Toroidal symmetry exists for the Scrape Off Layer heat flux profile (toroidal dimension

can be ignored and a single cross section can be studied)

• The heat flux applied to the divertor target can be adequately described by a single

coordinate, r.

These assumptions resulted in a CAD model that was roughly 20% of the original model

size, and defined by a single coordinate. Figure 3.3 illustrates the original CAD model with

the ’cut planes’ utilized to simplify the model and then shows the reduced model after these

assumptions were incorporated into the CAD model. Additionally, some simulations were

performed on single castellations.

3.3 Constant Heat Flux Results

A quintessential tool for the analysis of thermal loading and mechanical stresses is a

multiphysics suite that includes a finite element solver. For this research, ANSYS

multiphysics suite (version 19) was the solver of choice, as it is already being utilized by

23

Figure 3.3: Reduction of full CAD model to reduced model

the NSTX-U mechanical engineering team. ANSYS enables users to perform a wide range

of simulations ranging in topics from fluid dynamics, to electrostatics, to beam deflection, to

heat loading (among many other simulations). Not only does ANSYS offer an intuitive user

interface, but also enables low level programming via a parametric design language (APDL),

or via a python application-program interface. CAD STL file importation is relatively

simple in ANSYS (ANSYS natively reads STL), and the aforementioned reduced model

was imported along with the SGL6510 graphite datasheet.

One intentional benefit of the castellated tile design is that the sublimation temperature

will be reached before internal thermal stresses rise to levels that may cause fracture or tile

destruction. In this manner these tiles are temperature limited to fail via sublimation rather

than the more catastrophic mechanical failure. This has been experimentally demonstrated

qualitatively by applying electron beam heat fluxes to the tiles [19]. To confirm this result,

and to provide a baseline test for subsequent ANSYS simulations, the maximum allowable

heat flux that would avoid sublimation was calculated via finite element simulation.

The temperature limit in the NSTX-U PFC requirements is stated to be 1600◦C. In

this simulation, a constant heat flux was applied to a single castellation for a period of five

seconds (also specified by the PFC requirements) and the rise in surface temperature was

simulated. For simplicity, a constant temperature boundary condition was placed on the

bottom face (lower boundary) of the castellation, and the heat flux was applied orthogonally

to the castellation surface. Material properties were obtained directly from the NSTX-U

24

(a) Applied heat flux (b) Temperature results

Figure 3.4: Example Heat Flux Applied to Single Castellation with Results

engineers. As can be observed in figure 3.4, the 1600◦C sublimation temperature was reached

when approximately 7.75 MW m−2 was applied across the castellation surface (radiation

neglected). This initial simulation confirmed previous NSTX-U engineering results, and

also provided a valuable baseline for subsequent simulations. In figure 3.4 the thermocouple

aperture is approximately one inch from the tile surface (aperture size exaggerated for image).

Because there is little change in temperature at this distance from the heat flux application

surface, it is obvious that the thermocouple hole must be less than one inch from the tile

surface.

The results from this simulation confirmed that for meaningful temperature changes to be

recorded by the thermocouple, the 12 mm configuration is sufficient, and will yield maximum

temperatures between 350◦C and 600◦C, which are within the allowable range for the Omega

thermocouples. The simulation also confirmed that 7.75 MW m−2 applied uniformly to the

upper tile surface will force the upper tile to reach its sublimation temperature of 1600◦C.

Figure 3.5 shows the temperature distribution of a cross section of the reduced model, after

five seconds of uniformly applied 7.75 MW m−2 heat flux. The dark regions of finer mesh

tetrahedra that extend up from the bottom of the tile are the thermocouple apertures. Again,

a 22◦C boundary condition was applied at the lower tile surface.

25

Figure 3.5: Temperature Cross Section for Uniformly Applied 7.75 MW m−2 Heat Flux

Figure 3.6: Maximum principal stress cross section for uniformly applied 7.75 MW m−2

heat flux (tile surface reaches 1600◦C). Note: deformation exaggerated.

Figure 3.7: Minimum principal stress cross section for uniformly applied 7.75 MW m−2

heat flux (tile surface reaches 1600◦C). Note: deformation exaggerated.

26

As was previously mentioned, the advanced graphites used for NSTX-U divertor tiles

have an ultimate compressive strength of 130 MPa and an ultimate flexural strength of 60

MPa. Using a factor of safety of 2 yields an allowable compressive stress limit of 65 MPa and

an allowable flexural stress limit of 30 MPa. To ensure that the tiles are indeed temperature

limited (as compared to stress limited), the aforementioned transient thermal analysis was

linked to a static structural analysis, and von Mises stresses were calculated for the case

when 1600◦C surface temperatures are encountered (7.75 MW m−2 uniform heat flux). This

analysis indicates that the maximum flexural stress for this case is approximately 19.7 MPa,

which is well within the allowable flexural stress limit for the SGL6510 graphite. Figures 3.6

and 3.7 illustrate the stress concentration that occurs around the thermocouple apertures

as the castellations thermally expand. The resulting thermal stress is significant but not

sufficient to cause mechanical failure. Because this condition occurs simultaneously to the

1600◦C tile surface temperature, it can be concluded that this tile is indeed temperature

limited.

A similar analysis was performed for the compressive stress, and it was determined to

remain well below the 65 MPa limit. The maximum compressive stress, which was evaluated

to be approximately 46 MPa, occurs at the lower tile boundary (lower surface). The 22◦C

heat sink on the lower tile surface is an idealized conception, and stress concentrations of this

kind will not occur in NSTX-U. That being said, there may be some stress concentrations

associated with the tile mounting system, but that analysis is outside of the scope of

this work. Regardless of whether or not the 46 MPa compressive stress is real or not,

it is well within the allowable stress limit of Sigrafine graphite, so it can be considered

benign. It was necessary, however, to ensure that these idealized boundary conditions did

not adversely effect the temperature results that would be eventually used for subsequent

project objectives.

To quantify the effects of these idealized boundary conditions with regard to temperature,

two simulations were compared. A five second, 8 MW m−2 heat flux was applied uniformly

to the tile surface in both simulations In one simulation, a 22◦C heat sink was applied at

the tile boundary (lower surface). In the second simulation, a perfect insulator was placed

at the boundary. Figure 3.8 provides a time evolution temperature comparison of both of

27

these cases, for four different thermocouple elevations (0.25 inch, 0.5 inch, 0.75 inch, and

1 inch from the tile surface). At each elevation the perfect insulator and perfect heat sink

provide nearly identical temperature profiles until approximately 15s, at which point the

profiles diverge slightly. Because the true boundary conditions for NSTX-U will not be a

perfect heat sink nor a perfect insulator, but somewhere in between, it can be concluded

that the divergence associated with a finite thermal resistance is bounded by these cases,

and therefore can be deemed negligible for any thermocouple elevation greater than 1 inch

in this study. For the real NSTX-U thermocouples the process of selecting the minimum

acceptable ∆T is determined by the resolution of the analog to digital converter (and any

associated signal amplification / semiconductors) to which the thermocouple is connected.

Figure 3.8 also provides an illustration of the time delay associated with thermal diffusion

in the tiles. A typical NSTX-U shot will consist of a five second plasma ’burn’ (or discharge)

after which the plasma will be terminated. During this five seconds, a heat flux will be

applied directly to the divertor tiles. While there is no longer an applied heat flux after the

burn, residual heat within the tile castellations will diffuse as a means of reaching equithermal

conditions throughout the tiles. This delayed thermal diffusion can cause secondary thermal

stresses within the tiles. The surface temperature increases to a maximum during the shot,

and then decays exponentially after the shot has ended. After the plasma heat loading

terminates, a thermal ’wave’ flows through the tile, carrying information regarding the

heat flux directly above it, and reaches the measurement point in time proportional to the

distance it must cross. After this thermal wave has passed, transverse (or lateral) thermal

diffusion also takes place, and subsequent temperature measurements will yield a spatially

and temporally integrated temperature, as the castellation attempts to maximize entropy.

In addition to determining the effect of idealized boundary conditions, a mesh convergence

study was undertaken to verify that the results contained herein were derived with a finite

element mesh of sufficient resolution. While it is usually advisable to utilize the highest

resolution possible when performing finite element simulations, high resolution meshes

come at the cost of increased microcontroller cycles. It is therefore desireable to utilize

the minimum resolution mesh that provides accurate results to increase simulation speed.

To determine the appropriate mesh resolution, A heat flux was applied to the tile and

28

Figure 3.8: Comparison of opposite idealized thermal resistances at lower tile surface for
varying thermocouple elevation.

the temperature profile was obtained as previously discussed. This process was repeated

seven times, each with increasing mesh resolution. After all seven temperature profiles

were generated, they were compared to determine if decreasing mesh resolution results in

decreasing accuracy. Figure 3.9 provides the temperature profile obtained from the highest

resolution mesh, and figure 3.10 provides the residual obtained from subtracting a lower

resolution output from the highest resolution output. As can be observed, there is minimal

difference between the high resolution and the lesser resolution with regards to the finite

element solver results, and the residual never exceeds 5◦C. There is, however, a significant

difference in computing time between the two resolutions. The high resolution mesh required

372 seconds compared to 35 seconds required by the lower resolution mesh. Given the similar

accuracy between the different mesh resolutions, it was therefore determined that the lower

resolution mesh would provide sufficient accuracy while reducing the simulation time by a

factor of nearly 10. Given the fact that many thousands of simulations would need to be

29

Figure 3.9: High resolution vs. low resolution FEM output

run eventually, the final mesh selection was ANSYS adaptive meshing with a resolution size

of two.

In summary, the aforementioned simulations provided valuable insight into the char-

acteristics of the NSTX-U graphite plasma facing components. With the assistance of a

capable multiphysics solver, ANSYS, the domain of operation for the NSTX-U tokamak was

determined. The maximum allowable heat flux that may be applied uniformly to any tile

surface for a duration of 5 seconds is 7.75 MW m−2. This level of heat flux yields a 1600◦C

temperature on the tile surface, the defined maximum temperature. At this heat flux, the

maximum compressive and tensile (flexural) stresses were calculated, and it was determined

that neither stress exceeded its allowable stress (factor of safety of 2), signifying that the

tiles are temperature limited rather than stress limited at maximum heat flux. Additionally,

an investigation into the ideal elevation for thermocouple placement was performed. At 0.25

inches from the tile surface, the thermocouples yield the most information, yet may reach the

temperature limit for the sheathing of the omega thermocouples. At 1.0 inches from the tile

surface, the thermocouples are far less sensitive to the temperature wave propagating through

30

Figure 3.10: Low resolution mesh residual when compared to high resolution mesh.

the tile. Therefore , the ideal elevation for the thermocouples is between 0.25 inches and 1.0

inches from the tile surface, where they balance a large SNR with moderate temperatures.

Having established 1) the heat flux operational limit to maintain temperatures below the

sublimation limit and 2) the ideal elevation of thermocouples to balance signal strength and

temperature, the next step for completion of objective 1 required that a method for exposing

the tiles to spatially and time varying heat fluxes (as opposed to constant heat fluxes) be

developed. More specifically, a realistic heat flux profile needed to be applied to the tile

surface, rather than a flat 7.75 MW m−2 profile. In chapter 2, the Eich heat flux profile was

introduced. The Eich heat flux profile provides a realistic inter-ELM profile for tokamaks

operating in H-mode, therefore provided useful guidance for this investigation.

3.4 Simplified Eich Model

Chapter 2 provided an introduction to the Eich heat flux model. The Eich model provides a

realistic heat flux profile for Scrape off layer (SOL) plasma as it strikes the divertor target.

31

As a means of satisfying objective 1, it was necessary to implement a realistic heat flux as a

means of obtaining simulated time and spatially varying thermocouple data that is similar

to the data that would be obtained from a real discharge in NSTX-U. To complete the first

objective, it was necessary to:

• Generate realistic heat flux data

• Feed this data to ANSYS as a means of generating realistic thermocouple profiles

• Compile this thermocouple data into a dataset of simulated NSTX-U shots

It was determined that for the proof of concept demonstration, a simplified Eich heat flux

profile would suffice, so long as the proof of concept system could be scaled to the original Eich

heat flux after the proof of concept was completed. After multivariate regression the original

Eich heat flux model can be represented by the empirical formula described in chapter 2.

This formula indicates that λq is governed by five scaling parameters, C0, CB, Cq, Cp, and CR.

For this proof of concept, the original profile was replaced with a simpler profile consisting

of only four scaling parameters defining the characteristic heat flux length:

λq[mm] = C2P
C3
heatB

C4
p (3.1)

where Bp [T] is the poloidal field, C1;C2;C3;C4 are scaling parameters that will be called

the Eich parameters, and Pheat [MW] is the integrated power striking the divertor surface,

and can be represented by the integral,

Pheat =

∫ R0+xc

R0−xp
q(R)2πRdR (3.2)

where R [m] is the radial coordinate, R0 [m] is the strike point location, xp [m] represents

the length of flux decay in the private flux region, xc [m] represents the length of flux decay in

the common flux region, and q(R) [MW m−2] represents the new simplified heat flux profile.

It is important to recognize that the Eich parameters are not dependent upon machine

operation, but rather are physics constructs. An illustration of the original heat flux profile

is provided in figure 3.11, and the simplified heat flux profile is provided in figure 3.12.

32

Figure 3.11: Original Eich heat flux profile from [2]

The original heat flux profile provided by Eich is derived by the convolution of the

exponential power decay with a thermal diffusion gaussian, as described in chapter 2. This

convolution was unnecessary to demonstrate the proof of concept, so the triangular flux

shown in figure 3.12 was selected as a surrogate. Clearly, this triangular flux is a piecewise

function of the single independent variable, R, consisting of two linear functions,

q(R) =

0 R ≤ α or R ≥ β

q
xp

(R− α) α < R < R0

q + q
xc

(R0 −R) R0 < R < β

where α [m] represents the edge of the private flux region (R0 − xp), β [m] represents the

edge of the common flux region (R0 + β), and q represents the peak heat flux. In order to

generate heat fluxes with this simplified model, it would therefore be necessary to solve for

the value of q. Solving the integral given in equation 3.2 and performing some mild algebra

yielded an explicit result for q, the peak heat flux, in terms of Pheat, xp, xc, R0,

33

Figure 3.12: Simplified Eich heat flux profile

Pheat =

∫ R0+xc

R0−xp
q(R)2πRdR (3.3)

⇒ Pheat
2π

=

∫ α

0

(0)RdR +

∫ ∞
β

(0)RdR +

∫ R0

α

q

xp
(R− α)RdR +

∫ β

R0

q +
q

xc
(R0 −R)RdR

(3.4)

Solving for q yields:

q =
Pheat
2π

[
1

3xp
(R3

0 − α3)− α

2xc
(R2

0 − α2) +
1

2
(β2 −R2

0) +
R0

2xc
(β2 −R2

0)−
1

3xc
(β3 −R3

0)

]−1
(3.5)

In addition to the equations for λq, Pheat, and q(R), the simplified model consists of a

set of relations (given in PFC MEM0 015 [7]) between xp, xc, fx C1, λq, and a private flux

width parameter S (synonymous to the Gaussian width S from the original model) which

are defined as follows:

34

S = C1λq (3.6)

xp = Sfx (3.7)

xc = λqfx (3.8)

C1, C2, C3, C4 Eich Parameters (3.9)

Bp, PSOL, fx, etc. Machine Specifications (3.10)

Lastly, it is necessary to constrain the domain of these variables to realistic values that

are achievable in NSTX-U. In the context of the simulation objectives, this prevents any

parameters outside of the operational domain of the NSTX-U tokamak from entering into

the input. The values provided in PFC MEMO 015 for NSTX-U machine parameters are

given to be:

0.2 < Bp < 0.6 (3.11)

0.5 < Pheat < 4.9 (3.12)

4 < fx < 30 (3.13)

46.0 < Ro < 57.5 (3.14)

1 < t[sec] < 5 (3.15)

(3.16)

where t corresponds to the discharge duration, or shot length. The constraints imposed

upon the Eich parameters are similarly defined in the PFC MEMO 015:

0.1 < C1 < 0.3 (3.17)

1.0 < C2 < 2.5 (3.18)

−0.1 < C3 < 0.25 (3.19)

−1.4 < C4 < −0.5 (3.20)

35

Now that the simplified model has been defined and the domain for each variable has

been constrained, it is possible to create a simulated heat flux generator that will produce

simplified Eich heat fluxes. These fluxes will become the inputs to ANSYS as a means of

simulating NSTX-U discharges with regard to the inboard horizontal divertor tiles.

3.5 Monte Carlo Heat Flux Generator

All code for this project is located in the Appendix. A Github Repo with code for this

project can be found here: https://github.com/plasmapotential/NSTX heatflux.

Project objective one requires quantifying the response of NSTX-U PFCs to realistic

heat fluxes that will eventually be observed in the machine. The simplified Eich model,

now explicitly formulated, provides the mathematics required to generate such a heat flux.

Under normal operation, NSTX-U’s machine specifications, Bp, Pheat, fx, R0, and t, will be

predefined. Associated with these machine specifications are a specific set (or sets) of

Eich parameters, C1, C2, C3, C4, although these theoretical values are not controlled by

an operator nor associated with any hardware. Together, the machine specs and Eich

parameters characterize the heat flux profile in the SOL. The Eich parameters must be

derived experimentally and correlated to the machine specs to predict the heat flux profile.

In other words, for a given set of machine specs there are multiple possible heat flux profiles,

each corresponding to a specific set of (unknown, but fixed) Eich parameters. Project

objective two requires a subsurface thermocouple measurement system to be capable of

deriving the Eich parameters with a limited number of shots, which would enable heat flux

model validation. Project objective 3 requires the system to be robust against noise and

uncertainties associated with the diagnostic system. In addition to constructing a heat flux

generator that would satisfy objective one, it was desirable to construct a modular heat flux

generator that could serve all three objectives simultaneously.

In order to validate the heat flux model, it would be necessary to generate a large number

of heat fluxes for testing and system validation. This large dataset would need to sample

the entire domain of the machine specs and Eich parameters, in order to simulate the entire

operational domain of NSTX-U, and scales with the number of variables to be predicted.

36

Section ?? provides the precise domain for each variable. To sample through the entire

operational domain without bias, and to generate large datasets quickly and efficiently, a

Monte Carlo flux generator implementation was determined to be the superior selection for a

flux generator. Monte Carlo analysis exists at the nexus of statistics and numerical methods,

and provides a method for generating randomness in numerical code. In this case, thousands

of heat flux profiles that randomly sample the entire operational domain of NSTX-U were

generated. A FORTRAN Monte Carlo flux generator was developed for creating heat flux

profiles that could easily be imported to ANSYS and applied to the surface of the divertor

tiles.

The heat flux generator utilizes a linear congruential random number generator to pull a

standard deviate (random number) for each variable that must be predefined in the NSTX-U

model. The Heat Flux Generator code is provided in the appendix, and is available via a

github repo. The FORTRAN script uses the CPU clock as a seed for the FORTRAN library

subroutine RANDOM SEED which generates pseudo-random numbers with a period of 21024−1.

The bounds of each variable defined in section ?? were placed in an array, and a separate

standard deviate was pulled for each variable. This random number was then mapped to a

uniform probability density function (PDF) between the bounds defined in the bounds array.

This process can be represented mathematically.

Given a non-normalized probability density function, π̃(x), lower domain bound α, and

upper domain bound β, a normalized probabilty density function can be derived via the

formula,

π(x) =
π̃∫ β

α
π̃(x′)dx′

. (3.21)

This PDF is then transformed into a cumulative distribution function (CDF), Π(x), which

represents the probability that a random variable, X, will take a value less than or equal to

x. This can be achieved via the equation,

Π(x) =

∫ x

α

π(x)dx. (3.22)

The FORTRAN pseudo-random number generator generates standard deviates, ζ,

between 0 and 1. In order to map the standard deviates to the given PDF, the standard

37

https://github.com/plasmapotential/NSTX_heatflux

deviate is set equal to the CDF. The integral is solved, and then the random variable, x, is

solved for in terms of ζ:

ζ = Π(x) =

∫ x

α

π(x)dx. (3.23)

x = Π−1(ζ) (3.24)

In the case of the NSTX-U heat flux generator the desired probability density function is

uniform for all variables, so this process is identical for all variables. The flux generator will

sample through all of the machine specs and Eich parameters evenly, and generate heat flux

profiles that represent the entire operational domain of NSTX-U. As an example, a standard

deviate, ζ, will be mapped to a variable, x, within the domain: a < x < b. The solution to

this mapping will serve as a map for all Eich parameters and machine specs, and only the

bounds will need to be replaced for each respective variable. For the uniform PDF case, the

PDF is given by,

π̃(x) = 1 (3.25)

Normalize to the allowable domain for the variable:

π(x) =
π̃∫ β

α
π̃(x′)dx′

=
1

b− a
(3.26)

Convert to CDF and set equal to standard deviate:

Π(x) =

∫ x

α

π(x)dx =

∫ x

a

1

b− a
dx =

x− a
b− a

= ζ (3.27)

Solve for x(ζ):

x(ζ) = ζ(b− a) + α (3.28)

Equation 3.28 enables a machine spec or Eich parameter to be generated from a standard

deviate between 0 and 1. The flux generator operates by pulling standard deviates (between

0 and 1) for each machine spec and Eich parameter and then mapping the standard deviates

to random variable (between bounds). After all random variables have been generated, the

system solves for S, xp, xc and λq using the relationships defined in equations 3.6 - 3.10, using

38

Figure 3.13: Tile surface discretized into 50 slices

the Eich parameters. The newly discovered S, xp, xc and λq are then utilized to derive q, in

equation 3.5. It should be mentioned that the Eich parameters are utilized to generate the

original heat flux profile, are hidden from the NSTX-U ANSYS simulations, and then are

used to verify the Eich heat flux validation system (objective 2).

Discretization of the spatial and temporal heat flux profile on tile surface is necessary.

When the script is launched, the user is queried for the number of discrete radial slices, dx,

that the tile surface should be discretized into, as well as the number of time steps the shot

should be discretized into, dt (not the same as shot length, ∆t). These user inputs define

the temporal and spatial resolution of every flux generated, and can be tuned on the fly for

specific simulation resolution needs. An example NSTX-U graphite tile slice that has been

discretized into 50 slices is given in figure 3.13. In addition to the resolution, the user may

specify the number of fluxes to be generated. For the duration of this work, fluxes have been

generated in batches of 10k, which takes roughly 30 seconds on a four core i7 microcontroller.

Once a batch of discretized heat flux profiles has been generated by the FORTRAN

script, the batch is transferred to the ANSYS machine for importation and simulation of an

NSTX-U shot. The output of the heat flux generator is formatted as a CSV file, consisting of

a two dimensional array, where one dimension represents time and the other represents the

radial direction across a divertor tile surface. To illustrate the heat flux generator output,

figure 3.14 provides a plot of the first time step of ten randomly chosen flux profiles in which

the machine specs have been fixed to a constant value. Each flux profile corresponds to

39

Figure 3.14: Example heat fluxes varying C4 only. Fixed strike point.

variations in one Eich parameter, C4, while the strike point, machine specs, and C1 - C3

were held constant. The lower axis is the radial direction corresponding to the tile length.

For comparison, figure 3.15 provides a plot of the final time step of ten different flux profiles,

in which the Eich parameters and machine specs (including strike point) were varied via the

Monte Carlo random sampling process. As can be observed, a wide range of heat fluxes

is possible within the allowable operational domain, and some heat fluxes even fall off the

surface of the tile. Figure 3.16 provides a histogram of all four Eich parameters, and indicates

the Monte Carlo method was successful at pulling variables from a uniform distribution.

40

Figure 3.15: Example heat fluxes varying Eich parameters and machine specs

41

Figure 3.16: Histograms for each Eich Parameter Generated

42

3.6 ANSYS ACT Solver

All code for this project is located in the Appendix. A Github Repo with code for this

project can be found here.

After heat fluxes had been generated with the Monte Carlo heat flux generator, they were

ready for importation into ANSYS as a means of simulating NSTX-U shots. By discretizing

the divertor tile and generating a similarly discretized heat flux profile, it was possible to

import the heat flux directly in the form of a two dimensional array corresponding to the

radial direction vs time. The spatial and temporal resolution of the heat flux profile can be

as coarse or fine as necessary, depending upon the application requirements. For all of the

simulations contained herein, the tile surface and the shot duration were both discretized into

50 steps. In ANSYS, the simplified inboard horizontal divertor tile geometry CAD model

was partitioned into 50 radial slices (see figure 3.13) and a 22◦C heat sink was placed on

the lower tile surface. A thermal probe was placed 0.25 inches from the tile surface in each

castellation, at the terminus of the thermocouple apertures. These probes would record the

time varying temperature as the heat flux was applied, and for 15-20 seconds afterwards.

One method for applying heat fluxes in ANSYS is manual importation of a time varying

heat flux vector to a single surface. This method is sufficient for simple analyses, but in this

case each tile consisted of 50 surfaces, each with a separate heat flux vector. Furthermore, it

was apparent that several thousand simulations would be required to validate the model.

For these reasons, the basic ANSYS multiphysics suite was deemed impractical for the

task of generating the NSTX-U simulation dataset. ANSYS allows users to implement

external features using either the ANSYS Parametric Design Language (APDL) or via ACT

extensions. ACT extensions were chosen because they enable control of data flow through

an ANSYS program, and can be coded to augment existing ANSYS functions (or to develop

new ones). An ACT extension was selected to circumvent the aforementioned heat flux

importation limitations.

ANSYS ACT can be employed to implement functions and graphical user interface (GUI)

toolbar buttons in any of the ANSYS programs available from the ANSYS Workbench. ACT

extensions consist of (at a minimum) two files. The first file, an eXtensible Markup Language

43

https://github.com/plasmapotential/NSTX_heatflux

Figure 3.17: ANSYS ACT Flux Importation GUI Button

(XML) file, provides GUI specifications, such as button size and shape. Additionally, the

XML file defines the actions to be taken when a GUI button is clicked. In most cases, the

action requires an external script; the XML file defines the script location. ANSYS ships

from the factory with an IronPython library built into the application, which enables users

to call python scripts from the XML file without installing python binaries on the local

machine. The second script required for an ACT extension is the python source code that

performs the desired function.

A flux importation ACT extension was developed, which enabled the CSV output from

the flux generator to be imported into ANSYS. In ANSYS Mechanical, a GUI button appears

on the ANSYS toolbar ribbon in the form of a fireball, and is labeled NSTX-U Add Heat Flux

Profile see figure 3.17. When clicked, this fireball icon initiates a python script. This python

script directly accesses the ANSYS application programming interface (API) to interact

with ANSYS Mechanical. First, the program scans the surface of the divertor tile and

autonomously applies the time varying heat flux vectors to the appropriate surface sections.

The script then runs the simulation (the simulated NSTX-U shot) and records time evolving

temperature data at each of the radially located thermocouple locations. After the shot

completes, all of the time evolving thermocouple vectors are concatenated into a single 2D

array, with five column vectors that correspond to the five radial thermocouple probes. Each

row corresponds to a new time step, whose resolution is configurable. The data across a single

row is therefore the radial thermocouple profile generated at a specific timestep. The ACT

extension loops through the entire batch of heat fluxes generated by the Monte Carlo heat

44

flux generator, and creates a time varying temperature profile for each shot. This process is

moderately time consuming, although not personnel intensive. A 16 logical core workstation

will take approximately 72 hours to complete 1000 simulations. Figure 3.17 is a screenshot

of the ANSYS Mechanical toolbar, with exploded view of the NSTX-U heat flux button.

Figures 3.18 and 3.19 provide an example of the Monte Carlo flux generator output, and the

corresponding thermal solution generated by the ACT extension.

45

Figure 3.18: Example flux generator output

Figure 3.19: Example thermal solution to flux applied by ACT flux importation algorithm

46

Chapter 4

Deriving Eich Scaling Parameters

The second project objective is stated as: Demonstrate how unknown heat flux model

parameters can be derived with various sampling mechanisms within a given parameter space.

The primary topic of this chapter is the development of a method for reconstructing the

Eich heat flux profile directly from subsurface thermocouple data, which would satisfy this

objective.

4.1 Creating a Closed Loop System

As was previously discussed, a Monte Carlo heat flux generator pulled random values within

the allowable domains of the Eich parameters and the machine specs, and constructed a

heat flux profile based upon the simplified Eich model. The output from each instance of

this heat flux generator was a temporally and spatially varying heat flux profile, as well

as the values of the randomly chosen aforementioned variables, all in the form of a CSV

file. The ANSYS ACT extension looped through the entire batch of heat flux profiles, and

output the simulated temperature profiles that correspond to each heat flux profile. Once

the simulated time evolving thermocouple dataset had been generated, it was necessary to

develop a method to extract, or to reconstruct, the Eich parameters, C1, C2, C3, C4.

In the most simplistic form, this task amounts to providing subsurface thermocouple

data to some transfer function, whose output is the simplified Eich model parameters. If

the system operates correctly, then the transfer function output will be identical to the Eich

47

Figure 4.1: Closed Loop Process Flow Chart

parameters utilized by the flux generator to create the original heat flux profile, thereby

satisfying the second project objective. This system could then be applied to a real NSTX-

U shot where the heat flux to the divertor is defined by real physical processes rather than

the Monte Carlo flux generator. In a real system, the Eich parameters will be undefined

until the transfer function predicts them via the analysis of real subsurface thermocouple

measurements. By creating a closed loop simulation system where the Eich parameters are

predefined and the transfer function predictions are compared to these predefined parameters,

it is possible to validate the accuracy of the transfer function before deployment.

This closed loop simulation method can be described by figure 4.1. In this figure, the

flux generator output serves as input to the ANSYS simulation, and also serves as input to a

comparison node. After the ANSYS simulation has been completed, the thermocouple data

output serves as input to the Eich parameter transfer function. The output from the Eich

parameter transfer function serves as the second input to the comparison node, where the

output from the heat flux generator is compared to the Eich transfer function output and

verified for accuracy. This closed loop method enables the Eich parameter transfer function

to use training or regression to become more accurate, via the comparison node. Once the

transfer function has reached optimum training, the NSTX Experiment box (flux generator

+ ANSYS Simulator) can be replaced with the real NSTX-U machine. Figure 4.2 displays

the open loop flow chart after the NSTX Experiment box has been replaced by a real NSTX

shot.

48

Figure 4.2: Open Loop Process Flow Chart

4.2 Trade Study

Extracting Eich parameters from subsurface thermocouple data can be accomplished with

a myriad of different methods, each with its own respective advantages and disadvantages.

As a means of selecting an Eich parameter transfer function, a trade study was completed

in which various methods were investigated and compared. Generally, the methods fall into

two categories. The first category involves employing an analytical solution to the heat

diffusion equation, which eventually yields the heat flux profile. The engineer would then

proceed to solve for the values of the Eich parameters from the profile derived analytically

utilizing the simplified Eich model. The second category employs the power of statistics and

machine learning, and involves utilizing a regression scheme to derive an effective function

relating the thermocouple data to the Eich parameters. Obviously, these categories are not

all encompassing nor are they mutually exclusive, but utilizing this discriminant can be

beneficial for comparison.

Because the heat flux to the divertor is not a constant heat flux, the mathematical model

that represents heat flow must be dependent upon time and space. The well known heat

equation describes the time evolution of temperature within solids, and has been around for

over a century. The heat diffusion equation can be derived via basic thermodynamics, and

takes the form of a second order parabolic partial differential equation (PDE) of the form,

1

α
∇2T =

∂T

∂t
(4.1)

where α is a constant corresponding to the thermal diffusivity of the material and ∇

represents the Laplace operator [22].

49

The analytical methods employed for solving this equation depend upon a series of

assumptions, oftentimes beginning with the reduction to heat flow propagating in a single

dimension, x, and that this PDE is separable. The elementary solution to the 1D heat

diffusion equation is simply a Fourier series, whose Fourier coefficients and characteristic

frequency must be derived. If the problem is more complicated, then oftentimes the semi-

infinite solid model is used. The semi-infinite solid model assumes that the solid is infinite,

yet has a single solid surface through which heat flow is possible in a single dimension.

Additionally, the model requires that thermal conductivity, specific heat, and density, be

homogeneous and isotropic throughout the medium [22, 23]. Given these assumptions, with

a series of substitution and manipulations one arrives at the analytical solution equations,

T (x, t)− T∞
Tsurface − T∞

=
2√
π

∫ η

0

exp(−u2)du = erf(η) (4.2)

η =
x√
4αt

, (4.3)

where T (x, t) is the temporally and spatially varying temperature throughout the medium,

T∞, is the temperature at an infinite distance from the surface, Tsurface is the surface

temperature, and u is a dummy integration variable. As a means of deriving the heat

flux at the divertor tile surface for NSTX-U, application of Fourier’s law yields the final

result,

qsurface = −k∇T (0, t) =
k(Tsurface − T∞)√

παt
(4.4)

where qsurface is the surface heat flux, k is the thermal conductivity of the medium, and α is

the thermal diffusivity. Once the heat flux above each thermocouple has been determined,

a radial profile of time varying heat fluxes can be constructed by combining them. This

profile can then be combined with the previously defined Eich model to generate equations

for C1, C2, C3, C4. This method allows an explicit formulation of the Eich heat flux profile as

a function of temperature inputs. There are many other analytical methods to solve the heat

diffusion equation based upon various assumptions and boundary conditions, but a complete

50

overview of all of these methods is outside the scope of this work. An industry standard text

for heat conduction is Carslaw and Jaeger, Heat Conduction in Solids, which provides many

of these additional solutions [23].

Most modern tokamaks utilize a combination of thermocouples, langmuir probes, IR

thermography, and inverse solutions to the heat diffusion equation to calculate heat fluxes

incident upon divertor tiles. Ideally, these diagnostic systems complement each other

and provide a composite model of the heat flux reaching the divertor tile. Subsurface

thermocouples have been used in several machines for offline reconstruction of the heat

flux profile, including DIII-D and JET [19, 24, 25, 26, 27, 28, 29]. Early heat flux profile

reconstructions were performed at JET by discharging an ELMy H-mode plasma and

recording subsurface thermocouple data. The tiles cooled for approximately 1200 seconds

between successive shots, and then an inverse solution was used to derive the heat flux

[26]. This process was replicated at DIII-D, where a thermocouple was mounted to the

divertor materials experimental station (DiMES). A discharge with fixed strike point was

performed, and the semi-infinite heat diffusion equation solution was linearized and exploited

to generate a surface heat flux from the thermocouple data [27]. Later, JET implemented

a method in which the strike point did not need to remain in a constant position for the

duration of the shot, but instead was swept at a slow rate (10-15 mm s−1) across the

tile surface [24]. After the shot had ended, the surface heat fluxes were calculated via the

inverse method and a regression algorithm fit the heat flux profile to finite element simulation

results. During the DIID-D metal ring campaign a method called thermocouple ELM heat flux

deconvolution was developed, in which subsurface thermocouples are utilized in conjunction

with langmuir probes to resolve the total heat flux, as well as ELM heat flux, to the plasma

facing components [29]. This method also employed the heat diffusion equation to resolve

the surface heat fluxes.

As is evident from these examples, the utilization of thermocouples for heat flux

extraction has been demonstrated and validated on several different machines. Common to

all of these implementations is the utilization of the heat diffusion equation to extract the heat

flux profile from subsurface temperature measurements. This enables a direct relationship to

be formed between the temperature below the surface and the heat flux applied to the tile,

51

yet it inherently enshrines all the assumptions made during the analytical solution process.

These assumptions may have negligible impacts upon the final results with regard to the

allowable engineering tolerances, yet they are not completely insignificant. No material is

truly infinite, so the semi-infinite solution is a fundamentally flawed method to define a finite

system. Modern graphite may be composed of nano-grains and strive for isotropic properties,

but the thermal conductivity, specific heat, density, and thermal diffusivity, are all spatially

variant. While the thermocouples are embedded close the tile surface and may warrant the

single dimension assumption reasonable, it is technically incorrect.

The last and perhaps most significant downside to the aforementioned reconstruction

methodology is the requirement that the plasma be constrained to a specific configuration

and a specific location during the reconstruction discharge. Regardless of whether the

fixed strike point or sweeping strike point method is used, both methods demand very

articulate control over the plasma. If the plasma breaches this constrained configuration

the results may become inapplicable. This method may be suited for general inquiries of

the SOL plasma shape, but cannot be utilized as a tool for plasma control across the entire

operational domain of the machine with high accuracy. For these reasons, it was decided

to investigate an alternative to the heat equation inversion method, in order to complete a

thorough trade study. It was discovered that modern machine learning statistical methods

provided a secondary option that appeared impervious to the aforementioned assumptions

and pitfalls.

Where analytical methods must adhere to the laws of physics to explicitly derive a

solution, neural networks construct models adhering to the law of large numbers and the

power of statistics. Chapter 2 provided an introduction to deep learning and neural networks.

Training on hundreds or thousands of datapoints enables a neural network to learn from

observation, in reflection of the abstract method in which the laws of physics were originally

derived by the human brain. If ample data is available, machine learning algorithms are

indeed capable of outperforming humans in a variety of tasks [14, 15, 16]. Perhaps one

of the most promising facets of neural network algorithms is that they can be applied to

almost any problem that can be framed with a sufficient dataset. This feature makes neural

networks highly adaptive; they can learn anything about any type of system given sufficient

52

data. Furthermore, once a single robust neural network architecture has been developed,

it can be applied to many classes of diagnostics with little redesign. Deep learning neural

networks provide a modular, adaptive, and powerful method for modeling complex, high-

dimensional, nonlinear systems for which analytical representation is difficult or impossible.

All that being said, neural networks are ultimately only capable of being applied in

methods conceived by humans, and can reflect human bias. If the dataset a neural network

is trained on is not a true statistical representation of the entire population of data, the

neural network will learn this bias as truth. In the NSTX-U simulator case, it is important

to consider the assumptions made by every sub-process in the entire closed loop system,

including the heat flux generator and the ANSYS simulator. Additionally, because modern

neural networks can consist of millions of interconnections between perceptrons, if the system

is biased it is very difficult to troubleshoot, if not impossible. These deep learning algorithms

are oftentimes a black box, and while their success is extremely impressive, there is no way to

concisely describe what happens inside the box to perfectly tune the system. It is, therefore,

imperative that the engineer develop methods for validating the system performance in the

entire domain of operation before considering the system ready. Understanding where the

system fails and where it thrives is of critical importance.

A review of a few examples of neural networks applied to nuclear fusion diagnostics

is useful here. The first successful implementation of neural networks as a means of

plasma control occured on the Tokamak COMPASS in the early 1990’s [30]. Researchers

at COMPASS trained a multilayer perceptron network with simulation data generated by a

numerical Grad Shafranov equation solver, and then deployed the neural net as a real time

plasma control system actuating plasma shaping coils. Similarly, researchers at the Reversed

Field eXperiment (RFX) used a multilayer perceptron network to interpret langmuir probe

signals after training on simulated data, and reported a factor of 30 improvement in CPU

processing time over traditional fitting methods [31]. More recently, researchers at JET have

utilized a modified convolutional neural network architecture to produce a pixel by pixel

tomographic reconstruction of bolometer data [32]. In each of these examples, researchers

reported significant improvements in computational speed, while achieving high accuracy

reconstructions.

53

Figure 4.3: Trade Study Matrix

In order to compare the heat equation and machine learning reconstruction techniques

in a clear and concise manner, a simple trade study matrix was developed and appears in

figure 4.3. This matrix scores the heat diffusion equation method and machine learning

algorithms with respect to several of the performance variables previously discussed. Each

performance variable is weighted based upon its importance to the project objectives, and

upon the larger objectives of NSTX-U and the University of Tennessee Nuclear Fusion

Team. The performance variables that are higher priority have been given a weight of

15% while the secondary performance variables only carry 10% weight each. In the score

columns, both techniques are rated based upon their respective performance. In alignment

with what has already been discussed in this section, the heat diffusion equation excels at

requiring a small(er) dataset, providing intuitive insight into the nature of the problem, and

being implemented efficiently with minimal training. On the other hand, machine learning

algorithms require far fewer assumptions about the model, scale easily to new problems

or further constraints imposed on the existing model, can be expanded easily to other

diagnostics and scientific domains, offer the capability for sub-millisecond real time control

system integration (after training, obviously), and enable an investigation into a novel heat

flux reconstruction algorithm. Because machine learning scored 70.75 compared to the heat

diffusion equation’s score of 55.5, machine learning was selected as the final choice for the

Eich parameter reconstruction method.

54

4.3 Tools for CNN Implementation

All the recent hype surrounding deep learning has resulted in a torrent of open source software

for machine learning implementation becoming available to the public. There are many

packages available including Caffe, Theano, PyTorch, Keras, etc. (it is a long list). The most

popular software toolkit for implementing deep learning algorithms is called TensorFlow.

TensorFlow is the brain child of the Google Brain team, a research and development team

working on artificial intelligence and machine learning systems. Originally, TensorFlow was

a proprietary package and only available to Google employees, but in 2015 the software was

released as open source under the Apache 2.0 License. Google describes the software as a high

performance dataflow application programming interface (API) for numerical computation

and machine learning. Users may choose APIs in python or C++, and extensive tutorials

have been published on the TensorFlow website. Additionally, the API consists of multiple

installation options for running on CPUs, GPUs, or TPUs (Google’s proprietary hardware

optimized for TensorFlow). TensorFlow was chosen as the deep learning package for NSTX-

U because of its simple interface, its performance capabilities, and the massive amount of

support and documentation available online.

In order to successfully implement a deep learning algorithm for the NSTX-U Eich

reconstruction problem, it was necessary to become familiarized with the process of coding

with the TensorFlow package on much simpler problems. The TensorFlow tutorials provided

a guide to this learning process, which was admittedly steep. Four of the TensorFlow tutorials

were completed. The first tutorial was a basic linear regression scheme utilizing a simple

neural network. Next, an iris classification convolutional neural network trained a CNN to

recognize four different types of iris flowers in images. The third tutorial completed was the

classic Modified National Institute of Standards and Technology (MNIST) handwritten digit

classification problem. In this problem, a CNN is trained to recognize handwritten digits

from 28X28 pixel images. Finally, a Recurrent Neural Network (RNN), which is a neural

network that includes hysteresis via a feed-back loop, was trained to do basic language

processing. After these tutorials were completed, a basic understanding of the functionality

55

https://www.apache.org/licenses/
https://www.tensorflow.org/

of TensorFlow had been developed, and it was possible to attempt the more complicated

Eich reconstruction problem.

The entirety of the CNN thermocouple CNN was developed and deployed on a x86 64

Ubuntu Linux 18.04 operating system (OS). This OS ran on a 16 core Intel(R) Xeon(R) E5-

2670 Centra CPU running at 2.60GHz. The workstation has 32GB of RAM, and a 500GB

Solid State Hard Drive. An advantage to utilizing TensorFlow is that multi-threading is

handled by the API so there is no need to code posix threads or anything of that nature. On

average, during training the CPU would load all 16 cores to approximately 25% of capacity.

It was therefore possible to train three neural networks simultaneously without overloading

the micro-controller. That being said, utilizing TensorFlow on a cluster of GPUs, or via a

distributed parallel cloud network could decrease training time.

For all deep learning development in this project, Python3 was the language of choice. In

addition to the TensorFlow software module, several other open source python modules were

utilized. The os module was used for interacting with the Linux operating system. Both

matplotlib and GNUplot were utilized to generate figures. The datetime and time

modules were utilized for system clocking and performance metrics. Lastly, the numpy

and csv modules were used for numerical calculation and data handling, respectively. All

of the packages employed in the CNN development are open source, and available on most

operating systems.

4.4 CNN Architecture

To reconstruct Eich parameters a convolutional neural network architecture was the method

of choice, although other deep learning algorithms would likely succeed as well. Chapter 2

provides an introduction to neural networks and convolutional neural networks, and provides

several examples of traditional applications for CNNs. Convolutional neural networks are

excellent at image processing, and rival human performance in some cases. For the Eich

reconstruction problem, the input data does not come in the form of an image, but instead

in the form of the following parameters:

• Bp Poloidal Magnetic Field Magnitude;

56

• Pheat Power entering SOL;

• R0 Strike Point Initial Position;

• fx Flux Expansion Coefficient;

• TC 2D Array of Thermocople Data.

The biggest development challenge with this deep learning algorithm was determining the

best method for arranging / organizing the input data. Ultimately, the decision to utilize

a CNN rather than a simple deep neural network was based upon the observation that

the thermocouple data, TC, came in the form of a 2-dimensional array, which could be

interpreted as a thermocouple image to the neural network.

As previously discussed, in the conventional heat diffusion equation inverse method

deriving a heat flux from the thermocouple data required finding an analytical solution and

extracting the heat flux from that solution. In contrast, applying a CNN to the thermocouple

data extracts characteristic features, or motifs, associated with a specific heat flux profile,

and forges stronger inter-perceptron connections as a means of iteratively finding a global

minimum in the error function. The CNN interprets the 2D array of the thermocouple data in

the same way it interprets an array of pixels that compose an image. Where a regular image

consists of two spatial dimensions observed at a single instant in time, the thermocouple

image consists of one spatial dimension and one temporal dimension. Figure 4.4 illustrates

an example of perceiving thermocouple data as an image. In the figure, the x coordinate

represents the thermocouple number, increasing in the radial direction. The y coordinate

represents temperature. The color gradient represents the flow of time. While 4.4 is a plot

with no real relationship to the CNN, it is useful to help perceive the 2D thermocouple array

as an image, much like the CNN does. Figure 4.5 compares an example thermocouple array

to the array of pixels of a handwritten digit.

Each thermocouple array was therefore treated as an image would be treated in a typical

CNN. The array was fed into a series of convolution + pooling layers, in which it was cross

correlated with learned temperature motifs, then down sampled. Ultimately, the 2D array

became a 1D vector that served as input to a fully connected layer.

57

Figure 4.4: Visual Example of Thermocouple Data as an Image

When constructing neural networks, the engineer has the capability of tuning the network

by changing specific architecture variables called hyperparameters. The stride size, number of

convolution + pooling layers, number of feature maps, and neurons per fully connected layer,

are all hyperparameters. Tuning these hyperparameters is an experimental process, much

like tuning a PID controller in control system design without state space representations.

Usually, for any given hyperparameter, the method was to start at an excessive level and

increment or decrement the variable until a significant negative impact was observed with

regard to the system performance. Once a negative impact was observed, the hyperparameter

was restored to the level just before the degradation in performance occurred. There are

many other hyperparameters that were not mentioned here, but the tuning process is similar

each of them.

Several revisions were necessary to identify the appropriate method for combining the

2D thermocouple array with the scalar machine spec inputs, Bp, Pheat, fx, R0,. Originally,

these scalars were appended to the TC array and fed through the convolutional layers with

the thermocouple image. This method never yielded accurate results, primarily because

58

(a) Example Thermocouple Array (b) Example Handwritten Digit

Figure 4.5: TC Array vs Handwritten Digit

embedding the machine specs in the thermocouple image resulted in invalid temperature

feature identification by the cross correlation process. After some time, it was determined

that appending the scalar machine specs to the thermocouple image was unnecessary.

Instead, these values were concatenated with the final 1D temperature vector that was

produced by the convolution layers, and this appended vector was fed to the fully connected

layers. This enabled the 2D thermocouple array to be processed as an image, and the

scalar machine specs to be processed correctly as scalar inputs. Figure 4.6 provides a visual

representation of this CNN architecture. Two convolution + pooling layers, each with 16

feature maps, were deemed sufficient for recognizing characteristics in the thermocouple

images. Four fully connected layers consisting of 32 parallel perceptrons are connected

serially and output to a 4 X 1 Eich parameter vector. As the figure indicates, the machine

specs and temperature data are concatenated just before the first full width fully connected

layer.

The original CNN architecture used the raw temperature data and machine specs as

inputs, but this made the neural network slow to train. Because the temperature values

sometimes reached several hundred degrees Celsius, while the machine specs were much

smaller, the raw temperature data was effectively weighted as more significant than the

smaller machine specs. In an effort to equalize all inputs, a normalization process was

59

Figure 4.6: CNN Architecture June 2018

necessary. The values for each input variable were linearly mapped between -1 and 1. In

other words, the -1 and 1 values correspond to the minimum and maximum datapoints in

the dataset, respectively, and the data is normalized between these values. Mathematically,

this mapping can be described by the equation,

xnormalized =
2

xmax − xmin
(x− xmin)− 1 (4.5)

where xnormalized is the normalized variable, xmax and xmin are the maximum and minimum

values of that variable in the entire dataset, and x is the un-normalized variable. Scaling

the inputs between -1 and 1 instead of between 0 and 1 gives the neural network the ability

to optimize itself in two directions. Technically, the neural network should be capable of

performing this normalization on its own via the adjustment of weights, but performing the

normalization manually decreases the required training time. After this data normalization

process was developed, the neural network rate of accuracy increase improved dramatically.

It should be mentioned that when a neural network is normalized with respect to the domain

of a specific dataset, then trained on that dataset, predictions made on a different dataset

should be normalized to the same domain as the training dataset.

60

It was not uncommon for the training process for this CNN to last 24-36 hours running on

the aforementioned workstation. That being said that amount of time is insignificant when

one considers the millennia of mathematical formulation needed before analytical solutions

to the heat equation were possible. The metric utilized for training was a scaled absolute

error. The mean of this absolute error was taken across all Eich parameters, C1, C2, C3, C4,

and the reduced mean was the value utilized in error backpropagation. Mathematically, this

error function can be described by the equation,

Error =
α

4

4∑
i=1

|Ci − targeti| (4.6)

where Ci represents the Eich parameters predicted by the neural network, targeti represents

the true Eich parameter, and α represents a scaling hyperparameter that can be tuned for

performance. Originally, basic gradient descent was employed for error backpropagation.

Using such a basic optimization algorithm proved incredibly slow, and the network became

stuck in local minimums. To improve the speed, basic gradient descent was replaced with

stochastic gradient descent (SGD). Rather than iteratively backpropagating error from each

training example, SGD samples from the training dataset and backpropagates error with a

reduced set. This enables the CNN to optimize itself much more quickly, yet in this case the

CNN was still getting trapped in local minimum, where it would spend days hovering at a

constant accuracy level without improvement. To combat both the slow training time and

the local minimum problem, the Adam Optimizer was utilized. Rather than maintaining a

fixed learning rate as the neural network descends the gradient, Adam Optimizer dynamically

adjusts the learning rate during the descent by computing the first and second moments of

the gradient [33]. Integrating the Adam Optimizer in TensorFlow required a single function

call, greatly reduced the training time, and enabled the neural network to achieve high

accuracy during training.

Because the Eich reconstruction problem is not a classification problem, it was necessary

to create a definition for accuracy. In a classification problem, the accuracy of the network

can be calculated by directly counting the number of correct predictions. In this case,

the predictions are continuous, and it is unlikely that the neural network will predict the

61

correct Eich parameter to 32 bits of precision. It was therefore necessary to define the

accuracy with regards to an allowable tolerance in the prediction error. A tolerance of 5%

was originally chosen as the threshold for a correct prediction; if the neural network predicted

value was within 5% of the true value, it was considered correct. This tolerance was another

hyperparameter that could be tuned to optimize performance, and it was regularly updated

(between 0.5% to 5.0%) during the CNN development process.

In total, approximately 8500 NSTX-U discharges were generated by the Monte Carlo Flux

Generator and by the ANSYS simulator. As is common practice in Machine Learning, the

dataset was divided into three parts: the training set, the test set, and the publication set.

The training set is utilized for backpropagation and optimizing the CNN, the test set is used

for validation as the network is training (but is not backpropagated), and the publication set

is reserved for generating final results. For the final CNN revisions, the data was partitioned

as follows:

• Training Set: 7200;

• Test Set: 800;

• Publication Set: 500.

Traditionally, the test set consists of approximately 20% of the entire dataset, but because

this dataset is large, 800 discharges sufficed. While training, it was convenient to print

statistics to the screen at regular intervals as a means of following the progress of the network.

The accuracy with respect to epoch was a useful metric to follow. A boxcar convolution

running average filter was employed to print accuracy results. The length of the boxcar

window was another hyperparameter, but was generally set to average the accuracy over the

past 100 epochs. This running average was typically printed to the screen every 1000-5000

epochs, depending on the training session. The accuracy value for the Eich parameters was

also recorded in an array every few thousand epochs for plotting. Figure 4.7 is an example

of such a plot, and provides the accuracy as a function of training epoch for an early training

session. In addition to the training data accuracy, the test data accuracy is plotted in this

figure. As can be observed, the CNN performs slightly better on the training data than

62

Figure 4.7: Accuracy as a Function of Epoch for an Early Revision CNN

it performs on the test data. This minor divergence between the two datasets is because

the CNN is superior at predicting the results to data that it has learned (backpropagated).

Furthermore, the fact that these two datasets produce very similar curves (a few % difference)

indicate that the test dataset is adequately represented by the training dataset.

TensorFlow allows users to save and load the entire model, including the weighting matrix,

so that the CNN does not need to be trained for each use. After the CNN was trained to

sufficient accuracy, the entire model was saved into a directory for future use. When it

was time to run the CNN on the publication dataset, the model would be loaded from the

directory into a predictor CNN. The predictor CNN is a forward propagation only neural

network; it does not backpropagate error and train. The engineer serves the predictor

CNN a single randomly chosen NSTX-U discharge from the publication dataset, and the

CNN outputs a prediction for the Eich parameters, C1, C2, C3, C4. After the CNN has been

trained this process is extremely fast, with forward propagation times of approximately a

few milliseconds.

63

One valuable lesson gained from the early CNN architectures was the importance of

comprehending the mathematical degeneracies, boundaries, and limitations of the model

the CNN is designed to approximate. Early CNN revisions would train to very high (93%)

accuracy on the training data, but then fail intermittently on the publication data. This

failure was due to an oversight with regards to degeneracies associated with the simplified

Eich model. Only after understanding the degeneracy between Eich parameters in the Eich

model was it possible to construct a final CNN architecture that performed with high

accuracy on the publication dataset. Section 4.5 highlights these degeneracies, how they

were discovered, and how they were resolved.

4.5 Degeneracies

CNN revisions that reflected the architecture discussed in the previous section (figure 4.6)

often trained to high accuracy (93%) and then would intermittently perform poorly on the

publication dataset. After extensive hyperparameter adjustment, increasing the training

time to 20 million epochs, implementing various input data normalization algorithms, and

a series of Mayan sacrifices, no improvement was observed. As a means of obtaining a

better grasp on the problem, the predictor CNN was run iteratively, and statistics were

generated to observe the nature of the prediction distributions. Figure 4.8 provides an

example of one such distribution. Ten NSTX-U discharges were fed to the predictor CNN,

which predicted ten sets of Eich parameters, C1, C2, C3, C4. In the figure, this distribution (or

spread) is plotted for each Eich parameter. Additionally the standard deviation for each Eich

parameter (shaded grey and gold regions), the mean (location where grey and gold meet),

and the true Eich parameters (red dotted line) are overlaid. As the figure indicates, the

predictor achieved remarkably good predictions for C1 and C3, and the standard deviations

for these parameters are small. For C2 and C4 however, the prediction distribution is spread

fairly evenly across the entire domain of these variables (1.0 < C2 < 2.5; −1.4 < C4 < −0.5),

indicating that no valid transfer function has been learned by the CNN. The reason for the

poor prediction performance becomes clear if one considers the fundamental equations that

64

Figure 4.8: Predictor CNN Degeneracies

define the simplified Eich model, as defined in chapter 3,

λq = C2P
C3
heatB

C4
p

S = C1λq .

xp = Sfx

xc = λqS

Clearly, there are multiple degeneracies between C2, C3, C4, because a single value of

λq can be constructed with a variety of combinations of C2, C3, C4. In other words, the

same characteristic decay length, λq, can be generated by multiple combinations of Eich

parameters. There is no degeneracy associated with Bp or Pheat because those machine specs

are inputs to the neural network, whereas the Eich parameters are not. For a given NSTX-U

shot, the CNN is provided a fixed value of Bp and Pheat and must reconstruct C1, C2, C3, C4.

From this observation, it can be concluded that it is impossible for the neural network to

65

reconstruct all four Eich parameters from a single shot. Furthermore, it was observed that

the neural network can resolve S and λq from a single shot, as indicated by figure 4.9.

Because with a single shot there is an obvious degeneracy between two variables, C2 and

C4, increasing the number of shots was investigated as a means of properly constraining

this system. It was determined that by serving three NSTX-U discharges to the CNN, each

with the same Eich parameters but varying machine specs, it would be possible to resolve

C1, C2, C3, C4, simultaneously. Consider a neural network that has been trained to predict

S and λq only, rather than C1, C2, C3, C4. Three NSTX-U discharges are created by the flux

generator that share common Eich parameters but allow the machine specifications to be

chosen randomly from a flat distribution. These three shots are then input sequentially to the

CNN, and the CNN makes three corresponding predictions for S and λq. From these three

sets of S and λq it is possible to predict all three Eich parameters. This can be described

mathematically by the following system of equations,

Aλq = C2(
APC3

heat)(
ABC4

p) (4.7)

Bλq = C2(
BPC3

heat)(
BBC4

p) (4.8)

Cλq = C2(
CPC3

heat)(
CBC4

p) (4.9)

where A,B,C correspond to different NSTX-U shots, and the left superscripts indicate the

machine spec for that respective shot. This is a nonlinear (linear in log-space) system of

equations. If the CNN correctly predicts Aλq,
B λq, and Cλq, and all values of Bp, and Pheat

are known inputs, then this system of three equations consists of three unknowns C2, C3, C4,

and is fully constrained.

Lastly, observe that for any single shot C1 can be predicted via the relationship between

S, and λq,

C1 =
S

λq
. (4.10)

Given these four equations and four unknowns, a CNN scheme in which three shots with

common Eich parameters are inputs would be fully constrained and a reconstruction of

66

Figure 4.9: Predictions for S and λq from a single shot are possible

C1, C2, C3, C4, is possible. Section 4.6 discusses the CNN architecture utilized to generate

high accuracy predictions for the Eich parameters.

4.6 The Final NSTX-U Thermocouple CNN

The final NSTX-U Thermocouple CNN was developed in response to the degeneracy issue

discussed in section 4.5. This final revision accepts three sequential NSTX-U shots (and

accompanying machine specs) and outputs correct values for λq and S. In order to extract the

values of C2, C3, C4, from the system of nonlinear equations derived in 4.5, it was necessary

to solve the system after all λq and S were predicted by the neural network. One method for

solving systems of nonlinear equations that has stood the test of time is Newton’s method.

Newton’s method, a root finding algorithm, iteratively approximates the zeroes of a function,

until it converges to within a specified tolerance. For a single variable, Newton’s method

67

calculates the next approximation of a root of the function with the following formulation,

xn+1 = xn +
f(xn)

f ′(xn)
(4.11)

where xn+1 represents the next approximation and xn represents the previous approximation

to a root of the function, f(x), and f ′(x) represents the derivative of f(x) with respect to x.

Initially, a value for xn is guessed, and then subsequent approximations, xn+1, are developed

iteratively until the next approximations converge to within an allowable tolerance, ε, as

described by the following algorithm:

Algorithm 1: Newton’s Method

1 xn = initial guess

2 ε = some error threshold

3 error = some value larger than ε

4 while error > ε do

5 xn+1 = xn + f(xn)
f ′(xn)

6 error = |xn+1 − xn|

This algorithm can be extended to multivariable systems by writing the algorithm in matrix

form. Given three shots with the same Eich parameters that generate the following system

of equations,

Aλq = C2(
APC3

heat)(
ABC4

p)

Bλq = C2(
BPC3

heat)(
BBC4

p)

Cλq = C2(
CPC3

heat)(
CBC4

p) ,

it is possible to arrange these equations into a matrix, F, such that:

F(C) =

f1

f2

f3

 =

C2(

APC3
heat)(

ABC4
p)

C2(
BPC3

heat)(
BBC4

p)

C2(
CPC3

heat)(
CBC4

p)

 where C =

C2

C3

C4

68

Constructing the the Jacobian, J of this matrix can be achieved by taking the partial

derivatives of F, with respect to each Eich parameter,

Jij =
∂fi
∂Cj

=

∂f1
∂C2

∂f1
∂C3

∂f1
∂C4

∂f2
∂C2

∂f2
∂C3

∂f2
∂C4

∂f3
∂C2

∂f3
∂C3

∂f3
∂C4

The matrix corollary to equation 4.11 then becomes,

Cn+1 = Cn − J−1n Fn (4.12)

where the subscript n+ 1 represents the next approximation and the subscript n represents

the previous approximation. Successive approximations of the correct Eich Parameters,

C2, C3, C4, can then be generated by the algorithm:

Algorithm 2: Newton’s Method: Multivariate

1 Cn = initial guess

2 ε = some error threshold

3 error = some value larger than ε

4 while (error > ε) do

5 Cn+1 = Cn − J−1n Fn

6 error = sum(Cn+1 −Cn)

Figure 4.10 provides an illustration of the final NSTX-U CNN architecture. The 2D

thermocouple data serves as the input to a series of two convolution + pooling layers, after

which a 1D vector emerges and is concatenated with the machine specs. This concatenated

vector is fed to four fully connected layers, whose output is λq and S. This process completes

three times for three different NSTX-U shots that all share common Eich parameters but

have different machine specs. After the three NSTX shots have been forward propagated

through the network, they are fed to a Newton’s Method algorithm, which solves for the

values of C1, C2, C3, C4.

69

Figure 4.10: Final CNN Architecture

This new architecture increased the prediction time significantly when compared to the

time the CNN takes to make a single prediction. If this system were to be applied to a real

time system, replacing Newton’s method with a direct matrix decomposition in log space

could eliminate the need for recursive root finding, and solve the system of equations in a

single pass, thereby decreasing the CPU time significantly. That being said, the current

prediction time is usually less than 1-2 seconds, so Newton’s method more than suffices for

this generic application. An implementation that uses direct matrix inversion to derive the

Eich parameters was also tested and it was verified that the results are identical to Newton’s

method, with sub-second prediction speeds.

To test this new architecture, five new publication heat fluxes were created by the

Monte Carlo heat flux generator, each consisting of 100 shots of common Eich parameters

but varying machine specifications. These heat fluxes were pushed through the ANSYS

simulation, resulting in new publication thermocouple datasets, which became inputs to the

CNN. The Eich parameters plotted in figure 4.11a were derived using the new architecture

from three NSTX simulated shots with constant Eich parameters. The figure demonstrates

the accuracy that can be obtained from this CNN reconstruction system. The CNN utilized

to perform these predictions was trained to 95% accuracy where an accurate prediction

is defined as within 0.5% of range of predicted variable (S, λq). Each Eich parameter,

C1, C2, C3, C4, is plotted alongside the C value that was expected for that respective

70

(a)

(b)

Figure 4.11: Final CNN prediction results for (a) 1 set of 3 shots and (b) 10 sets of 3 shots.
CNN trained to 95% accuracy where an accurate prediction is defined as within 0.5% of range of
predicted variable (S, λq)

71

parameter. In order to generate a distribution of predictions that may be compared against

4.8, 10 sets of simulated NSTX discharges were served to the CNN, and the mean and

standard deviation were calculated. Figure 4.11b illustrates the prediction distribution for

the new CNN architecture. The mean of the distribution for each respective Eich parameter

is extremely close to the expected value, and the standard deviation (grey and gold bars) are

very tightly clustered about the mean. When compared to 4.8, figure 4.11b indicates that

the degeneracies have been greatly mitigated.

Table 4.1 provides the statistical results from all five publication datasets. Each

publication dataset was generated independently, and consists of 100 simulated NSTX shots.

The Eich parameters are held constant for all 100 shots in each respective publication dataset,

but the Eich parameters differ between publication datasets. As can be observed in the table,

the CNN is accurate in predicting all four Eich parameters, regardless of the dataset. It can

therefore be concluded that given three NSTX-U discharges in which the Eich parameters

(C1, C2, C3, C4) are fixed but the machine specifications (Bp, Pheat, fx,, etc.) are varying, it

is possible to reconstruct the Simplified Eich heat flux profile.

To further increase the accuracy and reduce the standard deviation of the predictions,

several measures could be taken with regards to the training. The obvious method to increase

the accuracy of the CNN is to allow it to train longer on the training data. This would

result in a higher accuracy level overall, but comes at the cost of training time. On this

CNN, approximately 1-5 million epochs of training would most likely increase the accuracy

to approximately 98% (from 95% where error threshold is 0.5% of variable range). Further

training beyond 98% - 99% is not recommended, as the CNN can overtrain and any further

increases on training data accuracy will result in decreases in publication dataset accuracy

(the CNN learns the test dataset, not the generic model), but there is significant room to

improve before this overtraining regime is reached. Lastly, experimentation with tuning

hyperparameters may yield gains in performance. More specifically, increasing the width

and depth of the CNN may increase accuracy at the expense of increased training time.

It is evident that there are many options for optimizing this CNN and constructing an

extremely accurate system, but for the purposes of this project, the aforementioned results

suffice. Having generated a reconstruction method that is capable of deriving unknown Eich

72

Table 4.1: Statistical results from five publication datasets. Each publication dataset consist of

100 NSTX-U shots with common Eich Parameters, but the Eich parameters differ between different

publication datasets. CNN trained to 95% accuracy where an accurate prediction is defined as

within 0.5% of predicted variable (S, λq) with respect to variable domain. µ = Mean; σ = Standard

Deviation

Number of Predictions (3 shots each)
1 Prediction 10 Predictions

Publication
Dataset

Eich
Parameter

Expected
Value

µ σ µ σ

1

C1 0.159 0.153 0 0.157 ±0.0015
C2 1.223 1.263 0 1.241 ±0.0515
C3 0.053 0.054 0 0.053 ±0.0185
C4 −0.796 −0.760 0 −0.782 ±0.0304

2

C1 0.277 0.273 0 0.276 ±0.0026
C2 1.348 1.410 0 1.318 ±0.0660
C3 0.149 0.174 0 0.161 ±0.0166
C4 −0.974 −0.901 0 −0.986 ±0.0454

3

C1 0.224 0.216 0 0.218 ±0.0080
C2 1.224 1.183 0 1.254 ±0.0639
C3 0.233 0.240 0 0.202 ±0.0601
C4 −0.548 −0.576 0 −0.550 ±0.0192

4

C1 0.235 0.236 0 0.234 ±0.0016
C2 1.698 1.697 0 1.689 ±0.0486
C3 0.238 0.236 0 0.234 ±0.0089
C4 −0.769 −0.770 0 −0.778 ±0.0216

5

C1 0.198 0.195 0 0.192 ±0.0105
C2 1.417 1.396 0 1.452 ±0.0913
C3 0.221 0.226 0 0.185 ±0.0824
C4 −0.581 −0.592 0 −0.583 ±0.0360

73

scaling parameters from subsurface thermocouple measurements in the divertor of an NSTX-

U tile, project objective two was satisfied. Project objective three required a demonstration

of project objective two, but with noise and systematic error added to the thermocouple

data.

4.7 Simulating Systematic Error

On NSTX-U, voltage signals from subsurface thermocouples may experience unexpected

impedance or induced voltages that result in scaling or biases superimposed upon the original

signal. This systematic error may sometimes be calibrated out of the signal, or filtered

by digital signal processing (DSP), but in some cases it is unavoidable. To ascertain the

competency of this CNN reconstruction system with respect to noise and systematic error, a

series of tests were conducted that artificially injected systematic error into the thermocouple

data. These tests served to validate the prototype CNN’s performance with regard to project

objective three: Demonstrate project objective two, but now add demonstrated uncertainties

to measurement and model support parameters.

To generate artificial noise, the original thermocouple data that was output from the

ANSYS simulator was scaled and biased. Due to the fact that periodic time varying

alterations to the thermocouple signal can be digitally filtered by frequency component,

the applied error for these tests was DC, or time invariant. The scaling and bias was applied

to a single thermocouple (second in radial direction) for the duration of the data acquisition

period. The general mathematical relationship between the true signal, TCtrue, and the

signal with an applied error, TCerr, can be described as follows,

TCerr = (TCtrue)m+ b (4.13)

where m is a scaling factor and b [◦C] is an added bias term. In order to determine the

CNN performance as a function of the scaling and bias term, a single set of three simulated

NSTX-U discharges were reproduced 100 times, while varying m and b. The ranges for m

74

and b are given by:

0.5 <m < 1.5 (4.14)

−10 <b < 10 (4.15)

The 100 reproductions were evenly spaced through this two dimensional (m x b) space,

and the error for each Eich parameter was calculated at regular intervals. Figures 4.12-

4.15 illustrate the contours of CNN prediction error as a function of m and b for each Eich

parameter. The center of each contour plot represents the ideal case, when no systematic

error has been injected. As one moves away from the ideal case, the error increases.

Interestingly, bands of similar error elevation with negative slope (−b/m) indicate that if

m is increased while decreasing b, then the CNN prediction error will not increase. However,

if m and b are both increased (or decreased) simultaneously, then the CNN prediction error

will increase indicating inferior performance. Large areas of minimal error in the center of

each contour plot illustrate the inherent adaptive nature of the CNN with regards to error.

Particularly in C2 (plot 4.13), injecting error into the thermocouple data has relatively little

effect on the CNN prediction capability. This large plateau of minimal C2 error falls off

sharply, however, near the edges of the plot, and the maximum relative error occurs when

m = 1.5 and b = 10.0, which corresponds to a prediction error of approximately 48% relative

to the domain of C2. As can be observed in figure 4.12, C1 is the most sensitive variable to

noise. In all Eich parameters, however, the CNN never exceeds an error of 50%, despite an

error in the thermocouple data that exceeds 50%!

It should be emphasized that in figures 4.12-4.15 only a single thermocouple (second

thermocouple in radial direction) had error injected into its thermocouple values. If this

system were to be incorporated into experimental data acquisition systems on the real NSTX-

U, a more thorough investigation would be necessary to quantify the effect of simultaneous

noise and error signals on multiple thermocouples. However, the included demonstration

suffices to validate that the CNN is robust against error / noise injected onto a single

thermocouple signal, which validates the third project objective.

75

Figure 4.12: C1 error contours: noise injected on thermocouple 2

Figure 4.13: C2 error contours: noise injected on thermocouple 2

76

Figure 4.14: C3 error contours: noise injected on thermocouple 2

Figure 4.15: C4 error contours: noise injected on thermocouple 2

77

Chapter 5

Concluding Remarks

Modern tokamak designs require plasma facing components that are capable of withstanding

large heat loads in the divertor. The NSTX-U selection of a castellated tile design has

greatly minimized the internal stresses that accompany heat loading, but will still require tile

monitoring systems to prevent exceeding the engineering limits of the tiles. These monitoring

systems must be capable of resolving the heat flux applied to the divertor tile, solely from

subsurface thermocouple measurements. Many previous demonstrations of heat flux profile

reconstruction from subsurface thermocouples have been performed on tokamaks over the

past several decades, in which an inverse solution to the heat diffusion equation was obtained

to relate subsurface temperature to surface incident heat flux. While these methods are all

successful, they require assumptions associated with deriving analytical solutions to the

heat diffusion equation, and also require careful experimental execution with very specific

operational windows. In an effort to discover alternative heat flux profile reconstruction

methods, modern artificial intelligence and machine learning techniques were explored. More

specifically, Convolutional Neural Networks were tested as a mechanism for Eich heat flux

profile reconstruction from subsurface thermocouple data.

The Convolutional Neural Network (CNN) employed in this proof of concept can predict

Eich scaling parameters with high precision. The CNN accepts machine specifications and

thermocouple data as input, and outputs the Eich scaling parameters necessary to resolve

the incident heat flux profile. In order to train this CNN, a database of simulated NSTX-

U shots was required. To create this database, several software modules were developed,

78

and the ANSYS multiphysics finite element solver was used to generate thermocouple

profiles. Roughly 8000 simulated NSTX-U shots were created in this manner, and these

shots served to train the CNN to recognize specific thermocouple characteristics from the

thermocouple profiles. The final CNN is capable of resolving the incident heat flux profile

after only three NSTX-U shots. These three shots must share theoretical Eich scaling

parameters, and the machine specifications such as BP and Pheat must change between

shots. So long as these restrictions are satisfied, the three shots can sample from any corner

of the machine’s operational domain without affecting the CNNs ability to make accurate

predictions. Furthermore, the CNN is capable of reconstruction despite moderate noise and

systematic error. Overall, this CNN proof of concept provides a worthy alternative to the

traditional heat diffusion equation inverse method. While the CNN prototype satisfied the

project objectives, many improvements and further explorations could be undertaken using

this system, which could lead to more advanced reconstruction tasks that are outside of the

capabilities of any modern analytical method.

5.0.1 Potential Improvements / Further Applications

The CNN described in this work was trained and tested on NSTX-U shots in which the strike

point was not swept, but rather remained in a single position for the duration of the shot.

It is entirely possible for the CNN to learn the intricacies associated with any time evolving

strike point profile, so long as it is trained with a database that includes time evolving strike

point data. The time constraints on this project prevented the development and testing

of a strike point sweep database, but if more time were available it would be relatively

straightforward to develop a CNN that could perform these predictions. Generating the

strike point sweep dataset would take considerable amounts of time, as it would need to be

fairly large. The preferred method for generating this dataset would be the utilization of the

ANSYS ACT script included in the Appendix on a cluster of CPUs utilizing an ANSYS high

performance computing license. The Monte Carlo heat flux generator and CNN described

in this work (code in appendix) both already include the option for strike point sweeping,

and the sweeping frequency would serve as an additional machine specification that would

be fed to the CNN. If the strike point was not swept periodically, but rather swept linearly

79

in a single direction for the entirety of the shot, the strike point velocity could also serve as

the input. A more complicated architecture could even include an array of the time evolving

strike point position as input.

Another potential improvement to this CNN system would be deriving the relationship

between training database size and prediction accuracy. Roughly 8000 NSTX-U simulations

were developed to train the CNN, but that number is likely excessive. A rigorous

engineering analysis of database size could yield valuable insight, and perhaps result in a

reduction to the necessary database size, thereby reducing database production time. More

specifically, determining the database resolution needed for each machine specification across

its domain may enable a clustering algorithm to greatly reduce the size of the training

dataset. Hyperparameter tuning can also affect the prediction accuracy, and deriving

the relationship between each hyperparameter and the prediction accuracy could yield

optimum configurations for CNN operation. The combination of database analytics and

hyperparameter tuning would together enable the CNN to train faster and predict more

accurately with higher precision.

The last potential improvement that will be mentioned here is incorporating the full

Eich heat flux profile, rather than the simplified Eich model described in chapter 3. The

CNN is capable of deriving any multivariate nonlinear model, and full Eich profile model

reconstruction would be relatively straightforward. Including the full Eich heat flux model in

the Monte Carlo heat flux generator would only require minor adjustments, and the ANSYS

simulation and CNN training process would be identical. An additional two shots for each

prediction (a total of 5 shots) would then be required to resolve the six full Eich parameters.

This would require minor alterations to the CNN architecture, and minor modifications to

the system of equation solver.

Because Neural Networks are capable of learning any system for which a database can

be generated, the options for applying these techniques are truly endless. Advances in

computational power have yielded large databases for every fusion machine, all with data that

can be mined and used in machine learning algorithms such as this one. One such example

is modeling Edge Localized Modes (ELMs), which are extremely nonlinear phenomenon that

escape the prediction capabilities of ideal magnetohydrodynamics (MHD). Because neural

80

networks do not depend on prior analytical derivation, but rather learn through observation,

they are the perfect candidate for studying ELMs. Large databases that contain ELM data

already exist, and could be mined and used for CNN training.

Another potential neural network application is in real time controls. When utilized with

the matrix inversion system equation solver (instead of Newton’s method), the CNN in this

thesis is capable of generating predictions with approximately 100 ms latency (without any

significant effort to increase prediction speed). A plasma control system that controls divertor

heat flux profile location and shaping via real time subsurface thermocouple measurements

could be developed using a CNN similar to the one described in this work, although it would

be limited by the subsurface thermocouple’s elevation (proportional to thermal diffusion

speed). Not only would the system be capable of real time control, but it could be continually

learning as more shots are observed by the CNN. Other diagnostics with faster response times

would also be perfect candidates for real time control using artificial intelligence.

Lastly, compiling a database across multiple tokamaks of varying size could be used to

train a neural network that can be applied to any tokamak. Including data such as machine

major radius, aspect ratio, etc., in the neural network training could result in a system that

develops a model that can be scaled to future devices, as well as ported over to unseen

machines. One engineering challenge associated with modern tokamak diagnostic systems is

that they are each specifically designed for a specific machine. Generating a system that can

be modularly applied to any tokamak is possible with machine learning due to its ability to

progressively improve the model. And while the discussion provided in this thesis is solely

regarding heat flux and thermocouples, these artificial intelligent systems can be applied to

any diagnostic.

Regardless of whether or not future improvements are explored, the three project

objectives that defined this thesis were all achieved. The NSTX-U thermocouple CNN

prototype demonstration was successful, and provided an alternative heat flux reconstruction

methodology that leverages the power of modern computer science as a means of modeling

a complicated plasma profile in a fusion machine.

81

Bibliography

82

[1] P. C. Stangeby, The plasma boundary of magnetic fusion devices, ser. Plasma physics

series. Institute of Physics Pub. vii, 5, 6

[2] T. Eich, A. Leonard, R. Pitts, W. Fundamenski, R. Goldston, T. Gray, A. Herrmann,

A. Kirk, A. Kallenbach, O. Kardaun, A. Kukushkin, B. LaBombard, R. Maingi,

M. Makowski, A. Scarabosio, B. Sieglin, J. Terry, A. Thornton, ASDEX Upgrade

Team, and JET EFDA Contributors, “Scaling of the tokamak near the scrape-off

layer h-mode power width and implications for ITER,” vol. 53, no. 9, p. 093031.

[Online]. Available: http://stacks.iop.org/0029-5515/53/i=9/a=093031?key=crossref.

85c8939d5380098d23c4644a2a101ec9 vii, viii, 6, 7, 33

[3] E. Alpaydin, Introduction to machine learning, 3rd ed. MIT Press. vii, 9, 10, 16, 19

[4] D. Stork and S. Zinkle, “Introduction to the special issue on the technical

status of materials for a fusion reactor,” vol. 57, no. 9, p. 092001.

[Online]. Available: http://stacks.iop.org/0029-5515/57/i=9/a=092001?key=crossref.

42f13131369b4ae4ec6fa0cd1b5a0036 1

[5] C. Linsmeier, M. Rieth, J. Aktaa, T. Chikada, A. Hoffmann, J. Hoffmann,

A. Houben, H. Kurishita, X. Jin, M. Li, A. Litnovsky, S. Matsuo, A. von Mller,

V. Nikolic, T. Palacios, R. Pippan, D. Qu, J. Reiser, J. Riesch, T. Shikama,

R. Stieglitz, T. Weber, S. Wurster, J.-H. You, and Z. Zhou, “Development of

advanced high heat flux and plasma-facing materials,” vol. 57, no. 9, p. 092007.

[Online]. Available: http://stacks.iop.org/0029-5515/57/i=9/a=092007?key=crossref.

4e3ac0cd978f8a92a985f4c55d65c872 1

[6] M. Reinke, “PFCR MEMO 014: GOALS FOR FY18 R18-1 PCRF-WG.”

[Online]. Available: https://nstx.pppl.gov/DragNDrop/Working Groups/PFCR/

memos/PFCR-MEMO-014-00.pdf 2

[7] ——, “PFCR MEMO 015: INITIAL HEAT FLUX PROFILES AND

CONSTRAINTS FOR MODEL VALIDATION SIMULATIONS FOR R18-1/3-

G3.” [Online]. Available: https://nstx.pppl.gov/DragNDrop/Working Groups/PFCR/

memos/PFCR-MEMO-015-00.pdf 2, 34

83

http://stacks.iop.org/0029-5515/53/i=9/a=093031?key=crossref.85c8939d5380098d23c4644a2a101ec9
http://stacks.iop.org/0029-5515/53/i=9/a=093031?key=crossref.85c8939d5380098d23c4644a2a101ec9
http://stacks.iop.org/0029-5515/57/i=9/a=092001?key=crossref.42f13131369b4ae4ec6fa0cd1b5a0036
http://stacks.iop.org/0029-5515/57/i=9/a=092001?key=crossref.42f13131369b4ae4ec6fa0cd1b5a0036
http://stacks.iop.org/0029-5515/57/i=9/a=092007?key=crossref.4e3ac0cd978f8a92a985f4c55d65c872
http://stacks.iop.org/0029-5515/57/i=9/a=092007?key=crossref.4e3ac0cd978f8a92a985f4c55d65c872
https://nstx.pppl.gov/DragNDrop/Working_Groups/PFCR/memos/PFCR-MEMO-014-00.pdf
https://nstx.pppl.gov/DragNDrop/Working_Groups/PFCR/memos/PFCR-MEMO-014-00.pdf
https://nstx.pppl.gov/DragNDrop/Working_Groups/PFCR/memos/PFCR-MEMO-015-00.pdf
https://nstx.pppl.gov/DragNDrop/Working_Groups/PFCR/memos/PFCR-MEMO-015-00.pdf

[8] F. Wagner, “A quarter-century of h-mode studies,” vol. 49, no. 12, pp. B1–B33.

[Online]. Available: http://stacks.iop.org/0741-3335/49/i=12B/a=S01?key=crossref.

4b1659cd2933e3e40b713717cd852006 4

[9] F. F. Chen, Introduction to plasma physics and controlled fusion. Springer

Science+Business Media. 4

[10] M. Keilhacker, A. Gibson, C. Gormezano, P. Lomas, P. Thomas, M. Watkins,

P. Andrew, B. Balet, D. Borba, C. Challis, I. Coffey, G. Cottrell, H. D. Esch,

N. Deliyanakis, A. Fasoli, C. Gowers, H. Guo, G. Huysmans, T. Jones, W. Kerner,

R. Knig, M. Loughlin, A. Maas, F. Marcus, M. Nave, F. Rimini, G. Sadler,

S. Sharapov, G. Sips, P. Smeulders, F. Sldner, A. Taroni, B. Tubbing, M. v.

Hellermann, D. Ward, and J. Team, “High fusion performance from deuterium-tritium

plasmas in JET,” vol. 39, no. 2, pp. 209–234. [Online]. Available: http://stacks.iop.

org/0029-5515/39/i=2/a=306?key=crossref.d40b7269f54a17935a01f96e91953a6b 4

[11] J. P. Freidberg, Plasma Physics and Fusion Energy. Cambridge University Press. 4,

20

[12] T. Eich, B. Sieglin, A. Scarabosio, W. Fundamenski, R. J. Goldston, A. Herrmann,

and ASDEX Upgrade Team, “Inter-ELM power decay length for JET and ASDEX

upgrade: Measurement and comparison with heuristic drift-based model,” vol. 107,

no. 21. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.107.215001

6

[13] F. Wagner, “A study of the perpendicular particle transport properties in the scrape-off

layer of ASDEX,” vol. 25, no. 5, pp. 525–536. [Online]. Available: http://stacks.iop.

org/0029-5515/25/i=5/a=002?key=crossref.d0e263077ca266b35fe58f00014e1135 6

[14] K. Kamnitsas, D. C. Castro, L. L. Folgoc, I. Walker, R. Tanno, D. Rueckert,

B. Glocker, A. Criminisi, and A. Nori, “Semi-supervised learning via compact latent

space clustering.” [Online]. Available: http://arxiv.org/abs/1806.02679 7, 52

84

http://stacks.iop.org/0741-3335/49/i=12B/a=S01?key=crossref.4b1659cd2933e3e40b713717cd852006
http://stacks.iop.org/0741-3335/49/i=12B/a=S01?key=crossref.4b1659cd2933e3e40b713717cd852006
http://stacks.iop.org/0029-5515/39/i=2/a=306?key=crossref.d40b7269f54a17935a01f96e91953a6b
http://stacks.iop.org/0029-5515/39/i=2/a=306?key=crossref.d40b7269f54a17935a01f96e91953a6b
https://link.aps.org/doi/10.1103/PhysRevLett.107.215001
http://stacks.iop.org/0029-5515/25/i=5/a=002?key=crossref.d0e263077ca266b35fe58f00014e1135
http://stacks.iop.org/0029-5515/25/i=5/a=002?key=crossref.d0e263077ca266b35fe58f00014e1135
http://arxiv.org/abs/1806.02679

[15] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end

learning for self-driving cars.” [Online]. Available: http://arxiv.org/abs/1604.07316 7,

52

[16] T. Fischer and C. Krauss, “Deep learning with long short-term memory networks

for financial market predictions,” vol. 270, no. 2, pp. 654–669. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0377221717310652 7, 52

[17] A. Scott, Neuroscience: a mathematical primer. Springer. 9, 15

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” vol. 521, no. 7553, pp. 436–444.

[Online]. Available: http://www.nature.com/articles/nature14539 15, 16

[19] T. K. Gray, N. Allen, M. L. Reinke, G. Smalley, D. L. Youchison, R. Ellis, T. Looby,

M. Mardenfeld, and D. E. Wolfe, “Integrated plasma facing component calorimetry for

measurement of shot integrated deposited energy in NSTX-u,” p. 6. 20, 24, 51

[20] SIGRAFINE TDS-R6510.02 Datasheet, SGL Carbon SE, 08 2015.

[Online]. Available: http://www.sglgroup.com/cms/ common/downloads/products/

product-groups/gs/tds/iso/SIGRAFINE TDS-R6510.02.pdf 21

[21] SICSS-SHX High Temperature Quick Disconnect Thermocouples Datasheet,

Omega Engineering. [Online]. Available: https://www.omega.com/temperature/

pdf/SICSS-SHX.pdf 21

[22] J. R. Cannon, The one-dimensional heat equation. Cambridge University Press, 1984,

vol. 23. 49, 50

[23] H. Carslaw and J. Jaeger, Conduction of heat in solids: Oxford Science Publications.

Oxford, England, 1959. 50, 51

[24] V. Riccardo, W. Fundamenski, and G. F. Matthews, “Reconstruction of power

deposition profiles using JET MkIIGB thermocouple data for ELMy h-mode plasmas,”

85

http://arxiv.org/abs/1604.07316
https://linkinghub.elsevier.com/retrieve/pii/S0377221717310652
http://www.nature.com/articles/nature14539
http://www.sglgroup.com/cms/_common/downloads/products/product-groups/gs/tds/iso/SIGRAFINE_TDS-R6510.02.pdf
http://www.sglgroup.com/cms/_common/downloads/products/product-groups/gs/tds/iso/SIGRAFINE_TDS-R6510.02.pdf
https://www.omega.com/temperature/pdf/SICSS-SHX.pdf
https://www.omega.com/temperature/pdf/SICSS-SHX.pdf

vol. 43, no. 7, pp. 881–906. [Online]. Available: http://stacks.iop.org/0741-3335/43/i=

7/a=304?key=crossref.6b22e35d3f8d34c9753c426d4e315548 51

[25] W. Fundamenski, S. Sipil, G. F. Matthews, V. Riccardo, P. Andrew, T. Eich, L. C.

Ingesson, T. Kiviniemi, T. Kurki-Suonio, V. Philipps, and c. t. t. E.-J. W. programme,

“Interpretation of recent power width measurements in JET MkIIGB ELMy h-modes,”

vol. 44, no. 6, pp. 761–793. [Online]. Available: http://stacks.iop.org/0741-3335/44/i=

6/a=311?key=crossref.7b79da7ed6c109b8a702b85803b95354 51

[26] G. Matthews, S. Erents, W. Fundamenski, C. Ingesson, R. Monk, and V. Riccardo,

“Divertor energy distribution in JET h-modes,” vol. 290-293, pp. 668–672. [Online].

Available: http://linkinghub.elsevier.com/retrieve/pii/S0022311500004827 51

[27] J. G. Watkins, C. J. Lasnier, D. G. Whyte, P. C. Stangeby, and M. A. Ulrickson,

“Calorimeter probe for the DIII-d divertor,” vol. 74, no. 3, pp. 1574–1577. [Online].

Available: http://aip.scitation.org/doi/10.1063/1.1527241 51

[28] G. Matthews, P. Bunting, S. Devaux, P. Drewelow, C. Guillemaut, D. King, E. Lerche,

S. Silburn, G. Szepesi, V. Riccardo, and V. Thompson, “Energy balance in JET,”

vol. 12, pp. 227–233. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S2352179116301661 51

[29] J. L. Barton, R. E. Nygren, E. A. Unterberg, J. G. Watkins, M. A. Makowski,

A. Moser, D. L. Rudakov, and D. Buchenauer, “Comparison of heat flux

measurement techniques during the DIII-d metal ring campaign,” vol. T170, p.

014007. [Online]. Available: http://stacks.iop.org/1402-4896/2017/i=T170/a=014007?

key=crossref.6ebc06afe3e6f1f08773b39aa349a9d7 51

[30] C. M. Bishop, P. S. Haynes, M. E. U. Smith, T. N. Todd, and D. L. Trotman, “Fast

feedback control of a high temperature fusion plasma,” vol. 2, no. 3, pp. 148–159.

[Online]. Available: http://link.springer.com/10.1007/BF01415011 53

86

http://stacks.iop.org/0741-3335/43/i=7/a=304?key=crossref.6b22e35d3f8d34c9753c426d4e315548
http://stacks.iop.org/0741-3335/43/i=7/a=304?key=crossref.6b22e35d3f8d34c9753c426d4e315548
http://stacks.iop.org/0741-3335/44/i=6/a=311?key=crossref.7b79da7ed6c109b8a702b85803b95354
http://stacks.iop.org/0741-3335/44/i=6/a=311?key=crossref.7b79da7ed6c109b8a702b85803b95354
http://linkinghub.elsevier.com/retrieve/pii/S0022311500004827
http://aip.scitation.org/doi/10.1063/1.1527241
https://linkinghub.elsevier.com/retrieve/pii/S2352179116301661
https://linkinghub.elsevier.com/retrieve/pii/S2352179116301661
http://stacks.iop.org/1402-4896/2017/i=T170/a=014007?key=crossref.6ebc06afe3e6f1f08773b39aa349a9d7
http://stacks.iop.org/1402-4896/2017/i=T170/a=014007?key=crossref.6ebc06afe3e6f1f08773b39aa349a9d7
http://link.springer.com/10.1007/BF01415011

[31] O. Barana and G. Manduchi, “Application of neural networks for the measurement

of electronic temperature in nuclear fusion experiments,” vol. 10, no. 4, pp. 351–356.

[Online]. Available: http://link.springer.com/10.1007/s005210200007 53

[32] F. A. Matos, D. R. Ferreira, and P. J. Carvalho, “Deep learning for plasma tomography

using the bolometer system at JET,” vol. 114, pp. 18–25. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S0920379616306883 53

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.” [Online].

Available: http://arxiv.org/abs/1412.6980 61

87

http://link.springer.com/10.1007/s005210200007
http://linkinghub.elsevier.com/retrieve/pii/S0920379616306883
http://arxiv.org/abs/1412.6980

Appendix

88

A Monte Carlo Flux Generator - Fortran95

1 ! f l ux genny rev5 . f08

2

3 ! T i t l e : Flux Generator (genny)

4 ! Engineer : Tom Looby

5 ! Date : 03/16/2018

6 ! De s c r ip t i on : Makes a s e t o f Fluxes ANSYS / TensorFlow

7 ! Pro j e c t : NSTX−U Recovery

8

9 !===

10 ! ∗∗∗MAIN PROGRAM∗∗∗

11 !===

12 program f lux genny

13 use i s o f o r t r a n e n v

14 i m p l i c i t none

15

16 i n t e g e r : : i , j , ntime , nspace , i t e r , maxiter , f a i l c h e c k

17 i n t e g e r (8) : : t1 , t2 , rate , cmax

18

19 r e a l (r e a l 6 4) , ALLOCATABLE : : f l u x (: , :) , r0 (:) , q (:) , alpha (:) , beta (:)

20 r e a l (r e a l 6 4) : : t , dt , PI , dx , r , w, f s t r i k e , s p e c a r r (9 , 2)

21 r e a l (r e a l 6 4) : : c1 , c2 , c3 , c4 , xp , xc , P, Bp , fx , lambda , S

22 r e a l (r e a l 6 4) : : rmin , rmax , t i l emin , t i lemax , t i l e l e n

23 r e a l (r e a l 6 4) : : squig1 , squig2 , squig3 , squig4 , squ ig5

24 r e a l (r e a l 6 4) : : squig6 , squig7 , squig8 , squ ig9

25 ! r e a l (r e a l 6 4) : :

26 cha rac t e r (l en =200) : : o u t f i l e , d i r , command , f l u x f i l e

27

28

29 !===

30 ! Setup

31 !===

32 ! I n i t i a l i z e Random Number Generator

33 c a l l i n i t random seed ()

34

89

35 !MC i t e r a t o r

36 i t e r = 0

37

38 ! D i r ec tory where r e s u l t s w i l l be saved

39 d i r = ’ /home/ mobile1 / s choo l / grad / masters / f l u x i n p u t / f l u x e s / f l u x e s t e s t / ’

40 command = ”mkdir ” // trim (d i r)

41 pr in t ∗ , command

42 f a i l c h e c k = SYSTEM(trim (command))

43 i f (f a i l c h e c k == 1) then

44 pr in t ∗ , ” Fa i l ed to c r e a t e subd i r e c to ry ”

45 CALL EXIT(0)

46 end i f

47

48 !===

49 ! Var iab les , Parameters , Machine Specs

50 !===

51 PI=4.D0∗DATAN(1 .D0)

52 i t e r = 0

53

54 ! User de f ined s imu la t i on parameters

55 pr in t ∗ , ”How many s p a t i a l s l i c e s ?”

56 read (∗ ,∗) nspace

57 pr in t ∗ , ”How many time s t ep s ?”

58 read (∗ ,∗) ntime

59 pr in t ∗ , ”How many Monte Carlo Runs?”

60 read (∗ ,∗) maxiter

61

62 ALLOCATE(f l u x (ntime , nspace) , r0 (ntime) , q (ntime))

63 ALLOCATE(alpha (ntime) , beta (ntime))

64

65 ! T i l e Specs

66 t i l e l e n = 0.15431

67 dx = t i l e l e n / nspace

68 t i l e m i n = 0.438

69 t i l emax = t i l e m i n + t i l e l e n

70

90

71 ! From Memo, r0 range :

72 rmin = .46

73 rmax = .575

74

75 ! Create Array with min and max va lues f o r machine spec s

76 ! f o r each parameter : [minval , maxval]

77 ! C1 −> C4 are Eich Model Parameters

78 !

79 ! rows are machine spec s

80 ! General ly , array l ooks l i k e t h i s :

81 !

82 ! f o r array (i , j)

83 ! i j 1 j 2

84 ! Row # Spec MinVal MaxVal

85 ! 1 Bp 0 .2 0 .6

86 ! 2 P 0 .5 4 .9

87 ! 3 fx 4 . 0 30 .0

88 ! 4 t 1 . 0 5 .0

89 ! 5 c1 0 .1 0 .3

90 ! 6 c2 1 .0 2 .5

91 ! 7 c3 −0.1 0 .25

92 ! 8 c4 −1.4 −0.5

93 ! 9 f s t r i k e 0 .0 20 .0

94

95 ! Bui ld min/max array

96 ! Bp [T]

97 s p e c a r r (1 , 1) = 0 .2

98 s p e c a r r (1 , 2) = 0 .6

99 !P [MW]

100 s p e c a r r (2 , 1) = 0 .5

101 s p e c a r r (2 , 2) = 4 .9

102 ! f x

103 s p e c a r r (3 , 1) = 4 .0

104 s p e c a r r (3 , 2) = 30 .0

105 ! t [s]

106 s p e c a r r (4 , 1) = 1 .0

91

107 s p e c a r r (4 , 2) = 5 .0

108 ! c1

109 s p e c a r r (5 , 1) = 0 .1

110 s p e c a r r (5 , 2) = 0 .3

111 ! c2

112 s p e c a r r (6 , 1) = 1 .0

113 s p e c a r r (6 , 2) = 2 .5

114 ! c3

115 s p e c a r r (7 , 1) = −0.1

116 s p e c a r r (7 , 2) = 0 .25

117 ! c4

118 s p e c a r r (8 , 1) = −1.2

119 s p e c a r r (8 , 2) = −0.5

120 ! f s t r i k e [Hz]

121 s p e c a r r (9 , 1) = 0 .0

122 s p e c a r r (9 , 2) = 20 .0

123

124 !===

125 ! Monte Carlo Machine Parameters

126 !===

127 ! Use a Monte Carlo method to pick random standard d e v i a t e s from

128 ! uniform d i s t r i b u t i o n between boundar ies in s p e c a r r

129 ! This loop i s des igned to be run f o r as long as the user d e s i r e s

130 ! A l t e rna t i v e l y , the user may e d i t the ” i t e r a t i o n checker ” to break

131 ! a f t e r a s p e c i f i c number o f runs .

132

133 ! This i s f o r CPU c l o c k i n g . Grab i n i t i a l time .

134 CALL SYSTEM CLOCK(t1 , rate , cmax)

135

136 do whi le (1 .NE. 0)

137 i t e r = i t e r + 1

138

139 c a l l random number (squ ig1)

140 c a l l random number (squ ig2)

141 c a l l random number (squ ig3)

142 c a l l random number (squ ig4)

92

143 c a l l random number (squ ig5)

144 c a l l random number (squ ig6)

145 c a l l random number (squ ig7)

146 c a l l random number (squ ig8)

147 c a l l random number (squ ig9)

148

149 Bp = s p e c a r r (1 , 1) + squig1 ∗(s p e c a r r (1 , 2) − s p e c a r r (1 , 1))

150 P = s p e c a r r (2 , 1) + squig2 ∗(s p e c a r r (2 , 2) − s p e c a r r (2 , 1))

151 fx = s p e c a r r (3 , 1) + squig3 ∗(s p e c a r r (3 , 2) − s p e c a r r (3 , 1))

152

153 ! Choose t from d i s t or keep constant

154 ! t = s p e c a r r (4 , 1) + squig4 ∗(s p e c a r r (4 , 2) − s p e c a r r (4 , 1))

155 t = 5 .0

156

157 ! Eich Model Parameters (See NSTX PFC Memo)

158 c1 = s p e c a r r (5 , 1) + squig6 ∗(s p e c a r r (5 , 2) − s p e c a r r (5 , 1))

159 c2 = s p e c a r r (6 , 1) + squig7 ∗(s p e c a r r (6 , 2) − s p e c a r r (6 , 1))

160 c3 = s p e c a r r (7 , 1) + squig8 ∗(s p e c a r r (7 , 2) − s p e c a r r (7 , 1))

161 c4 = s p e c a r r (8 , 1) + squig9 ∗(s p e c a r r (8 , 2) − s p e c a r r (8 , 1))

162

163 ! Sweep s t r i k e po int (a l s o have to uncomment R0 s t u f f below)

164 f s t r i k e = s p e c a r r (9 , 1) + squig5 ∗(s p e c a r r (9 , 2) − s p e c a r r (9 , 1))

165

166 dt = t / r e a l (ntime)

167 w = 2∗PI∗ f s t r i k e

168

169

170 ! r0 can change with time

171 do i =1,ntime

172 ! Function f o r r0 goes here :

173 ! time varying s i n u s o i d

174 ! r0 (i) = (t i l e l e n / 2 . 0) ∗ s i n (w∗(i −1)∗dt) + t i l e m i n

175

176 ! constant

177 r0 (i) = t i l e m i n + t i l e l e n /2 .0

178

93

179 ! Bound min and max r0 per p r o j e c t requ i rements

180 ! i f (r0 (i) > rmax) then

181 ! r0 (i) = rmax

182 ! e l s e i f (r0 (i) < rmin) then

183 ! r0 (i) = rmin

184 ! end i f

185 end do

186

187

188 !===

189 ! So lve f o r S , lambda , and qmax

190 !===

191 lambda = c2 ∗(P∗∗ c3) ∗(Bp∗∗ c4) ∗10∗∗(−3.0) ! convert to meters

192 S = lambda∗ c1

193 xp = S∗ fx

194 xc = lambda∗ fx

195

196 ! q can be c a l c u l a t e d from i n t e g r a l :

197 ! P = i n t e g r a l (q (r) ∗2∗ pi ∗ r ∗dr) , bounded by r0−xp to r0 + xc

198

199 do i =1,ntime

200 alpha (i) = r0 (i) − xp

201 beta (i) = r0 (i) + xc

202

203 q (i) = (P/(2∗PI)) ∗ ((1/(3∗xp) ∗(r0 (i) ∗∗3 − alpha (i) ∗∗3)) − &

204 (alpha (i) /(2∗ xc) ∗(r0 (i) ∗∗2 − alpha (i) ∗∗2)) + &

205 (1/2∗ (beta (i) ∗∗2 − r0 (i) ∗∗2)) + &

206 (r0 (i) /(2∗ xc) ∗(beta (i) ∗∗2 − r0 (i) ∗∗2)) − &

207 (1/(3∗ xc) ∗(beta (i) ∗∗3 − r0 (i) ∗∗3))) ∗∗(−1.0)

208 end do

209

210 !===

211 ! Bui ld Flux P r o f i l e

212 !===

213

214 ! Bui ld p r o f i l e a c r o s s t i l e s u r f a c e

94

215 do i = 1 , ntime

216 do j = 1 , nspace

217 r = t i l e m i n + (j−1)∗dx

218 i f (r >= alpha (i) .AND. r < r0 (i)) then

219 f l u x (i , j) = q (i) /xp ∗ (r − alpha (i))

220 e l s e i f (r >= r0 (i) .AND. r < beta (i)) then

221 f l u x (i , j) = q (i) + q (i) /xc ∗ (r0 (i) − r)

222 e l s e

223 f l u x (i , j) = 0

224 end i f

225 end do

226 end do

227

228 !===

229 ! Write to CSV

230 !===

231 ! Change f i l ename based upon i t e r a t i o n number

232 wr i t e (o u t f i l e , ” (A13 , I0 . 6) ”) ” f l u x p r o f i l e ” , i t e r

233 f l u x f i l e = trim (d i r) // trim (o u t f i l e) // ” . txt ”

234

235 OPEN(UNIT=1,FILE=trim (f l u x f i l e) ,FORM=”FORMATTED” ,STATUS=”REPLACE” ,ACTION=”

WRITE”)

236 ! wr i t e ba s i c parameters f o r t h i s t e s t

237 WRITE(1 ,∗) ’

#==’

238 WRITE(1 ,∗) ’# Heat f l u x generated by f o r t r a n program ’

239 WRITE(1 ,∗) ’# Parameters L i s t ed Below : ’

240 WRITE(1 ,∗) ’# c1 = ’ , c1

241 WRITE(1 ,∗) ’# c2 = ’ , c2

242 WRITE(1 ,∗) ’# c3 = ’ , c3

243 WRITE(1 ,∗) ’# c4 = ’ , c4

244 WRITE(1 ,∗) ’# Bp = ’ , Bp

245 WRITE(1 ,∗) ’# P = ’ , P

246 WRITE(1 ,∗) ’# fx = ’ , fx

247 WRITE(1 ,∗) ’# t = ’ , t

248 WRITE(1 ,∗) ’# R0 time varying ’

95

249 WRITE(1 ,∗) ’# ’

250 WRITE(1 ,∗) ’# This y i e l d s the f o l l o w i n g r e s u l t s . . . : ’

251 WRITE(1 ,∗) ’# Lambda [m] : ’ , lambda

252 WRITE(1 ,∗) ’# S : ’ , S

253 WRITE(1 ,∗) ’# xp [m] : ’ , xp

254 WRITE(1 ,∗) ’# xc [m] : ’ , xc

255 WRITE(1 ,∗) ’

#==’

256

257

258 ! This uses an inner impl i ed do loop to i t e r a t e over array without newl ine

259 do i = 1 , ntime

260 WRITE(UNIT=1, FMT=∗) ((i −1)∗dt) , ” , ” , (f l u x (i , j) ∗10∗∗6 , ” , ” , j =1,nspace

−1) , f l u x (i , nspace) ∗10∗∗6

261 end do

262 CLOSE(UNIT=1)

263

264 !===

265 ! F ina l Output

266 !===

267 i f (mod(i t e r , 1000) == 0) then

268 pr in t ∗ , ’ I t e r a t i o n Number ’ , i t e r

269 CALL SYSTEM CLOCK(t2 , rate , cmax)

270 pr in t ∗ , ” Elapsed Time [s] : ” , r e a l (t2−t1) / r e a l (r a t e)

271 pr in t ∗ , ’ ’

272 ! p r i n t ∗ , ’ D i r ec tory S i z e : ’ , d i r s i z e

273 pr in t ∗ , ’ ’

274 pr in t ∗ , ’ ’

275 end i f

276

277 !=====I t e r a t i o n checker=====

278 ! Use t h i s i f you want to break out a f t e r n i t e r a t i o n s

279 ! Otherwise l e ave commented out

280 i f (i t e r >= maxiter) then

281 pr in t ∗ , ’ Reached I t e r a t i o n Maximum ’

282 e x i t

96

283 end i f

284 !============================

285 end do

286

287

288

289 pr in t ∗ , ’ ’

290 pr in t ∗ , ’ ’

291 pr in t ∗ , ’ Program Exexuted S u c c e s s f u l l y ’

292 CALL SYSTEM CLOCK(t2 , rate , cmax)

293 pr in t ∗ , ” Total Elapsed Time [s] : ” , r e a l (t2−t1) / r e a l (r a t e)

294 pr in t ∗ , ”Number o f f l u x p r o f i l e s c r ea ted : ” , i t e r

295

296

297 CONTAINS

298 ! This subrout ine gene ra t e s random number seed based upon c l o ck

299 SUBROUTINE in i t random seed ()

300 INTEGER : : i , n , c l o ck

301 INTEGER, DIMENSION(:) , ALLOCATABLE : : seed

302 CALL RANDOM SEED(s i z e = n)

303 ALLOCATE(seed (n))

304 CALL SYSTEM CLOCK(COUNT=c lock)

305 seed = c lock + 37 ∗ (/ (i − 1 , i = 1 , n) /)

306 CALL RANDOM SEED(PUT = seed)

307 DEALLOCATE(seed)

308 END SUBROUTINE

309

310 end program f lux genny

97

B ANSYS ACT Script - Python

1 # FluxImport2 . py

2

3 # Date : 20180315

4 # Desc r ip t i on : ANSYS ACT Extension f o r adding heat f l u x e s from CSVs to T i l e

Faces

5 # Engineer : Tom Looby

6 # Pro j ec t : PPPL NSTX−U Recovery

7

8 import os

9 import datet ime

10 c l r . AddReference (”Ans . UI . Too lk i t ”)

11 c l r . AddReference (”Ans . UI . Too lk i t . Base”)

12 from Ansys . UI . Too lk i t import ∗

13 import un i t s

14 import g raph i c s

15 import time

16

17

18

19 # Star t Logging . L ives in <work ing d i r ec to ry> f i l e s \dp0\SYS\MECH

20 de f i n i t (context) :

21 ExtAPI . Log . WriteMessage (”\n\n===== Flux P r o f i l e Importer ACT S c r i p t

I n i t i a l i z e d . . . =====\n\n”)

22

23 de f OnClickB1 (a n a l y s i s) :

24

25 #Star t a c l o ck f o r timestamping

26 t0 = time . time ()

27

28 f o r f i l e i t e r in range (0 ,99) :

29 # Print S t u f f to Log F i l e

30 t1 = time . time ()

31 ExtAPI . Log . WriteMessage (” ”)

98

32 ExtAPI . Log . WriteMessage (”

===”)

33 ExtAPI . Log . WriteMessage (” I t e r a t i o n Number : {:0>6}” . format (f i l e i t e r +1))

34 ExtAPI . Log . WriteMessage (”Time Elapsed at I t e r a t i o n Star t [s] : { : f }” .

format (t1 − t0))

35 ExtAPI . Log . WriteMessage (” ”)

36

37 #See i f the re are any heat f l u x e s from l a s t time and d e l e t e them

38 c h i l d c o u n t = ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . Chi ldren . Count

39 i f c h i l d c o u n t > 3 :

40 f o r d e l i t e r in range (3 , c h i l d c o u n t) :

41 ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . Chi ldren [2] . De lete ()

42

43 #Set up f i l e IO f o r t h i s i t e r a t i o n through loop

44 i n f i l e = (r ’C:\ Users \thoma\Documents\ s choo l \grad\m a s t e r s t h e s i s \NSTX\

f l ux impor t \ input data \ t en s o r f l ow \ f l u x p r o f i l e { :0>6} . tx t ’ . format (

f i l e i t e r +1))

45 o u t f i l e = (r ’C:\ Users \thoma\Documents\ s choo l \grad\m a s t e r s t h e s i s \NSTX\

f l ux impor t \ input data \ t en s o r f l ow \T C p r o f i l e { :0>6} . tx t ’ . format (f i l e i t e r

+1))

46 ExtAPI . Log . WriteMessage (” Input F i l e : ”)

47 ExtAPI . Log . WriteMessage (i n f i l e)

48 ExtAPI . Log . WriteMessage (”Output F i l e : ”)

49 ExtAPI . Log . WriteMessage (o u t f i l e)

50

51 #Basic I n i t i a l i z a t i o n S t u f f

52 model = ExtAPI . DataModel . Pro j e c t . Model

53 part1 = model . Geometry . Chi ldren [0]

54 body1 = part1 . Chi ldren [0]

55 f a c e i d = []

56 f a c e a r e a = []

57 f a c e c t r = []

58 f a c e d a t a = []

59 f a c e a r r = []

60 f a c e count e r = 0

61 #==

99

62 # Import Flux Data

63 #==

64

65 # Import Data in to data array . Should be comma de l im i t ed . fh1 opens

CSV

66 fh1 = open (i n f i l e)

67 data = []

68 f o r l i n e in fh1 :

69 l i=l i n e . s t r i p ()

70 i f not l i . s t a r t s w i t h (”#”) :

71 data . append (l i . s p l i t (’ , ’))

72 fh1 . c l o s e

73

74 #Number o f Time Steps

75 l ength = len (data)

76 #Number o f S p a t i a l Steps + 1

77 l ength2 = len (data [0])

78 #Number o f s p a t i a l s t ep s

79 n = length2 − 1

80 # Ti l e Width at narrowest po int [m]

81 width = 0.02242

82 # Length Overa l l [m]

83 l oa = 0.15431

84 # Area [mˆ2]

85 n area = width ∗(l oa /n)

86 ExtAPI . Log . WriteMessage (”Area per S l i c e : %.7 f ” % (n area ,))

87

88 # Sometimes weird garbage f a c e s are c reated when s l i c i n g : i gno r e them .

89 # Also , sometimes i f a f a c e i s too smal l ANSYS complains about

90 # apply ing a load to i t . This throws a comment in to the log f i l e .

91 i f n area < 0 . 000005 :

92 ExtAPI . Log . WriteMessage (”Note ! ! ! Any s l i c e s with area < 5E−6mˆ2 are

ignored ! ”)

93 ExtAPI . Log . WriteMessage (”ANSYS cannot apply loads to a r b i t r a r i l y

smal l s u r f a c e s . ”)

94 ExtAPI . Log . WriteMessage (”Try i n c r e a s i n g the number o f s l i c e s . ”)

100

95 # Build Time Array

96 time mag = ” [”

97 f o r i in range (l ength − 1) :

98 time mag += (” Quantity (\”%s [s]\”) , ” % (data [i] [0] ,))

99 time mag += (” Quantity (\”%s [s]\”)] ” % (data [l ength − 1] [0] ,))

100

101 # Build Flux Magnitude Array

102 f lux mag = [” [” f o r x in range (length2 −1)]

103 i=0

104 col sum = [0] ∗ (length2 −1)

105 f o r i in range (length −1) :

106 j=0

107 f o r j in range (l ength2 − 1) :

108 f lux mag [j] += (” Quantity (\”%s [W/mˆ2]\”) , ” % (data [i] [j +1] ,))

109 col sum [j] = f l o a t (data [i] [j +1]) + col sum [j]

110 j=j+1

111 i=i+1

112 j=0

113

114 f o r j in range (length2 −1) :

115 f lux mag [j] += (” Quantity (\”%s [W/mˆ2]\”)] ” % (data [length −1] [j

+1] ,))

116 j=j+1

117

118 #==

119 # Add Heat Flux

120 #==

121

122 # Get data f o r top s u r f a c e f a c e s

123 f o r index , f a c e in enumerate (body1 . GetGeoBody () . Faces , s t a r t =0) :

124 c en t r o id = f a c e . Centroid

125 i f c en t r o id [1] > 0 . 0 5 3 :

126 f a c e d a t a . append ([f a c e . Id , f a c e . Area , f a c e . Centroid [0] , f a c e .

Centroid [1] , f a c e . Centroid [2]])

127

128 # Sort the f a c e s in the Z d i r e c t i o n (r a d i a l l y)

101

129 f a c e d a t a . s o r t (key=lambda f a c e a r r : f a c e a r r [4])

130

131 #Assign the model we are working on to v a r i a b l e

132 model = ExtAPI . DataModel . Pro j e c t . Model

133

134 i=0

135 s l i c e = 0

136 j=0

137 #Loop through f a c e data and add heat f l u x e s as r equ i r ed

138 f o r index , f a c e a r r in enumerate (f a c e d a t a) :

139 #For t r ou b l e sh oo t i ng . . .

140 #ExtAPI . Log . WriteMessage (”INDEX: %i , SLICE : %i ” % (index , s l i c e))

141

142 # Sometimes weird garbage f a c e s are c reated when s l i c i n g : i gno r e

them .

143 # Also , sometimes i f a f a c e i s too smal l ANSYS complains about

144 # apply ing a load to i t .

145 i f f a c e a r r [1] < 0 or f a c e a r r [1] < 0 .01∗ n area or f a c e a r r [1] <

0 . 000005 :

146 cont inue

147

148 # I f no f l u x i s on s l i c e f o r a l l time , b a i l !

149 e l i f col sum [s l i c e] == 0 :

150 pass

151

152 # Apply heat f l u x per c o n d i t i o n s below

153 e l s e :

154 f l u x = model . Analyses [0] . AddHeatFlux ()

155 # Create Empty S e l e c t i o n

156 s e l e c t i o n = ExtAPI . Se lect ionManager . C r e a t e S e l e c t i o n I n f o (

SelectionTypeEnum . GeometryEntit ies)

157 #Assign Flux Locat ion by Geometric ID

158 s e l e c t i o n . E n t i t i e s = [ExtAPI . DataModel . GeoData . GeoEntityById (

f a c e d a t a [index] [0])]

159 f l u x . Locat ion = s e l e c t i o n

160 #Build Commands from CSV Data

102

161 time command = ” f l u x . Magnitude . Inputs [0] . D i s c r e t eVa lue s = %s ” % (

time mag ,)

162 mag command = ” f l u x . Magnitude . Output . D i s c re t eVa lues = %s ” % (

flux mag [s l i c e] ,)

163 #Execute Commands to Create Fluxes

164 exec (time command)

165 exec (mag command)

166 # ExtAPI . Log . WriteMessage (”INDEX: %i ID : %d ZCoord : %.7 f Area :

%.7 f ” % (index , f a c e a r r [0] , f a c e a r r [4] , f a c e a r r [1]))

167

168 # Check f o r multi−c a s t e l l a t i o n f a c e and act ac co rd ing ly

169 i f j < 1 :

170 s l i c e a r e a = f a c e a r r [1]

171 e l s e :

172 s l i c e a r e a = f a c e a r r [1] + s l i c e a r e a

173 i f s l i c e a r e a < n area ∗ 0 . 9 :

174 j = j+1

175 e l s e :

176 s l i c e = s l i c e + 1

177 j=0

178

179 i f s l i c e > l ength2 − 1 :

180 break

181

182

183 # For r e f e r e n c e , t h i s i s format o f python ACT command to c r e a t e f l u x

t a b l e

184 #f l u x . Magnitude . Inputs [0] . D i s c r e t eVa lues = [Quantity (”0 [s] ”) ,

Quantity (”5 [s] ”) , Quantity (”6 [s] ”)]

185 #f l u x . Magnitude . Output . D i s c r e t eVa lue s = [Quantity (”10000000 [W/mˆ 2] ”) ,

Quantity (”10000000 [W/mˆ 2] ”) , Quantity (”0 [W/mˆ 2] ”)]

186

187 # To pr i n t to a f i l e f o r e r r o r check ing

188 #o u t f i l e = open (r ’C:\ Users \thoma\Desktop\ l o g g e r . txt ’ , ’w ’)

189 #o u t f i l e . wr i t e (command1)

190 #o u t f i l e . c l o s e ()

103

191

192 #Solve The Model

193 ExtAPI . DataModel . Pro j e c t . Model . So lve (1)

194

195 #====This i s f o r c r e a t i n g an array ” t c a r r ” with a l l TC data f o r a l l

time

196 # This method takes f o r eve r , but i t works u n t i l a b e t t e r method i s

found

197 T1 = ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . So lu t i on . Chi ldren [1]

198 T2 = ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . So lu t i on . Chi ldren [2]

199 T3 = ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . So lu t i on . Chi ldren [3]

200 T4 = ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . So lu t i on . Chi ldren [4]

201 T5 = ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . So lu t i on . Chi ldren [5]

202 t c a r r = []

203 # F i l l t c a r r with time evo lv ing TC data

204 f o r i in range (length −1) :

205 di sp = ”%f [s] ” % f l o a t (data [i] [0])

206 T1 . DisplayTime =Quantity (d i sp)

207 #T1 . Eva luateAl lResu l t s ()

208

209 T2 . DisplayTime =Quantity (d i sp)

210 #T2 . Eva luateAl lResu l t s ()

211

212 T3 . DisplayTime =Quantity (d i sp)

213 #T3 . Eva luateAl lResu l t s ()

214

215 T4 . DisplayTime =Quantity (d i sp)

216 #T4 . Eva luateAl lResu l t s ()

217

218 T5 . DisplayTime =Quantity (d i sp)

219 #T5 . Eva luateAl lResu l t s ()

220

221 ExtAPI . DataModel . Pro j e c t . Model . Analyses [0] . So lu t i on .

Eva luateAl lResu l t s ()

222

104

223 t c a r r . append ([T1 . Temperature , T2 . Temperature , T3 . Temperature , T4 .

Temperature , T5 . Temperature])

224

225 #Write Data to output f i l e f o r TensorFlow

226 f h out = open (o u t f i l e , ”w”)

227 f o r item in t c a r r :

228 f h out . wr i t e (”%s \n” % item)

229 f h out . c l o s e ()

230

231 #Write To Log F i l e

232 ExtAPI . Log . WriteMessage (”Output Written ”)

233 t2 = time . time ()

234 ExtAPI . Log . WriteMessage (” I t e r a t i o n Time [s] : { : f }” . format (t2 − t1))

235 ExtAPI . Log . WriteMessage (” ”)

236 ExtAPI . Log . WriteMessage (”

===”)

237 ExtAPI . Log . WriteMessage (” ”)

238 #====

239 ExtAPI . Log . WriteMessage (” Al l Flux P r o f i l e s Crunched . . . ”)

240 ExtAPI . Log . WriteMessage (” Total Time Elapsed [s] : { : f }” . format (t2 − t0))

241 ExtAPI . Log . WriteMessage (” S c r i p t Ex i t ing . . . ”)

242 ExtAPI . Log . WriteMessage (” ”)

243

244

245 de f LogButtonClicked (too lbar Id , buttonId , a n a l y s i s) :

246 now = datet ime . datet ime . now ()

247 ou tF i l e = SetUserOutput (”ExtToolbarSample . l og ” , a n a l y s i s)

248 f = open (outFi l e , ’ a ’)

249 f . wr i t e (” ∗ . ∗ . ∗ . ∗ . ∗ . ∗ . ∗ . ∗ \ n”)

250 f . wr i t e (s t r (now)+”\n”)

251 f . wr i t e (” Toolbar ”+too lba r Id . ToString ()+” − Button ”+buttonId . ToString ()+”

Cl icked . \n”)

252 f . wr i t e (” ∗ . ∗ . ∗ . ∗ . ∗ . ∗ . ∗ . ∗ \ n”)

253 f . c l o s e ()

254 MessageBox . Show(” Toolbar ”+too lba r Id . ToString ()+” − Button ”+buttonId .

ToString ()+” Cl icked . ”)

105

255

256 de f SetUserOutput (f i l ename , a n a l y s i s) :

257 s o l v e r D i r = a n a l y s i s . WorkingDir

258 re turn os . path . j o i n (so lve rDi r , f i l ename)

106

C ANSYS ACT Script - XML

1 <extens i on ve r s i o n=”1” minorvers ion=”0” name=”FluxImport2”>

2 <s c r i p t s r c=”C:\Program F i l e s \ANSYS Student\v182\Addins\ACT\ ex t en s i on s \

FluxImport2\FluxImport2 . py” />

3 < i n t e r f a c e context=” Mechanical ”>

4 <images>C:\Program F i l e s \ANSYS Student\v182\Addins\ACT\ ex t en s i on s \

FluxImport2\ images</ images>

5 <c a l l b a c k s>

6 <o n i n i t> i n i t</ o n i n i t>

7 </ c a l l b a c k s>

8 <t oo lba r name=”Flux P r o f i l e ” capt ion=”NSTX−U Add Heat Flux P r o f i l e ”>

9 <entry name=”Add Flux” icon=” f i r e ”>

10 <c a l l b a c k s>

11 <o n c l i c k>OnClickB1</ o n c l i c k>

12 </ c a l l b a c k s>

13 </ entry>

14 </ too lba r>

15 </ i n t e r f a c e>

16 </ extens i on>

107

D Data Cleaner Script - Perl

1 #! / usr / bin / p e r l

2 # Date : 20180418

3 # Desc r ip t i on : Cleans Data f o r Tensorf low

4 # Engineer : Tom Looby

5

6

7 use s t r i c t ;

8 #se warnings ;

9 use Path : : Tiny qw(path) ;

10

11 #Set t h i s v a r i a b l e f o r number o f f i l e s to be c l eaned

12 my $experN = 99 ;

13 my $ i ;

14 my $f i l ename ;

15 my $ f i l e ;

16 my $data ;

17

18 f o r ($ i =1; $i<=$experN ; $ i++){

19

20 $ f i l ename = s p r i n t f (”/home/ workhorse / s choo l / grad / masters / t en so r f l ow /

d a t a t e s t C s c o n s t 1 / T C p r o f i l e %06 i . txt ” , $ i) ;

21 $ f i l e = path ($ f i l ename) ;

22

23 #Read In Data , remove everyth ing f o r TF, wr i t e new data

24 $data = $ f i l e −>s l u r p u t f 8 ;

25 $data =˜ s / (\ [| \] |C | ’) //g ;

26 $ f i l e −>spew utf8 ($data) ;

27 }

28

29

30 pr in t ”\nCompleted . Data Clean .\n\n”

108

E Tensorflow Training Script - Python

1 # cnn 20180819 . py

2

3 # Date : 20180819

4 # Desc r ip t i on : Tensorf low CNN Trainer (can import and save model) (S and

lambda p r e d i c t i o n s)

5 # Engineer : Tom Looby

6

7 from f u t u r e import abso lute import , d i v i s i o n , p r i n t f u n c t i o n

8 import os

9 import os . path

10 import matp lo t l i b . pyplot as p l t

11 import t en so r f l ow as t f

12 import numpy as np

13 from numpy import array

14 from numpy import genfromtxt

15 from numpy import unrave l index

16 import f u n c t o o l s

17 import time

18 import datet ime as dt

19 #import t e n so r f l ow . con t r i b . eager as t f e

20 #t f . e n a b l e e a g e r e x e c u t i o n ()

21 import csv

22

23

24 s t a r t t i m e = time . time ()

25 pr in t (”\nTensorFlow v e r s i o n : {}\n” . format (t f .VERSION))

26

27 #===

28 # Constants , User Inputs

29 #===

30 # Number o f thermocouples

31 tcN = 5 .0

32 #Number o f Machine Specs

33 machN = 4

109

34 # Number o f t imes teps

35 timeN = 48.0

36 # Number o f e lements in TC X TIME matrix

37 N = tcN ∗ timeN

38 # Number o f b ins (c l a s s e s) f o r answer

39 outN = 2

40 # Number o f t r a i n i n g da ta s e t s − goes from (e x p e r f i r s t , experN)

41 experN = 7200

42 # Number to begin t r a i n i n g on

43 e x p e r f i r s t = 1

44 # Number o f t e s t da ta s e t s − goes from (experN , experN + testN)

45 testN = 844

46 # Number o f Epochs

47 num epochs = 500000

48 # Batch S i z e

49 b a t c h s i z e = 20

50 # Learning Rate (1 e−3 i s good)

51 l r = 1e−4

52 # Feature Map Number

53 fmapN = 16

54 # Number o f Neurons per f u l l y connected l a y e r

55 neuronN = 32

56 # How o f t en to record f o r p l o t t i n g

57 sample len = 5000

58 # How o f t en to p r in t to s c r e en

59 p r i n t l e n = 5000

60

61 # Acceptable Error th r e sho ld f o r S [mm]

62 e r r o r t h r e s h S = 0.000075/2 .0 # (0.5% of range)

63 #e r r o r t h r e s h S = 0.000075 # (1% of range)

64 #e r r o r t h r e s h S = 0.000225 # (3% of range)

65 # e r r o r t h r e s h S = 0.000377 # (5% of range)

66

67 # Acceptable Error th r e sho ld f o r Lambda [mm]

68 e r r o r t h r e s h l a m = 0.000244/2 .0 # (0.5% of range)

69 #e r r o r t h r e s h l a m = 0.000244 # (1% of range)

110

70 #e r r o r t h r e s h l a m = 0.000732 # (3% of range)

71 # e r r o r t h r e s h l a m = 0.00122 # (5% of range)

72

73 # Acceptable Accuracy th re sho ld

74 ac c th r e sh = 99 .0

75 # Moving Average Boxcar Window Length

76 box window size = 100 .0

77

78

79 #Counter

80 counter = 0

81 #Root d i r e c t o r y where we are working

82 #r o o t d i r = ’/home/ workhorse / s choo l / grad / masters / t e n so r f l ow /

data 20s nosweep a l l random / ’

83 r o o t d i r = ’ /home/ workhorse / s choo l / grad / masters / t e n so r f l ow / data nosweep a l l / ’

84

85 #Path f o r sav ing p l o t s

86 f i g u r e d i r = ’ /home/ workhorse / s choo l / grad / masters / t en so r f l ow / f i g u r e s /20

s nosweep al l random ’

87 #f i g u r e d i r = ’/home/ workhorse / s choo l / grad / masters / t en so r f l ow / f i g u r e s /20

s Cs cons t ’

88

89 #Path f o r sav ing weights

90 w e i g h t s d i r = ’ /home/ workhorse / s choo l / grad / masters / t en s o r f l ow / weights / ’

91

92

93 #===Importing Models and Weights===

94 #Set t h i s f l a g to 1 f o r import ing model , 0 to s t a r t from sc ra t ch

95 i m p o r t f l a g = 1

96

97 #Or ig ina l Test Model

98 #import model = ’20180625−−21 10 24 ’

99 import model = ’ 20180824−−01 54 53 ’

100 weight path = ’ /home/ workhorse / s choo l / grad / masters / t en so r f l o w / weights / ’ +

import model + ’ / weights ’

101

111

102 #Path f o r Graph Meta Data (only sometimes used here)

103 meta path = ’ /home/ workhorse / s choo l / grad / masters / t en so r f l o w / weights / ’ +

import model + ’ / weights . meta ’

104

105

106

107 t ruth = []

108 pred i c t ed = []

109 t r a i n l o s s e p o c h = []

110 t r a i n l o s s r e s u l t s = []

111 t r a i n e r r o r = np . z e ro s ((num epochs // samplelen , outN))

112 t e s t e r r o r = np . z e r o s ((num epochs // samplelen , outN))

113 t r a i n e r r o r c 1 = []

114 t r a i n e r r o r c 2 = []

115 t r a i n e r r o r c 3 = []

116 t r a i n e r r o r c 4 = []

117 t e s t l o s s r e s u l t s = []

118 t r a i n a c c = []

119 t e s t a c c = []

120

121

122

123 Bp = []

124 P = []

125 f r e q = []

126 fx = []

127

128 C range = np . z e ro s ((4 , 4) , dtype=np . f l o a t 3 2)

129 C range [0] [0] = 1 . 0 / 0 . 2

130 C range [1] [1] = 1 . 0 / 1 . 5

131 C range [2] [2] = 1 . 0/0 . 35

132 C range [3] [3] = 1 . 0 / 0 . 7

133

134 #Lambda Range (t e c h n i c a l l y in mm but whatever)

135 s lam range = np . z e ro s ((2 , 2) , dtype=np . f l o a t 3 2)

136 s lam range [0] [0] = 1 .0/7 .53954

112

137 s lam range [1] [1] = 1 . 0/2 4 . 4

138

139 #e r r i d x = []

140 #===

141 # Import Dataset

142 #===

143 de f import data (s t a r t i n d , s t op ind) :

144 ”””

145 This func t i on reads CSV f i l e s with in the input parameter bounds and

146 r e tu rn s a TF datase t ob j e c t that i n c l u d e s TC data and machine spec s .

147 ”””

148 TC parms = np . z e ro s ((i n t (timeN) , 5))

149 TC data = np . z e r o s (((s t op ind − s t a r t i n d) , i n t (timeN) , i n t (tcN) , 1))

150 mach data = np . z e ro s (((s t op ind − s t a r t i n d) , machN))

151 e i ch da ta = np . z e r o s (((s t op ind − s t a r t i n d) , outN))

152

153 #Read data in to numpy array

154 f o r i in range (s t a r t i n d , s t op ind) :

155 TCf i l e = r o o t d i r + ’ T C p r o f i l e { :0>6} . tx t ’ . format (i)

156

157 #===Data Test ing : Ensure we have no crap data

158 #Test F i l epath f i r s t , i f f i l e doesnt e x i s t sk ip i t

159 i f os . path . i s f i l e (TCf i l e) :

160 pass

161 e l s e :

162 pr in t (” Miss ing TC F i l e : { : 6 d } . . . sk ipp ing . . . ” . format (i))

163 cont inue

164

165 #Read TC data from ANSYS (has to be c leaned with c l e a n e r . p l)

166 #Note : we sk ip f i r s t l i n e because ANSYS makes funky f i r s t l i n e s

167 TC parms = (genfromtxt (TCfi le , d e l i m i t e r=’ , ’ , s k ip heade r =1))

168

169 #===Data Test ing : Ensure we have no crap data

170 #Check to make sure the re i s temp data

171 i f np . sum(TC parms) == 0 . 0 :

172 pr in t (”WARNING: TC DATA = 0 . 0 , No . {:0>6}” . format (i))

113

173 cont inue

174 #Check to make sure we c leaned data and dont have any NaNs

175 e l i f np . i snan (np . amax(TC data)) :

176 pr in t (”WARNING: NAN e r r o r : TC DATA, No . {:0>6}” . format (i))

177 pr in t (”Did you c l ean t h i s data with c l e a n e r . p l . . . ? ”)

178 cont inue

179

180 # Data in f l u x array i s as f o l l o w s :

181 # [c1 , c2 , c3 , c4]

182 #temp1 = [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

183 # [S , lambda]

184 temp1 = [0 . 0 , 0 . 0]

185

186 # Data in machine spec s array :

187 # [Bp, P, f req , fx]

188 temp2 = [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

189

190 f i l e 2 = r o o t d i r + ’ f l u x p r o f i l e { :0>6} . tx t ’ . format (i)

191 f l u x f i l e = open (f i l e 2 , ’ r ’)

192 f o r l i n e in f l u x f i l e :

193 #Skip header l i n e

194 i f ’ Parameters ’ in l i n e :

195 pass

196 #Write data in to ar rays

197 # e l i f ’ c1 ’ in l i n e :

198 # temp1 [0]= f l o a t (l i n e . r e p l a c e (”# c1 = ” , ” ”))

199 # e l i f ’ c2 ’ in l i n e :

200 # temp1 [1]= f l o a t (l i n e . r e p l a c e (”# c2 = ” , ” ”))

201 # e l i f ’ c3 ’ in l i n e :

202 # temp1 [2]= f l o a t (l i n e . r e p l a c e (”# c3 = ” , ” ”))

203 # e l i f ’ c4 ’ in l i n e :

204 # temp1 [3]= f l o a t (l i n e . r e p l a c e (”# c4 = ” , ” ”))

205 e l i f ’ S : ’ in l i n e :

206 temp1 [0]= f l o a t (l i n e . r e p l a c e (”# S : ” , ” ”))

207 e l i f ’Lambda ’ in l i n e :

208 temp1 [1]= f l o a t (l i n e . r e p l a c e (”# Lambda [m] : ” , ” ”))

114

209 e l i f ’B ’ in l i n e :

210 temp2 [0] = f l o a t (l i n e . r e p l a c e (”# Bp = ” , ” ”))

211 e l i f ’P ’ in l i n e :

212 temp2 [1] = f l o a t (l i n e . r e p l a c e (”# P = ” , ” ”))

213 e l i f ’R0 ’ in l i n e :

214 #Comment the next l i n e f o r constant f r e q

215 #temp2 [2] = − f l o a t (l i n e . r e p l a c e (”# R0 time varying , Freq = ” , ” ”)

)

216 temp2 [2] = 0

217 e l i f ’ fx ’ in l i n e :

218 temp2 [3] = f l o a t (l i n e . r e p l a c e (”# fx = ” , ” ”))

219

220 i f temp1 [0] == 0 .0 or temp1 [1] == 0 . 0 : # or temp1 [2] == 0 .0 or temp1 [3]

== 0 . 0 :

221 pr in t (”WARNING: EICH PARAMETER = 0 : No . {:0>6}” . format (i))

222

223 #Build Eich Data numpy array

224 f o r j in range (outN) :

225 e i ch da ta [i−s t a r t i n d] [j] = temp1 [j]

226

227 #Build Machine Specs array

228 f o r j in range (machN) :

229 # f o r k in range (3) :

230 # i f j == k :

231 mach data [i−s t a r t i n d] [j] = temp2 [j]

232 #mach data = t f . tanh (mach data)

233 f o r j in range (i n t (timeN)) :

234 TC data [i−s t a r t i n d] [j] [0] = TC parms [j] [0]

235 TC data [i−s t a r t i n d] [j] [1] = TC parms [j] [1]

236 TC data [i−s t a r t i n d] [j] [2] = TC parms [j] [2]

237 TC data [i−s t a r t i n d] [j] [3] = TC parms [j] [3]

238 TC data [i−s t a r t i n d] [j] [4] = TC parms [j] [4]

239

240

241 #===Normalize TC Data

242 maxtemp = np . amax(TC data)

115

243 mintemp = np . amin (TC data)

244 pr in t (”\nMaximum Temperature in Dataset : { : f }” . format (maxtemp))

245 pr in t (”Minimum Temperature in Dataset : { : f }” . format (mintemp))

246 f o r i in range (0 , (s t op ind − s t a r t i n d)) :

247 f o r j in range (i n t (timeN)) :

248 f o r k in range (i n t (tcN)) :

249 va l = TC data [i] [j] [k]

250 TC data [i] [j] [k]= 2 . 0/ (maxtemp − mintemp) ∗ (va l − mintemp) − 1 .0

251

252 #===Normalize Machine Spec Data

253 f o r shot in range (0 , (s t op ind − s t a r t i n d)) :

254 Bp . append (mach data [shot] [0])

255 P. append (mach data [shot] [1])

256 f r e q . append (mach data [shot] [2])

257 fx . append (mach data [shot] [3])

258 maxBp = np . max(Bp)

259 maxP = np . max(P)

260 maxfreq = np . max(f r e q)

261 maxfx = np . max(fx)

262 minBp = np . min (Bp)

263 minP = np . min (P)

264 minfreq = np . min (f r e q)

265 minfx = np . min (fx)

266

267 pr in t (”Maximum Bp in Dataset : { : f }” . format (maxBp))

268 pr in t (”Minimum Bp in Dataset : { : f }” . format (minBp))

269 pr in t (”Maximum P in Dataset : { : f }” . format (maxP))

270 pr in t (”Minimum P in Dataset : { : f }” . format (minP))

271 pr in t (”Maximum Freq in Dataset : { : f }” . format (maxfreq))

272 pr in t (”Minimum Freq in Dataset : { : f }” . format (minfreq))

273 pr in t (”Maximum fx in Dataset : { : f }” . format (maxfx))

274 pr in t (”Minimum fx in Dataset : { : f }\n” . format (minfx))

275

276 #Take Normalized data from range (0 , 1) to (−1 ,1)

277 f o r i in range (0 , (s t op ind − s t a r t i n d)) :

278 va l = mach data [i] [0]

116

279 mach data [i] [0] = 2 . 0 / (maxBp − minBp) ∗ (va l − minBp) − 1 .0

280 va l = mach data [i] [1]

281 mach data [i] [1] = 2 . 0 / (maxP − minP) ∗ (va l − minP) − 1 .0

282 va l = mach data [i] [2]

283 #mach data [i] [2] = 2 . 0 / (maxfreq − minfreq) ∗ (va l − minfreq) − 1 .0

284 mach data [i] [2] = 0 .0

285 va l = mach data [i] [3]

286 mach data [i] [3] = 2 . 0 / (maxfx − minfx) ∗ (va l − minfx) − 1 .0

287

288 pr in t (”Read Data From F i l e s . . . \ n\n”)

289

290 re turn TC data , e i ch data , mach data # datase t

291

292

293

294 #===

295 # Functions , Classes , P r o p e r t i e s

296 #===

297

298 de f l a z y p rop e r ty (func t i on) :

299 a t t r i b u t e = ’ ’ + func t i on . name

300

301 @property

302 @functoo l s . wraps (func t i on)

303 de f wrapper (s e l f) :

304 i f not ha sa t t r (s e l f , a t t r i b u t e) :

305 s e t a t t r (s e l f , a t t r i bu t e , f unc t i on (s e l f))

306 re turn g e t a t t r (s e l f , a t t r i b u t e)

307 re turn wrapper

308

309 c l a s s CNNclass :

310 de f i n i t (s e l f , TCdata , machdata , t a r g e t) :

311 s e l f . TCdata = TCdata

312 s e l f . machdata = machdata

313 s e l f . t a r g e t = t a r g e t

314

117

315 s e l f . p r e d i c t i o n

316 s e l f . e r r o r

317 s e l f . opt imize

318

319

320

321 @lazy property

322 de f p r e d i c t i o n (s e l f) :

323

324 # Convolution 1 − 2X2 f i l t e r => fmapN f e a t u r e maps

325 with t f . name scope (’ conv1 ’) :

326 W conv1 = s e l f . w e i g h t v a r i a b l e ([5 , 5 , 1 , fmapN])

327 b conv1 = s e l f . b i a s v a r i a b l e ([fmapN])

328 h conv1 = t f . nn . r e l u (s e l f . conv2d (s e l f . TCdata , W conv1) + b conv1)

329

330 # Pool ing Layer 1 − Downsample X2

331 #with t f . name scope (’ pool1 ’) :

332 # h pool1 = max pool 2x2 (h conv1)

333

334 #Convolution 2 − 2X2 f i l t e r => 64 f e a t u r e maps

335 with t f . name scope (’ conv2 ’) :

336 W conv2 = s e l f . w e i g h t v a r i a b l e ([5 , 5 , fmapN , 2∗fmapN])

337 b conv2 = s e l f . b i a s v a r i a b l e ([2∗ fmapN])

338 # h conv2 = t f . nn . r e l u (conv2d (h pool1 , W conv2) + b conv2)

339 h conv2 = t f . nn . r e l u (s e l f . conv2d (h conv1 , W conv2) + b conv2)

340

341 # Pool ing Layer 2 − Downsample X2

342 with t f . name scope (’ pool2 ’) :

343 h poo l2 = s e l f . max pool 2x2 (h conv2)

344

345 # Ful ly connected l a y e r 0 .5

346 with t f . name scope (’ f c h a l f ’) :

347 W fc1 = s e l f . w e i g h t v a r i a b l e ([(i n t (tcN)+1)//2 ∗ i n t (timeN) //2 ∗2∗

fmapN , neuronN])

348 b f c 1 = s e l f . b i a s v a r i a b l e ([neuronN])

349

118

350 h p o o l 2 f l a t = t f . reshape (h pool2 , [−1 , (i n t (tcN) +1)//2 ∗ i n t (timeN)

//2 ∗2∗ fmapN])

351 #h p o o l 2 f l a t = t f . reshape (h conv2 , [−1 , 3 ∗ 25 ∗ 6 4])

352 h f c 1 = t f . nn . r e l u (t f . matmul (h p o o l 2 f l a t , W fc1) + b f c 1)

353

354

355 # # ALTERNATE 1 : Ful ly connected l a y e r 1 : f o r use with no CNN

356 # with t f . name scope (’ f c 1 ’) :

357 # W fc1 = s e l f . w e i g h t v a r i a b l e ([i n t (N) , machN])

358 # b f c 1 = s e l f . b i a s v a r i a b l e ([machN])

359

360 # h p o o l 2 f l a t = t f . reshape (s e l f . TCdata , [−1 , i n t (N)])

361 # #h p o o l 2 f l a t = t f . reshape (h conv2 , [−1 , 3 ∗ 25 ∗ 6 4])

362 # h f c 1 = t f . nn . r e l u (t f . matmul (h p o o l 2 f l a t , W fc1) + b f c 1)

363

364 # # OPTIONAL Ful ly connected l a y e r 2

365 # with t f . name scope (’ f c 2 ’) :

366 # W fc2 = s e l f . w e i g h t v a r i a b l e ([neuronN , machN])

367 # b f c 2 = s e l f . b i a s v a r i a b l e ([machN])

368 # h f c 2 = t f . nn . r e l u (t f . matmul (h fc1 , W fc2) + b f c 2)

369

370 # # ALTERNATE 2 : Mult ip ly machine spec s with TC conv data

371 # # Ful ly connected l a y e r 3 (MACHINE SPECS ADDED HERE)

372 # with t f . name scope (’ f c 3 ’) :

373 # W fc3 = s e l f . w e i g h t v a r i a b l e ([machN, neuronN])

374 # b f c 3 = s e l f . b i a s v a r i a b l e ([neuronN])

375 # # Machine spec s go are m u l t i p l i e d with h f c 2

376 # mach h = t f . mult ip ly (h fc1 , s e l f . machdata)

377 # #mach h = t f . add (h fc2 , s e l f . machdata)

378 # h f c 3 = t f . nn . r e l u (t f . matmul (mach h , W fc3) + b f c 3)

379 # #h f c 3 = t f . nn . r e l u (t f . matmul (h fc2 , W fc3) + b f c 3)

380 # #y = t f . matmul (mach h , W fc3) + b f c 3

381

382 # ALTERNATE 3 : Treat machine spec s as s epara t e inputs

383 # Ful ly connected l a y e r 1

384 with t f . name scope (’ f c 4 ’) :

119

385 mach h = t f . concat ([h fc1 , s e l f . machdata] , 1)

386

387 W fc4 = s e l f . w e i g h t v a r i a b l e ([neuronN+machN, neuronN])

388 b f c 4 = s e l f . b i a s v a r i a b l e ([neuronN])

389 h f c 4 = t f . nn . r e l u (t f . matmul (mach h , W fc4) + b f c 4)

390

391 # OPTIONAL Ful ly connected l a y e r s 3−8

392 with t f . name scope (’ f c 5 ’) :

393 W fc5 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

394 b f c 5 = s e l f . b i a s v a r i a b l e ([neuronN])

395 h f c 5 = t f . nn . r e l u (t f . matmul (h fc4 , W fc5) + b f c 5)

396 with t f . name scope (’ f c 6 ’) :

397 W fc6 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

398 b f c 6 = s e l f . b i a s v a r i a b l e ([neuronN])

399 h f c 6 = t f . nn . r e l u (t f . matmul (h fc5 , W fc6) + b f c 6)

400 with t f . name scope (’ f c 7 ’) :

401 W fc7 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

402 b f c 7 = s e l f . b i a s v a r i a b l e ([neuronN])

403 h f c 7 = t f . nn . r e l u (t f . matmul (h fc6 , W fc7) + b f c 7)

404 with t f . name scope (’ f c 8 ’) :

405 W fc8 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

406 b f c 8 = s e l f . b i a s v a r i a b l e ([neuronN])

407 h f c 8 = t f . nn . r e l u (t f . matmul (h fc7 , W fc8) + b f c 8)

408 # with t f . name scope (’ f c 9 ’) :

409 # W fc9 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

410 # b f c 9 = s e l f . b i a s v a r i a b l e ([neuronN])

411 # h f c 9 = t f . nn . r e l u (t f . matmul (h fc8 , W fc9) + b f c 9)

412 # with t f . name scope (’ f c10 ’) :

413 # W fc10 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

414 # b fc10 = s e l f . b i a s v a r i a b l e ([neuronN])

415 # h fc10 = t f . nn . r e l u (t f . matmul (h fc9 , W fc10) + b fc10)

416 # with t f . name scope (’ f c 6 ’) :

417 # W fc11 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

418 # b fc11 = s e l f . b i a s v a r i a b l e ([neuronN])

419 # h fc11 = t f . nn . r e l u (t f . matmul (h fc10 , W fc11) + b fc11)

420 # with t f . name scope (’ f c 7 ’) :

120

421 # W fc12 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

422 # b fc12 = s e l f . b i a s v a r i a b l e ([neuronN])

423 # h fc12 = t f . nn . r e l u (t f . matmul (h fc11 , W fc12) + b fc12)

424 # with t f . name scope (’ f c 8 ’) :

425 # W fc13 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

426 # b fc13 = s e l f . b i a s v a r i a b l e ([neuronN])

427 # h fc13 = t f . nn . r e l u (t f . matmul (h fc12 , W fc13) + b fc13)

428 # with t f . name scope (’ f c 9 ’) :

429 # W fc14 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

430 # b fc14 = s e l f . b i a s v a r i a b l e ([neuronN])

431 # h fc14 = t f . nn . r e l u (t f . matmul (h fc13 , W fc14) + b fc14)

432 # with t f . name scope (’ f c10 ’) :

433 # W fc15 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

434 # b fc15 = s e l f . b i a s v a r i a b l e ([neuronN])

435 # h fc15 = t f . nn . r e l u (t f . matmul (h fc14 , W fc15) + b fc15)

436

437

438 # Ful ly connected l a y e r 5 − Output Layer

439 with t f . name scope (’ fc OUT ’) :

440 W fc out = s e l f . w e i g h t v a r i a b l e ([neuronN , i n t (outN)])

441 b f c o u t = s e l f . b i a s v a r i a b l e ([i n t (outN)])

442 y = t f . matmul (h fc8 , W fc out) + b f c o u t

443

444 re turn y

445

446

447

448 @lazy property

449 de f l o s s (s e l f) :

450 #l o s s = t f . l o s s e s . mean squared error (s e l f . p r ed i c t i on , s e l f . t a r g e t)

451

452 # l o s s = t f . reduce mean (t f . matmul (t f . abs (s e l f . p r e d i c t i o n − s e l f . t a r g e t) ,

s lam range))

453 l o s s = 1000∗ t f . reduce mean (t f . abs (s e l f . p r e d i c t i o n − s e l f . t a r g e t))

454

455 re turn l o s s

121

456 @lazy property

457 de f opt imize (s e l f) :

458 opt imize r = t f . t r a i n . AdamOptimizer (l r)

459 # op1 = opt imize . minimize (s e l f . l o s s 1)

460 # op2 = opt imize . minimize (s e l f . l o s s 2)

461 # op3 = opt imize . minimize (s e l f . l o s s 3)

462 # op4 = opt imize . minimize (s e l f . l o s s 4)

463 #opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

464 re turn opt imize r . minimize (s e l f . l o s s)

465

466 # @lazy property

467 # def opt imize (s e l f) :

468 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

469 # # op1 = opt imize . minimize (s e l f . l o s s 1)

470 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

471 # return opt imize r . minimize (s e l f . l o s s)

472 # @lazy property

473 # def opt imize (s e l f) :

474 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

475 # # op2 = opt imize . minimize (s e l f . l o s s 2)

476 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

477 # return opt imize r . minimize (s e l f . l o s s)

478 # @lazy property

479 # def opt imize (s e l f) :

480 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

481 # # op3 = opt imize . minimize (s e l f . l o s s 3)

482 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

483 # return opt imize r . minimize (s e l f . l o s s)

484 # @lazy property

485 # def opt imize (s e l f) :

486 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

487 # # op4 = opt imize . minimize (s e l f . l o s s 4)

488 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

489 # return opt imize r . minimize (s e l f . l o s s)

490 # @lazy property

491 # def opt imize (s e l f) :

122

492 # opt imize r = t f . t r a i n . AdamOptimizer (l r)

493 # #opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

494 # return opt imize r . minimize (s e l f . l o s s)

495

496 @lazy property

497 de f e r r o r (s e l f) :

498 e r r o r = t f . subt rac t (s e l f . ta rget , s e l f . p r e d i c t i o n)

499 # e r r o r = t f . matmul ((s e l f . p r e d i c t i o n − s e l f . t a r g e t) , C range)

500 re turn e r r o r

501

502 @staticmethod

503 # conv2d re tu rn s a 2d convo lut ion l a y e r with f u l l s t r i d e

504 de f conv2d (x , W) :

505 re turn t f . nn . conv2d (x , W, s t r i d e s =[1 , 1 , 1 , 1] , padding=’SAME’)

506

507 @staticmethod

508 # max pool 2x2 downsamples a f e a t u r e map by 2X

509 de f max pool 2x2 (x) :

510 re turn t f . nn . max pool (x , k s i z e =[1 , 2 , 2 , 1] , s t r i d e s =[1 , 2 , 2 , 1] ,

padding=’SAME’)

511

512 @staticmethod

513 # Generates a weight v a r i a b l e o f a g iven shape

514 de f w e i g h t v a r i a b l e (shape) :

515 i n i t i a l = t f . t runcated normal (shape , stddev =0.01)

516 re turn t f . Var iab le (i n i t i a l)

517 @staticmethod

518 # Generates a b i a s v a r i a b l e o f a g iven shape

519 de f b i a s v a r i a b l e (shape) :

520 i n i t i a l = t f . constant (0 . 0 , shape=shape)

521 re turn t f . Var iab le (i n i t i a l)

522

523 #===

524 # Main Program

525 #===

526

123

527

528 de f main () :

529 t r a i n s t a t c o u n t e r = 0 .0

530 t r a i n h i t s = 0 .0

531 t ra in acc window = np . z e r o s ((i n t (box window size)))

532 t e s t s t a t c o u n t e r = 0 .0

533 t e s t h i t s = 0 .0

534 te s t acc window = np . z e ro s ((i n t (box window size)))

535

536

537

538 #=== Fir s t , c r e a t e t r a i n i n g Dataset

539 TC data , e i ch data , mach data = import data (e x p e r f i r s t , experN + e x p e r f i r s t

)

540 # Organize Data in to datase t ob j e c t f o r t en so r f l ow

541 datase t = t f . data . Dataset . f r o m t e n s o r s l i c e s ((TC data , mach data , e i ch da ta

))

542 # Commented f o r t r i p l e t . A l l other ca s e s uncomment

543 datase t = datase t . s h u f f l e (b u f f e r s i z e =10000)

544 datase t = datase t . batch (b a t c h s i z e)

545 datase t = datase t . r epeat (num epochs)

546 # Create i t e r a t o r f o r datase t

547 i t e r a t o r = datase t . m a k e o n e s h o t i t e r a t o r ()

548 next e lement = i t e r a t o r . g e t nex t ()

549

550 #=== Create Test Dataset

551 TC data test , e i c h d a t a t e s t , mach data test = import data (experN +

e x p e r f i r s t , experN + e x p e r f i r s t + testN)

552 # Organize Data in to datase t ob j e c t f o r t en so r f l ow

553 d a t a s e t t e s t = t f . data . Dataset . f r o m t e n s o r s l i c e s ((TC data test ,

mach data test , e i c h d a t a t e s t))

554 d a t a s e t t e s t = d a t a s e t t e s t . s h u f f l e (b u f f e r s i z e =10000)

555 d a t a s e t t e s t = d a t a s e t t e s t . batch (1)

556 d a t a s e t t e s t = d a t a s e t t e s t . r epeat (num epochs)

557 # Create i t e r a t o r f o r datase t

558 i t e r a t o r t e s t = datase t . m a ke o n e s h o t i t e r a t o r ()

124

559 n e x t e l e m e n t t e s t = i t e r a t o r . g e t nex t ()

560

561 # Input Data

562 with t f . name scope (’ TC input data ’) :

563 data TC = t f . p l a c eho ld e r (t f . f l o a t32 , [None , i n t (timeN) , i n t (tcN) , 1])

564

565 with t f . name scope (’ mach input data ’) :

566 data mach = t f . p l a c eho ld e r (t f . f l o a t32 , [None , machN])

567

568 # Expected Result (y i s expected)

569 with t f . name scope (’ Expected Result ’) :

570 t a r g e t = t f . p l a c eho ld e r (t f . f l o a t32 , [None , outN])

571

572 # Build the model

573 model = CNNclass (data TC , data mach , t a r g e t)

574

575 s e s s = t f . I n t e r a c t i v e S e s s i o n ()

576

577 # Add ops to save and r e s t o r e a l l the v a r i a b l e s .

578 saver = t f . t r a i n . Saver ()

579

580 # I f weight importer f l a g i s s e t then we import weights and dont

581 # i n i t i a l i z e v a r i a b l e s

582 i f i m p o r t f l a g ==1:

583 g l o b a l weight path

584 saver = t f . t r a i n . import meta graph (meta path)

585 saver . r e s t o r e (s e s s , weight path)

586 pr in t (”Read model from f i l e . Model Restored \n”)

587 e l s e :

588 t f . g l o b a l v a r i a b l e s i n i t i a l i z e r () . run ()

589

590 # Create F i l e w r i t e r f o r Tensorboard V i s u a l i z a t i o n

591 # w r i t e r = t f . summary . F i l eWr i t e r (”/tmp/ t f t e s t ”)

592 # w r i t e r . add graph (s e s s . graph)

593

594 #Debugging s t u f f

125

595 #var = [v f o r v in t f . t r a i n a b l e v a r i a b l e s () i f v . name == ” f c1 / Var iab l e 1

: 0 ”] [0]

596

597 #==

598 # Training

599 #==

600 # Train

601 f o r epoch in range (num epochs) :

602 #Training Data

603 x TC , x mach , y e i c h = s e s s . run (next e lement)

604 s e s s . run (model . opt imize , {data TC : x TC , data mach : x mach , t a r g e t :

y e i c h })

605 e r r o r = s e s s . run (model . e r ro r , {data TC : x TC , data mach : x mach , t a r g e t :

y e i c h })

606

607 #Test Data

608 x TC test , x mach test , y e i c h t e s t = s e s s . run (n e x t e l e m e n t t e s t)

609 t e s t e r r o r = s e s s . run (model . e r ro r , {data TC : x TC test , data mach :

x mach test , t a r g e t : y e i c h t e s t })

610

611 #===== Accuracy Windows =====

612 # Training Batch S t a t i s t i c s

613 f o r idx in range (l en (e r r o r)) :

614 t r a i n s t a t c o u n t e r += 0.02

615 f o r e r r i d x in range (outN) :

616 # Check i f p r e d i c t i o n was with in a l l o w e r a b l e t o l e r a n c e

617 i f e r r i d x == 0 :

618 i f abs (e r r o r [idx] [e r r i d x]) < e r r o r t h r e s h S :

619 t r a i n h i t s += 1 .0

620 e l i f e r r i d x == 1 :

621 i f abs (e r r o r [idx] [e r r i d x]) < e r r o r t h r e s h l a m :

622 t r a i n h i t s += 1 .0

623 # Calcu la te Accuracy

624 # S h i f t boxcar window then wr i t e new value in : moving window

625 t ra in acc window = np . r o l l (tra in acc window , 1)

626 t ra in acc window [0] = t r a i n h i t s / t r a i n s t a t c o u n t e r

126

627 # Reset accuracy counter s

628 t r a i n h i t s = 0 .0

629 t r a i n s t a t c o u n t e r = 0 .0

630

631 # Test Batch S t a t i s t i c s

632 f o r idx in range (l en (t e s t e r r o r)) :

633 t e s t s t a t c o u n t e r += 0.02

634 f o r e r r i d x in range (outN) :

635 # Check i f p r e d i c t i o n was with in a l l o w e r a b l e t o l e r a n c e

636 # pr in t (” t e s t e r r o r======={:f }” . format (t e s t e r r o r [0] [0]))

637 i f e r r i d x == 0 :

638 i f abs (t e s t e r r o r [idx] [e r r i d x]) < e r r o r t h r e s h S :

639 t e s t h i t s += 1.0

640 e l i f e r r i d x == 1 :

641 i f abs (t e s t e r r o r [idx] [e r r i d x]) < e r r o r t h r e s h l a m :

642 t e s t h i t s += 1.0

643

644 # Calcu la te Accuracy

645 # S h i f t boxcar window then wr i t e new value in : moving window

646 te s t acc window = np . r o l l (test acc window , 1)

647 te s t acc window [0] = t e s t h i t s / t e s t s t a t c o u n t e r

648 # Reset accuracy counter s

649 t e s t h i t s = 0 .0

650 t e s t s t a t c o u n t e r = 0 .0

651

652 i f epoch % sample len == 0 :

653 l o s s v a l u e = s e s s . run (model . l o s s , {data TC : x TC , data mach : x mach ,

t a r g e t : y e i c h })

654

655 #Append f o r p l o t

656 t r a i n l o s s r e s u l t s . append (l o s s v a l u e)

657 t r a i n l o s s e p o c h . append (epoch)

658

659 error sum = np . z e r o s ((2))

660 # Batch S t a t i s t i c s

661 f o r batch idx in range (b a t c h s i z e) :

127

662 f o r e r r i d x in range (2) :

663 # Regular Sum

664 error sum [e r r i d x] += abs (e r r o r [batch idx] [e r r i d x])

665

666 #Append f o r p l o t

667 f o r e r r i d x in range (2) :

668 t r a i n e r r o r [epoch // sample len] [e r r i d x] = error sum [e r r i d x] /

b a t c h s i z e

669

670 #Accuracy Stat s

671 t r a i n a c c u r a c y = sum(tra in acc window) / box window size

672 t r a i n a c c . append (t r a i n a c c u r a c y)

673

674 t e s t a c c u r a c y = sum(test acc window) / box window size

675 t e s t a c c . append (t e s t a c c u r a c y)

676

677

678 #=== Test Dataset

679 # l o s s t e s t = s e s s . run (model . l o s s , {data TC : x TC test , data mach :

x mach test , t a r g e t : y e i c h t e s t })

680 # t e s t l o s s r e s u l t s . append (l o s s t e s t)

681 # f o r e r r i d x in range (4) :

682 # t e s t e r r o r [epoch // sample len] [e r r i d x] = e r r o r t e s t [0] [e r r i d x]

683

684

685 i f epoch % p r i n t l e n == 0 :

686 t e s t r e s u l t y = s e s s . run (model . target , {data TC : x TC test , data mach

: x mach test , t a r g e t : y e i c h t e s t })

687 t e s t r e s u l t y = s e s s . run (model . p r ed i c t i on , {data TC : x TC test ,

data mach : x mach test , t a r g e t : y e i c h t e s t })

688 # r e s u l t y = s e s s . run (model . target , {data TC : x TC , data mach : x mach

, t a r g e t : y e i c h })

689 # r e s u l t y = s e s s . run (model . p r ed i c t i on , {data TC : x TC , data mach :

x mach , t a r g e t : y e i c h })

690

691 # Debugging S t u f f

128

692 #pr in t (t f . t r a i n a b l e v a r i a b l e s ())

693 #t e s t = s e s s . run (var)

694 #pr in t (t e s t)

695

696

697 pr in t (”==========================Epoch { : 06 d

}:=========================” . format (epoch ,))

698 pr in t (”Time Elapsed ˜ { : d} seconds \n” . format (i n t (time . time () −

s t a r t t i m e)) ,)

699 pr in t (”Batch Averaged Train ing Data Error : ”)

700 pr in t (t r a i n e r r o r [epoch // sample len])

701 pr in t (” Train ing Data Loss : ”)

702 pr in t (l o s s v a l u e)

703 pr in t (” Train ing Accuracy : ”)

704 pr in t (t r a i n a c c u r a c y)

705 #pr in t (”\n”)

706

707 pr in t (”\n+++=== Test Data Example Resu l t s ===+++”)

708 pr in t (”Expected : ”)

709 pr in t (t e s t r e s u l t y [0])

710 pr in t (” Pred ic ted : ”)

711 pr in t (t e s t r e s u l t y [0])

712 pr in t (”\n”)

713 pr in t (” Test Data Accuracy : ”)

714 pr in t (t e s t a c c u r a c y)

715 pr in t (”\n”)

716

717

718 # pr in t (”\n+++=== Test Data Resu l t s ===+++”)

719 # pr in t (” Expected : ”)

720 # pr in t (t e s t r e s u l t y [0])

721 # pr in t (” Pred ic ted : ”)

722 # pr in t (t e s t r e s u l t y [0])

723 # pr in t (”\n”)

724 i f t e s t a c c u r a c y > ac c th r e sh :

725 break

129

726

727 #==

728 # Save Weights f o r Pred i c to r

729 #==

730

731 #Save Weights

732 t s = time . time ()

733 s t = dt . datet ime . fromtimestamp (t s) . s t r f t i m e (’%Y%m%d−−%H %M %S ’)

734 os . mkdir (os . path . j o i n (we ight s d i r , s t))

735 weight path = os . path . j o i n (we ight s d i r , st , ’ we ights ’)

736 pr in t (”\n Saving weights to : ”)

737 pr in t (weight path)

738 save path = saver . save (se s s , weight path)

739

740 #==

741 # Plots

742 #==

743

744 # Plot Loss with Matp lot l ib

745 p l t . f i g u r e (1)

746

747 #p l t . subp lot (211)

748 p l t . t i t l e (”CNN: LR = { : . 4 f } ; BatchSize = { : 4 d } ; Neuron N = { : 4 d } ; FMaps :

{ : 4 d}” . format (l r , ba t ch s i z e , neuronN , fmapN))

749 #p l t . t i t l e (’ Loss vs . Epoch ’)

750 axes = p l t . gca ()

751 axes . s e t y l i m ([0 . 0 , 1 0 0 . 0])

752 p l t . p l o t (t r a i n l o s s e p o c h , t r a i n a c c , ’b ’ , l a b e l=” Train ing Accuracy”)

753 p l t . p l o t (t r a i n l o s s e p o c h , t e s t a c c , ’ g ’ , l a b e l=” Test Accuracy”)

754 #p l t . p l o t (t r a i n l o s s e p o c h , t r a i n l o s s r e s u l t s , ’ b ’ , l a b e l=”Train ing Data ”)

755 #p l t . p l o t (t r a i n l o s s e p o c h , t e s t l o s s r e s u l t s , ’ g ’ , l a b e l=”Test Data ”)

756 #p l t . x l a b e l (’ Epoch ’)

757 p l t . y l a b e l (’ Accuracy (with in t o l e r a n c e) ’)

758 p l t . x l a b e l (’ Epoch ’)

759 p l t . l egend (l o c=’ upper r i g h t ’)

760 # t s = time . time ()

130

761 # s t = datet ime . datet ime . fromtimestamp (t s) . s t r f t i m e (’%Y−%m−%d−−%H:%M:%S ’)

762 # plotname = ” l r { : f } bs { : d} neuronN { : d} fmap { : d } . png ” . format (l r , ba t ch s i z e

, neuronN , fmapN)

763 # p l t . s a v e f i g (os . path . j o i n (f i g u r e d i r , s t , plotname)) # , bbox inches =’

t i g h t ’

764 p l t . show ()

765

766 #===LOSS PLOT

767 # p l t . f i g u r e (2)

768 # #p l t . subp lot (212)

769 # axes = p l t . gca ()

770 # axes . s e t y l i m ([0 . 0 , 0 . 0 1])

771 # #Train Data

772 # p l t . p l o t (t r a i n l o s s e p o c h , [row [0] f o r row in t r a i n e r r o r] , l a b e l=”Train

S Error ”)

773 # p l t . p l o t (t r a i n l o s s e p o c h , [row [1] f o r row in t r a i n e r r o r] , l a b e l=”Train

Lambda Error ”)

774 # #p l t . p l o t (t r a i n l o s s e p o c h , [row [2] f o r row in t r a i n e r r o r] , l a b e l=”Train

C3 Error ”)

775 # #p l t . p l o t (t r a i n l o s s e p o c h , [row [3] f o r row in t r a i n e r r o r] , l a b e l=”Train

C4 Error ”)

776

777 # #Test Data

778 # # p l t . p l o t (t r a i n l o s s e p o c h , [row [0] f o r row in t e s t e r r o r] , l a b e l=”Test

C1 Error ”)

779 # # p l t . p l o t (t r a i n l o s s e p o c h , [row [1] f o r row in t e s t e r r o r] , l a b e l=”Test

C2 Error ”)

780 # # p l t . p l o t (t r a i n l o s s e p o c h , [row [2] f o r row in t e s t e r r o r] , l a b e l=”Test

C3 Error ”)

781 # # p l t . p l o t (t r a i n l o s s e p o c h , [row [3] f o r row in t e s t e r r o r] , l a b e l=”Test

C4 Error ”)

782 # p l t . l egend (l o c =’upper r i g h t ’)

783 # p l t . x l a b e l (’ Epoch ’)

784 # p l t . y l a b e l (’ Absolute Error ’)

785 # #t s = time . time ()

786 # #s t = datet ime . datet ime . fromtimestamp (t s) . s t r f t i m e (’%Y−%m−%d−−%H:%M:%S ’)

131

787 # #plotname = ” l r { : f } bs { : d} neuronN { : d} fmap { : d } . png ” . format (l r ,

ba t ch s i z e , neuronN , fmapN)

788 # #p l t . s a v e f i g (os . path . j o i n (f i g u r e d i r , s t , plotname)) # , bbox inches =’

t i g h t ’

789 # p l t . show ()

790

791

792

793

794

795 i f name == ’ ma in ’ :

796 main ()

132

F Tensorflow Predictor Script - Python

1 # cnn 20180819 . py

2

3 # Date : 20180819

4 # Desc r ip t i on : Tensorf low CNN Trainer (can import and save model) (S and

lambda p r e d i c t i o n s)

5 # Engineer : Tom Looby

6

7 from f u t u r e import abso lute import , d i v i s i o n , p r i n t f u n c t i o n

8 import os

9 import os . path

10 import matp lo t l i b . pyplot as p l t

11 import t en so r f l ow as t f

12 import numpy as np

13 from numpy import array

14 from numpy import genfromtxt

15 from numpy import unrave l index

16 from numpy . l i n a l g import inv

17 import f u n c t o o l s

18 import time

19 import datet ime as dt

20 #import t e n so r f l ow . con t r i b . eager as t f e

21 #t f . e n a b l e e a g e r e x e c u t i o n ()

22 import csv

23

24

25 s t a r t t i m e = time . time ()

26 pr in t (”\nTensorFlow v e r s i o n : {}\n” . format (t f .VERSION))

27

28 #===

29 # Constants , User Inputs

30 #===

31 # Number o f thermocouples

32 tcN = 5 .0

33 #Number o f Machine Specs

133

34 machN = 4

35 # Number o f t imes teps

36 timeN = 48.0

37 # Number o f e lements in TC X TIME matrix

38 N = tcN ∗ timeN

39 # Number o f b ins (c l a s s e s) f o r answer

40 outN = 2

41 # Number o f t r a i n i n g da ta s e t s − goes from (e x p e r f i r s t , experN)

42 experN = 0

43 # Number to begin t r a i n i n g on

44 e x p e r f i r s t = 1

45 # Number o f t e s t da ta s e t s − goes from (experN , experN + testN)

46 testN = 50

47 # Number o f Epochs

48 num shots = 3

49 # Number o f t imes we run num shots f o r s t a t i s t i c s

50 num tests = 5

51 # Batch S i z e

52 b a t c h s i z e = 1

53 # Learning Rate (1 e−3 i s good)

54 l r = 1e−5

55 # Feature Map Number

56 fmapN = 16

57 # Number o f Neurons per f u l l y connected l a y e r

58 neuronN = 32

59 # How o f t en to record f o r p l o t t i n g

60 sample len = 1

61 # How o f t en to p r in t to s c r e en

62 p r i n t l e n = 1

63 # Acceptable Error th r e sho ld

64 e r r o r t h r e s h = 0.05

65 # Acceptable Accuracy th re sho ld

66 ac c th r e sh = 99 .0

67 # Moving Average Boxcar Window Length

68 box window size = 1 .0

69

134

70

71

72 #Counter

73 counter = 0

74 #Root d i r e c t o r y where we are working

75 #r o o t d i r = ’/home/ workhorse / s choo l / grad / masters / t e n so r f l ow /

data 20s Cs const nosweep / ’

76 r o o t d i r = ’ /home/ workhorse / s choo l / grad / masters / t e n so r f l ow / d a t a t e s t C s c o n s t 1

/ ’

77 #Path f o r sav ing p l o t s

78 f i g u r e d i r = ’ /home/ workhorse / s choo l / grad / masters / t en so r f l ow / f i g u r e s /20

s nosweep al l random ’

79 #f i g u r e d i r = ’/home/ workhorse / s choo l / grad / masters / t en so r f l ow / f i g u r e s /20

s Cs cons t ’

80

81 #Path f o r sav ing weights

82 w e i g h t s d i r = ’ /home/ workhorse / s choo l / grad / masters / t en s o r f l ow / weights / ’

83

84

85 #===Importing Models and Weights===

86 #Set t h i s f l a g to 1 f o r import ing model , 0 to s t a r t from sc ra t ch

87 i m p o r t f l a g = 1

88 import model = ’ 20180824−−01 54 53 ’

89 weight path = ’ /home/ workhorse / s choo l / grad / masters / t en so r f l o w / weights / ’ +

import model + ’ / weights ’

90

91 #Path f o r Graph Meta Data (only sometimes used here)

92 meta path = ’ /home/ workhorse / s choo l / grad / masters / t en so r f l o w / weights / ’ +

import model + ’ / weights . meta ’

93

94 #Path f o r p r e d i c t i o n CSV output

95 csv path = ’ /home/ workhorse / s choo l / grad / masters / t en so r f l ow / p r e d i c t i o n r e s u l t s /

c svs / ’

96

97

98 t ruth = []

135

99 pred i c t ed = []

100 t r a i n l o s s e p o c h = []

101 t r a i n l o s s r e s u l t s = []

102 t r a i n e r r o r = np . z e ro s ((num shots // samplelen , outN))

103 t e s t e r r o r = np . z e r o s ((num shots // samplelen , outN))

104 t r a i n e r r o r c 1 = []

105 t r a i n e r r o r c 2 = []

106 t r a i n e r r o r c 3 = []

107 t r a i n e r r o r c 4 = []

108 t e s t l o s s r e s u l t s = []

109 t r a i n a c c = []

110 t e s t a c c = []

111

112

113

114 Bp = []

115 P = []

116 f r e q = []

117 fx = []

118

119 C range = np . z e ro s ((4 , 4) , dtype=np . f l o a t 3 2)

120 C range [0] [0] = 1 . 0 / 0 . 2

121 C range [1] [1] = 1 . 0 / 1 . 5

122 C range [2] [2] = 1 . 0/0 . 35

123 C range [3] [3] = 1 . 0 / 0 . 7

124

125 #e r r i d x = []

126 #===

127 # Import Dataset

128 #===

129 de f import data (s t a r t i n d , s t op ind) :

130 ”””

131 This func t i on reads CSV f i l e s with in the input parameter bounds and

132 r e tu rn s a TF datase t ob j e c t that i n c l u d e s TC data and machine spec s .

133 ”””

134 TC parms = np . z e ro s ((i n t (timeN) , 5))

136

135 TC data = np . z e r o s (((s t op ind − s t a r t i n d) , i n t (timeN) , i n t (tcN) , 1))

136 mach data = np . z e ro s (((s t op ind − s t a r t i n d) , machN))

137 mach data norm = np . z e ro s (((s t op ind − s t a r t i n d) , machN))

138 e i ch da ta = np . z e r o s (((s t op ind − s t a r t i n d) , outN))

139

140 #Read data in to numpy array

141 f o r i in range (s t a r t i n d , s t op ind) :

142 TCf i l e = r o o t d i r + ’ T C p r o f i l e { :0>6} . tx t ’ . format (i)

143

144 #===Data Test ing : Ensure we have no crap data

145 #Test F i l epath f i r s t , i f f i l e doesnt e x i s t sk ip i t

146 i f os . path . i s f i l e (TCf i l e) :

147 pass

148 e l s e :

149 pr in t (” Miss ing TC F i l e : { : 6 d } . . . sk ipp ing . . . ” . format (i))

150 cont inue

151

152 #Read TC data from ANSYS (has to be c leaned with c l e a n e r . p l)

153 #Note : we sk ip f i r s t l i n e because ANSYS makes funky f i r s t l i n e s

154 TC parms = (genfromtxt (TCfi le , d e l i m i t e r=’ , ’ , s k ip heade r =1))

155

156 #===Data Test ing : Ensure we have no crap data

157 #Check to make sure the re i s temp data

158 i f np . sum(TC parms) == 0 . 0 :

159 pr in t (”WARNING: TC DATA = 0 . 0 , No . {:0>6}” . format (i))

160 cont inue

161 #Check to make sure we c leaned data and dont have any NaNs

162 e l i f np . i snan (np . amax(TC data)) :

163 pr in t (”WARNING: NAN e r r o r : TC DATA, No . {:0>6}” . format (i))

164 pr in t (”Did you c l ean t h i s data with c l e a n e r . p l . . . ? ”)

165 cont inue

166

167 # Data in f l u x array i s as f o l l o w s :

168 # [c1 , c2 , c3 , c4]

169 #temp1 = [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

170 # [S , lambda]

137

171 temp1 = [0 . 0 , 0 . 0]

172

173 # Data in machine spec s array :

174 # [Bp, P, f req , fx]

175 temp2 = [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

176

177 f i l e 2 = r o o t d i r + ’ f l u x p r o f i l e { :0>6} . tx t ’ . format (i)

178 f l u x f i l e = open (f i l e 2 , ’ r ’)

179 f o r l i n e in f l u x f i l e :

180 #Skip header l i n e

181 i f ’ Parameters ’ in l i n e :

182 pass

183 #Write data in to ar rays

184 # e l i f ’ c1 ’ in l i n e :

185 # temp1 [0]= f l o a t (l i n e . r e p l a c e (”# c1 = ” , ” ”))

186 # e l i f ’ c2 ’ in l i n e :

187 # temp1 [1]= f l o a t (l i n e . r e p l a c e (”# c2 = ” , ” ”))

188 # e l i f ’ c3 ’ in l i n e :

189 # temp1 [2]= f l o a t (l i n e . r e p l a c e (”# c3 = ” , ” ”))

190 # e l i f ’ c4 ’ in l i n e :

191 # temp1 [3]= f l o a t (l i n e . r e p l a c e (”# c4 = ” , ” ”))

192 e l i f ’ S : ’ in l i n e :

193 temp1 [0]= f l o a t (l i n e . r e p l a c e (”# S : ” , ” ”))

194 e l i f ’Lambda ’ in l i n e :

195 temp1 [1]= f l o a t (l i n e . r e p l a c e (”# Lambda [m] : ” , ” ”))

196 e l i f ’B ’ in l i n e :

197 temp2 [0] = f l o a t (l i n e . r e p l a c e (”# Bp = ” , ” ”))

198 e l i f ’P ’ in l i n e :

199 temp2 [1] = f l o a t (l i n e . r e p l a c e (”# P = ” , ” ”))

200 e l i f ’R0 ’ in l i n e :

201 #Comment the next l i n e f o r constant f r e q

202 #temp2 [2] = − f l o a t (l i n e . r e p l a c e (”# R0 time varying , Freq = ” , ” ”)

)

203 temp2 [2] = 0

204 e l i f ’ fx ’ in l i n e :

205 temp2 [3] = f l o a t (l i n e . r e p l a c e (”# fx = ” , ” ”))

138

206

207 i f temp1 [0] == 0 .0 or temp1 [1] == 0 . 0 : # or temp1 [2] == 0 .0 or temp1 [3]

== 0 . 0 :

208 pr in t (”WARNING: EICH PARAMETER = 0 : No . {:0>6}” . format (i))

209

210 #Build Eich Data numpy array

211 f o r j in range (outN) :

212 e i ch da ta [i−s t a r t i n d] [j] = temp1 [j]

213

214 #Build Machine Specs array

215 f o r j in range (machN) :

216 # f o r k in range (3) :

217 # i f j == k :

218 mach data [i−s t a r t i n d] [j] = temp2 [j]

219 #mach data = t f . tanh (mach data)

220 f o r j in range (i n t (timeN)) :

221 TC data [i−s t a r t i n d] [j] [0] = TC parms [j] [0]

222 TC data [i−s t a r t i n d] [j] [1] = TC parms [j] [1]

223 TC data [i−s t a r t i n d] [j] [2] = TC parms [j] [2]

224 TC data [i−s t a r t i n d] [j] [3] = TC parms [j] [3]

225 TC data [i−s t a r t i n d] [j] [4] = TC parms [j] [4]

226

227

228 #===Normalize TC Data

229 maxtemp = np . amax(TC data)

230 mintemp = np . amin (TC data)

231 pr in t (”\nMaximum Temperature in Dataset : { : f }” . format (maxtemp))

232 pr in t (”Minimum Temperature in Dataset : { : f }” . format (mintemp))

233 f o r i in range (0 , (s t op ind − s t a r t i n d)) :

234 f o r j in range (i n t (timeN)) :

235 f o r k in range (i n t (tcN)) :

236 va l = TC data [i] [j] [k]

237 TC data [i] [j] [k]= 2 . 0/ (maxtemp − mintemp) ∗ (va l − mintemp) − 1 .0

238

239 #===Normalize Machine Spec Data

240 f o r shot in range (0 , (s t op ind − s t a r t i n d)) :

139

241 Bp . append (mach data [shot] [0])

242 P. append (mach data [shot] [1])

243 f r e q . append (mach data [shot] [2])

244 fx . append (mach data [shot] [3])

245 maxBp = np . max(Bp)

246 maxP = np . max(P)

247 maxfreq = np . max(f r e q)

248 maxfx = np . max(fx)

249 minBp = np . min (Bp)

250 minP = np . min (P)

251 minfreq = np . min (f r e q)

252 minfx = np . min (fx)

253

254 pr in t (”Maximum Bp in Dataset : { : f }” . format (maxBp))

255 pr in t (”Minimum Bp in Dataset : { : f }” . format (minBp))

256 pr in t (”Maximum P in Dataset : { : f }” . format (maxP))

257 pr in t (”Minimum P in Dataset : { : f }” . format (minP))

258 pr in t (”Maximum Freq in Dataset : { : f }” . format (maxfreq))

259 pr in t (”Minimum Freq in Dataset : { : f }” . format (minfreq))

260 pr in t (”Maximum fx in Dataset : { : f }” . format (maxfx))

261 pr in t (”Minimum fx in Dataset : { : f }\n” . format (minfx))

262

263 #Take Normalized data from range (0 , 1) to (−1 ,1)

264 f o r i in range (0 , (s t op ind − s t a r t i n d)) :

265 va l = mach data [i] [0]

266 mach data norm [i] [0] = 2 . 0 / (maxBp − minBp) ∗ (va l − minBp) − 1 .0

267 va l = mach data [i] [1]

268 mach data norm [i] [1] = 2 . 0 / (maxP − minP) ∗ (va l − minP) − 1 .0

269 va l = mach data [i] [2]

270 #mach data [i] [2] = 2 . 0 / (maxfreq − minfreq) ∗ (va l − minfreq) − 1 .0

271 mach data norm [i] [2] = 0 .0

272 va l = mach data [i] [3]

273 mach data norm [i] [3] = 2 . 0 / (maxfx − minfx) ∗ (va l − minfx) − 1 .0

274

275 pr in t (”Read Data From F i l e s . . . \ n\n”)

276

140

277 re turn TC data , e i ch data , mach data norm , mach data # datase t

278

279

280

281 #===

282 # Functions , Classes , P r o p e r t i e s

283 #===

284

285 de f l a z y p rop e r ty (func t i on) :

286 a t t r i b u t e = ’ ’ + func t i on . name

287

288 @property

289 @functoo l s . wraps (func t i on)

290 de f wrapper (s e l f) :

291 i f not ha sa t t r (s e l f , a t t r i b u t e) :

292 s e t a t t r (s e l f , a t t r i bu t e , f unc t i on (s e l f))

293 re turn g e t a t t r (s e l f , a t t r i b u t e)

294 re turn wrapper

295

296 c l a s s CNNclass :

297 de f i n i t (s e l f , TCdata , machdata , t a r g e t) :

298 s e l f . TCdata = TCdata

299 s e l f . machdata = machdata

300 s e l f . t a r g e t = t a r g e t

301

302 s e l f . p r e d i c t i o n

303 s e l f . e r r o r

304 s e l f . opt imize

305

306

307

308 @lazy property

309 de f p r e d i c t i o n (s e l f) :

310

311 # Convolution 1 − 2X2 f i l t e r => fmapN f e a t u r e maps

312 with t f . name scope (’ conv1 ’) :

141

313 W conv1 = s e l f . w e i g h t v a r i a b l e ([5 , 5 , 1 , fmapN])

314 b conv1 = s e l f . b i a s v a r i a b l e ([fmapN])

315 h conv1 = t f . nn . r e l u (s e l f . conv2d (s e l f . TCdata , W conv1) + b conv1)

316

317 # Pool ing Layer 1 − Downsample X2

318 #with t f . name scope (’ pool1 ’) :

319 # h pool1 = max pool 2x2 (h conv1)

320

321 #Convolution 2 − 2X2 f i l t e r => 64 f e a t u r e maps

322 with t f . name scope (’ conv2 ’) :

323 W conv2 = s e l f . w e i g h t v a r i a b l e ([5 , 5 , fmapN , 2∗fmapN])

324 b conv2 = s e l f . b i a s v a r i a b l e ([2∗ fmapN])

325 # h conv2 = t f . nn . r e l u (conv2d (h pool1 , W conv2) + b conv2)

326 h conv2 = t f . nn . r e l u (s e l f . conv2d (h conv1 , W conv2) + b conv2)

327

328 # Pool ing Layer 2 − Downsample X2

329 with t f . name scope (’ pool2 ’) :

330 h poo l2 = s e l f . max pool 2x2 (h conv2)

331

332 # Ful ly connected l a y e r 0 .5

333 with t f . name scope (’ f c h a l f ’) :

334 W fc1 = s e l f . w e i g h t v a r i a b l e ([(i n t (tcN)+1)//2 ∗ i n t (timeN) //2 ∗2∗

fmapN , neuronN])

335 b f c 1 = s e l f . b i a s v a r i a b l e ([neuronN])

336

337 h p o o l 2 f l a t = t f . reshape (h pool2 , [−1 , (i n t (tcN) +1)//2 ∗ i n t (timeN)

//2 ∗2∗ fmapN])

338 #h p o o l 2 f l a t = t f . reshape (h conv2 , [−1 , 3 ∗ 25 ∗ 6 4])

339 h f c 1 = t f . nn . r e l u (t f . matmul (h p o o l 2 f l a t , W fc1) + b f c 1)

340

341

342 # # ALTERNATE 1 : Ful ly connected l a y e r 1 : f o r use with no CNN

343 # with t f . name scope (’ f c 1 ’) :

344 # W fc1 = s e l f . w e i g h t v a r i a b l e ([i n t (N) , machN])

345 # b f c 1 = s e l f . b i a s v a r i a b l e ([machN])

346

142

347 # h p o o l 2 f l a t = t f . reshape (s e l f . TCdata , [−1 , i n t (N)])

348 # #h p o o l 2 f l a t = t f . reshape (h conv2 , [−1 , 3 ∗ 25 ∗ 6 4])

349 # h f c 1 = t f . nn . r e l u (t f . matmul (h p o o l 2 f l a t , W fc1) + b f c 1)

350

351 # # OPTIONAL Ful ly connected l a y e r 2

352 # with t f . name scope (’ f c 2 ’) :

353 # W fc2 = s e l f . w e i g h t v a r i a b l e ([neuronN , machN])

354 # b f c 2 = s e l f . b i a s v a r i a b l e ([machN])

355 # h f c 2 = t f . nn . r e l u (t f . matmul (h fc1 , W fc2) + b f c 2)

356

357 # # ALTERNATE 2 : Mult ip ly machine spec s with TC conv data

358 # # Ful ly connected l a y e r 3 (MACHINE SPECS ADDED HERE)

359 # with t f . name scope (’ f c 3 ’) :

360 # W fc3 = s e l f . w e i g h t v a r i a b l e ([machN, neuronN])

361 # b f c 3 = s e l f . b i a s v a r i a b l e ([neuronN])

362 # # Machine spec s go are m u l t i p l i e d with h f c 2

363 # mach h = t f . mult ip ly (h fc1 , s e l f . machdata)

364 # #mach h = t f . add (h fc2 , s e l f . machdata)

365 # h f c 3 = t f . nn . r e l u (t f . matmul (mach h , W fc3) + b f c 3)

366 # #h f c 3 = t f . nn . r e l u (t f . matmul (h fc2 , W fc3) + b f c 3)

367 # #y = t f . matmul (mach h , W fc3) + b f c 3

368

369 # ALTERNATE 3 : Treat machine spec s as s epara t e inputs

370 # Ful ly connected l a y e r 1

371 with t f . name scope (’ f c 4 ’) :

372 mach h = t f . concat ([h fc1 , s e l f . machdata] , 1)

373

374 W fc4 = s e l f . w e i g h t v a r i a b l e ([neuronN+machN, neuronN])

375 b f c 4 = s e l f . b i a s v a r i a b l e ([neuronN])

376 h f c 4 = t f . nn . r e l u (t f . matmul (mach h , W fc4) + b f c 4)

377

378 # OPTIONAL Ful ly connected l a y e r s 3−8

379 with t f . name scope (’ f c 5 ’) :

380 W fc5 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

381 b f c 5 = s e l f . b i a s v a r i a b l e ([neuronN])

382 h f c 5 = t f . nn . r e l u (t f . matmul (h fc4 , W fc5) + b f c 5)

143

383 with t f . name scope (’ f c 6 ’) :

384 W fc6 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

385 b f c 6 = s e l f . b i a s v a r i a b l e ([neuronN])

386 h f c 6 = t f . nn . r e l u (t f . matmul (h fc5 , W fc6) + b f c 6)

387 with t f . name scope (’ f c 7 ’) :

388 W fc7 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

389 b f c 7 = s e l f . b i a s v a r i a b l e ([neuronN])

390 h f c 7 = t f . nn . r e l u (t f . matmul (h fc6 , W fc7) + b f c 7)

391 with t f . name scope (’ f c 8 ’) :

392 W fc8 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

393 b f c 8 = s e l f . b i a s v a r i a b l e ([neuronN])

394 h f c 8 = t f . nn . r e l u (t f . matmul (h fc7 , W fc8) + b f c 8)

395 # with t f . name scope (’ f c 9 ’) :

396 # W fc9 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

397 # b f c 9 = s e l f . b i a s v a r i a b l e ([neuronN])

398 # h f c 9 = t f . nn . r e l u (t f . matmul (h fc8 , W fc9) + b f c 9)

399 # with t f . name scope (’ f c10 ’) :

400 # W fc10 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

401 # b fc10 = s e l f . b i a s v a r i a b l e ([neuronN])

402 # h fc10 = t f . nn . r e l u (t f . matmul (h fc9 , W fc10) + b fc10)

403 # with t f . name scope (’ f c 6 ’) :

404 # W fc11 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

405 # b fc11 = s e l f . b i a s v a r i a b l e ([neuronN])

406 # h fc11 = t f . nn . r e l u (t f . matmul (h fc10 , W fc11) + b fc11)

407 # with t f . name scope (’ f c 7 ’) :

408 # W fc12 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

409 # b fc12 = s e l f . b i a s v a r i a b l e ([neuronN])

410 # h fc12 = t f . nn . r e l u (t f . matmul (h fc11 , W fc12) + b fc12)

411 # with t f . name scope (’ f c 8 ’) :

412 # W fc13 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

413 # b fc13 = s e l f . b i a s v a r i a b l e ([neuronN])

414 # h fc13 = t f . nn . r e l u (t f . matmul (h fc12 , W fc13) + b fc13)

415 # with t f . name scope (’ f c 9 ’) :

416 # W fc14 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

417 # b fc14 = s e l f . b i a s v a r i a b l e ([neuronN])

418 # h fc14 = t f . nn . r e l u (t f . matmul (h fc13 , W fc14) + b fc14)

144

419 # with t f . name scope (’ f c10 ’) :

420 # W fc15 = s e l f . w e i g h t v a r i a b l e ([neuronN , neuronN])

421 # b fc15 = s e l f . b i a s v a r i a b l e ([neuronN])

422 # h fc15 = t f . nn . r e l u (t f . matmul (h fc14 , W fc15) + b fc15)

423

424

425 # Ful ly connected l a y e r 5 − Output Layer

426 with t f . name scope (’ fc OUT ’) :

427 W fc out = s e l f . w e i g h t v a r i a b l e ([neuronN , i n t (outN)])

428 b f c o u t = s e l f . b i a s v a r i a b l e ([i n t (outN)])

429 y = t f . matmul (h fc8 , W fc out) + b f c o u t

430

431 re turn y

432

433

434

435 @lazy property

436 de f l o s s (s e l f) :

437 #l o s s = t f . l o s s e s . mean squared error (s e l f . p r ed i c t i on , s e l f . t a r g e t)

438

439 l o s s = t f . reduce mean (t f . abs (s e l f . p r e d i c t i o n − s e l f . t a r g e t))

440 #l o s s = t f . reduce sum (t f . l o s s e s . a b s o l u t e d i f f e r e n c e (s e l f . p r ed i c t i on ,

s e l f . t a r g e t))

441 #l o s s = t f . l o s s e s . a b s o l u t e d i f f e r e n c e (s e l f . p r e d i c t i o n [0] [3] , s e l f . t a r g e t

[0] [3])

442 re turn l o s s

443 @lazy property

444 de f opt imize (s e l f) :

445 opt imize r = t f . t r a i n . AdamOptimizer (l r)

446 # op1 = opt imize . minimize (s e l f . l o s s 1)

447 # op2 = opt imize . minimize (s e l f . l o s s 2)

448 # op3 = opt imize . minimize (s e l f . l o s s 3)

449 # op4 = opt imize . minimize (s e l f . l o s s 4)

450 #opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

451 re turn opt imize r . minimize (s e l f . l o s s)

452

145

453 # @lazy property

454 # def opt imize (s e l f) :

455 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

456 # # op1 = opt imize . minimize (s e l f . l o s s 1)

457 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

458 # return opt imize r . minimize (s e l f . l o s s)

459 # @lazy property

460 # def opt imize (s e l f) :

461 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

462 # # op2 = opt imize . minimize (s e l f . l o s s 2)

463 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

464 # return opt imize r . minimize (s e l f . l o s s)

465 # @lazy property

466 # def opt imize (s e l f) :

467 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

468 # # op3 = opt imize . minimize (s e l f . l o s s 3)

469 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

470 # return opt imize r . minimize (s e l f . l o s s)

471 # @lazy property

472 # def opt imize (s e l f) :

473 # #opt imize r = t f . t r a i n . AdamOptimizer (l r)

474 # # op4 = opt imize . minimize (s e l f . l o s s 4)

475 # opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

476 # return opt imize r . minimize (s e l f . l o s s)

477 # @lazy property

478 # def opt imize (s e l f) :

479 # opt imize r = t f . t r a i n . AdamOptimizer (l r)

480 # #opt imize r = t f . t r a i n . GradientDescentOptimizer (l r)

481 # return opt imize r . minimize (s e l f . l o s s)

482

483 @lazy property

484 de f e r r o r (s e l f) :

485 e r r o r = t f . subt rac t (s e l f . ta rget , s e l f . p r e d i c t i o n)

486 # e r r o r = t f . matmul ((s e l f . p r e d i c t i o n − s e l f . t a r g e t) , C range)

487 re turn e r r o r

488

146

489 @staticmethod

490 # conv2d re tu rn s a 2d convo lut ion l a y e r with f u l l s t r i d e

491 de f conv2d (x , W) :

492 re turn t f . nn . conv2d (x , W, s t r i d e s =[1 , 1 , 1 , 1] , padding=’SAME’)

493

494 @staticmethod

495 # max pool 2x2 downsamples a f e a t u r e map by 2X

496 de f max pool 2x2 (x) :

497 re turn t f . nn . max pool (x , k s i z e =[1 , 2 , 2 , 1] , s t r i d e s =[1 , 2 , 2 , 1] ,

padding=’SAME’)

498

499 @staticmethod

500 # Generates a weight v a r i a b l e o f a g iven shape

501 de f w e i g h t v a r i a b l e (shape) :

502 i n i t i a l = t f . t runcated normal (shape , stddev =0.01)

503 re turn t f . Var iab le (i n i t i a l)

504 @staticmethod

505 # Generates a b i a s v a r i a b l e o f a g iven shape

506 de f b i a s v a r i a b l e (shape) :

507 i n i t i a l = t f . constant (0 . 0 , shape=shape)

508 re turn t f . Var iab le (i n i t i a l)

509

510 #===

511 # Main Program

512 #===

513

514

515 de f main () :

516 t r a i n s t a t c o u n t e r = 0 .0

517 t r a i n h i t s = 0 .0

518 t ra in acc window = np . z e r o s ((i n t (box window size)))

519 t e s t s t a t c o u n t e r = 0 .0

520 t e s t h i t s = 0 .0

521 te s t acc window = np . z e ro s ((i n t (box window size)))

522 mach = np . z e r o s ((i n t (num shots) , i n t (4)))

523 e i ch = np . z e r o s ((i n t (num shots) , i n t (outN)))

147

524 e i ch p r ed = np . z e r o s ((i n t (num shots) , i n t (outN)))

525

526 #=== Create Test Dataset

527 TC data test , e i c h d a t a t e s t , mach data test , mach data = import data (

experN + e x p e r f i r s t , experN + e x p e r f i r s t + testN)

528 # Organize Data in to datase t ob j e c t f o r t en so r f l ow

529 d a t a s e t t e s t = t f . data . Dataset . f r o m t e n s o r s l i c e s ((TC data test ,

mach data test , e i c h d a t a t e s t , mach data))

530 d a t a s e t t e s t = d a t a s e t t e s t . s h u f f l e (b u f f e r s i z e =10000)

531 d a t a s e t t e s t = d a t a s e t t e s t . batch (1)

532 d a t a s e t t e s t = d a t a s e t t e s t . r epeat (10000)

533 # Create i t e r a t o r f o r datase t

534 i t e r a t o r t e s t = d a t a s e t t e s t . m a k e o n e s h o t i t e r a t o r ()

535 n e x t e l e m e n t t e s t = i t e r a t o r t e s t . g e t nex t ()

536

537 # Input Data

538 with t f . name scope (’ TC input data ’) :

539 data TC = t f . p l a c eho ld e r (t f . f l o a t32 , [None , i n t (timeN) , i n t (tcN) , 1])

540

541 with t f . name scope (’ mach input data ’) :

542 data mach = t f . p l a c eho ld e r (t f . f l o a t32 , [None , machN])

543

544 # Expected Result (y i s expected)

545 with t f . name scope (’ Expected Result ’) :

546 t a r g e t = t f . p l a c eho ld e r (t f . f l o a t32 , [None , outN])

547

548 # Build the model

549 model = CNNclass (data TC , data mach , t a r g e t)

550

551 s e s s = t f . I n t e r a c t i v e S e s s i o n ()

552

553 # Add ops to save and r e s t o r e a l l the v a r i a b l e s .

554 saver = t f . t r a i n . Saver ()

555

556 # I f weight importer f l a g i s s e t then we import weights and dont

557 # i n i t i a l i z e v a r i a b l e s

148

558 i f i m p o r t f l a g ==1:

559 g l o b a l weight path

560 saver = t f . t r a i n . import meta graph (meta path)

561 saver . r e s t o r e (s e s s , weight path)

562 pr in t (”Read model from f i l e . Model Restored \n”)

563 e l s e :

564 t f . g l o b a l v a r i a b l e s i n i t i a l i z e r () . run ()

565

566 # Create F i l e w r i t e r f o r Tensorboard V i s u a l i z a t i o n

567 # w r i t e r = t f . summary . F i l eWr i t e r (”/tmp/ t f t e s t ”)

568 # w r i t e r . add graph (s e s s . graph)

569

570 #Debugging s t u f f

571 #var = [v f o r v in t f . t r a i n a b l e v a r i a b l e s () i f v . name == ” f c1 / Var iab l e 1

: 0 ”] [0]

572

573

574 #==

575 # Test the Data with the Model

576 #==

577 # Here , epochs = # of t e s t s we are per forming

578 #

579 r a n g e f l a g = 0

580 t e s t s h o t = 0

581 pred ic t mat = np . z e ro s ((num tests , 4))

582 e r r s q = np . z e r o s ((4))

583

584 whi le (t e s t s h o t < num tests) :

585 f o r epoch in range (num shots) :

586 #Test Data

587 x TC test , x mach test , y e i c h t e s t , x mach = s e s s . run (

n e x t e l e m e n t t e s t)

588

589 # To t e s t input :

590 # pr in t(”===TEST===”)

591 # pr in t (x mach)

149

592 # pr in t (y e i c h t e s t)

593

594 t e s t r e s u l t y = s e s s . run (model . target , {data TC : x TC test , data mach

: x mach test , t a r g e t : y e i c h t e s t })

595 t e s t r e s u l t y = s e s s . run (model . p r ed i c t i on , {data TC : x TC test ,

data mach : x mach test , t a r g e t : y e i c h t e s t })

596

597 #Eich and Machine specs f o r p o s t p r o c e s s i n g

598 f o r e r r i d x in range (2) :

599 e i ch p r ed [epoch] [e r r i d x] = t e s t r e s u l t y [0] [e r r i d x]

600 e i ch [epoch] [e r r i d x] = t e s t r e s u l t y [0] [e r r i d x]

601

602 f o r e r r i d x in range (4) :

603 mach [epoch] [e r r i d x] = x mach [0] [e r r i d x]

604 # Debugging S t u f f

605 #pr in t (t f . t r a i n a b l e v a r i a b l e s ())

606 #t e s t = s e s s . run (var)

607 #pr in t (t e s t)

608 #pr in t (”+ = = = = = Pred i c t i on Matrix = = = = = = +”)

609 #pr in t (e i ch p r ed)

610 #pr in t (”+ = = = = = Expected Matrix = = = = = = +”)

611 #pr in t (e i ch)

612 #

613 #pr in t (”\n+ = = = = = Machine Specs Matrix = = = = = +”)

614 #pr in t (mach)

615

616 #==

617 # Newton ’ s Method (s o l v e non l in ea r Eich system)

618 #==

619 #pr in t (”\ nSolv ing Nonl inear System with Newton ’ s Method . . . ”)

620 counter = 0

621 # I n i t i a l Guess f o r C (c [0] i s s c a l e d by 1e−3 f o r conver s i on from [m] to

[mm])

622 c = ([0 . 0 0 1 7 5] , [0 . 0 7 5] , [−0 .85])

623 c=np . array (c)

624 dF = np . z e r o s ((3 , 3))

150

625 F = np . z e r o s ((3 , 1))

626

627 newt thresh = 1e−12

628 newt er ro r = 1 .0

629

630

631 whi le True :

632 counter += 1

633 f o r shot in range (3) :

634 F[shot] = (c [0] \

635 # PˆC3

636 ∗ np . power (mach [shot] [1] , c [1]) \

637 # BˆC4

638 ∗ np . power (mach [shot] [0] , c [2]) \

639 # lambda

640 − e i ch p r ed [shot] [1])

641 f o r cva l in range (3) :

642 i f cva l == 0 :

643 dF [shot] [cva l] = np . power (mach [shot] [1] , c [1]) ∗ np . power (

mach [shot] [0] , c [2]) # PˆC3 ∗ BˆC4

644

645 e l i f cva l == 1 :

646 dF [shot] [cva l] = (c [0] \

647 ∗ np . power (mach [shot] [1] , c [1]) \

648 ∗ np . power (mach [shot] [0] , c [2]) \

649 # ln (P)

650 ∗ np . l og (mach [shot] [1]))

651

652 e l i f cva l == 2 :

653 dF [shot] [cva l] = (c [0] \

654 ∗ np . power (mach [shot] [1] , c [1]) \

655 ∗ np . power (mach [shot] [0] , c [2]) \

656 # ln (B)

657 ∗ np . l og (mach [shot] [0]))

658

659

151

660 c new = c − np . matmul (inv (dF) , F)

661 newt er ro r = (np . sum(np . abs (c new − c) , a x i s =0))

662 c = c new

663

664 # Calcu la te C1 (not inc luded in Newton ’ s Method)

665 n = f l o a t (num shots)

666 e i ch avg = (e i ch p r ed . sum(a x i s =0)) /n

667 c1 = e i ch avg [0] / e i ch avg [1]

668

669 # I f C va lue s add up to over 1000 , we are probalby d iv e rg ing

670 i f (np . sum(c) > 100 or np . sum(c) < −100) :

671 r a n g e f l a g = 1

672 break

673

674

675 i f (newt er ro r < newt thresh) :

676 break

677

678 #===Error check ing our r e s u l t s f o r i n c o r r e c t s o l u t i o n s

679 #===I f found , r eque s t another <num shots> shot s

680

681 # I f we diverge , r eque s t a new shot

682 i f (r a n g e f l a g ==1) :

683 t e s t s h o t += 0

684 #r e s e t the f l a g

685 r a n g e f l a g = 0

686 pr in t (”Newtons Method Overflow Error : Request ing New Shot”)

687 pr in t (c)

688

689 # I f a C value i s ou t s id e domain , r eque s t another shot

690 e l i f (c1 > 0 .3 or c1 < 0 .1 or

691 1000∗ c [0] > 2 .5 or 1000∗ c [0] < 1 .0 or

692 c [1] > 0 .25 or c [1] < −0.1 or

693 c [2] > −0.5 or c [2] < −1.2) :

694 pr in t (”Newtons Method Range Error : Request ing New Shot”)

695 #For Error Checking / debugging

152

696 #pr in t (c1)

697 #pr in t (f l o a t (1000∗ c [0]))

698 #pr in t (f l o a t (c [1]))

699 #pr in t (f l o a t (c [2]))

700 t e s t s h o t += 0

701 e l s e :

702 pred ic t mat [t e s t s h o t] [0] = c1

703 pred ic t mat [t e s t s h o t] [1] = c [0]∗10 00

704 pred ic t mat [t e s t s h o t] [2] = c [1]

705 pred ic t mat [t e s t s h o t] [3] = c [2]

706

707 t e s t s h o t += 1

708

709

710 #==

711 # Resu l t s

712 #==

713 #Calcu la te mean f o r each output v a r i a b l e

714 n = f l o a t (num tests)

715 pr ed i c t avg = (pred ic t mat . sum(a x i s =0)) /n

716

717 #Calcu la te var i ance

718 f o r idx in range (num tests) :

719 f o r idx2 in range (4) :

720 e r r s q [idx2] += (pred ic t mat [idx] [idx2] − pr ed i c t avg [idx2]) ∗∗2

721

722 var = e r r s q /n

723

724

725 pr in t (”\n\n\n+++

=== +++”)

726 pr in t (” Pred i c t i on Resu l t s : ”)

727 pr in t (”+++

=== +++\n”

)

728 pr in t (”Time Elapsed ˜ { : d} seconds ” . format (i n t (time . time () − s t a r t t i m e)) ,)

153

729

730 pr in t (”\nPredicted Eich Values (mean) : ”)

731 pr in t (”C1 : { : f } +/− { : f }” . format (p r ed i c t avg [0] , np . s q r t (var [0])))

732 pr in t (”C2 : { : f } +/− { : f }” . format (p r ed i c t avg [1] , np . s q r t (var [1])))

733 pr in t (”C3 : { : f } +/− { : f }” . format (p r ed i c t avg [2] , np . s q r t (var [2])))

734 pr in t (”C4 : { : f } +/− { : f }\n” . format (p r ed i c t avg [3] , np . s q r t (var [3])))

735

736 # pr in t (” Expected Eich Values : ”)

737 # pr in t (”C1 : { : f }” . format (e i ch [0] [0]))

738 # pr in t (”C2 : { : f }” . format (e i ch [0] [1]))

739 # pr in t (”C3 : { : f }” . format (e i ch [0] [2]))

740 # pr in t (”C4 : { : f }” . format (e i ch [0] [3]))

741

742 pr in t (”\n”)

743

744

745 #==

746 # Save Resu l t s to CSV

747 #==

748

749 # Save the S / lambda p r e i d i c t i o n s in a matrix

750 i f not os . path . e x i s t s (csv path + import model) :

751 pr in t (” Creat ing new r e s u l t s d i r e c t o r y . . . ”)

752 os . mkdir (csv path + import model)

753 p r e d i c t i o n p a t h = csv path + import model + ’ / p r e d i c t m a t r i x { : d} shot s ’ .

format (num shots∗num tests ,)

754 np . save txt (p red i c t i on path , predict mat , d e l i m i t e r=” , ”)

755

756 #Append means and std devs to summary f i l e

757 summary path = csv path + import model + ’ /mean stddev . csv ’

758

759 header row = ’# of Shots , C1 Mean , C1 StdDev ,\

760 C2 Mean , C2 StdDev ,\

761 C3 Mean , C3 StdDev ,\

762 C4 Mean , C4 StdDev\n ’

763

154

764 data row = ’ { : d } ,{ : f } ,{ : f } ,{ : f } ,{ : f } ,{ : f } ,{ : f } ,{ : f } ,{ : f }\n ’ . format (

765 num shots∗num tests ,

766 pr ed i c t avg [0] , np . s q r t (var [0]) ,

767 pr ed i c t avg [1] , np . s q r t (var [1]) ,

768 pr ed i c t avg [2] , np . s q r t (var [2]) ,

769 pr ed i c t avg [3] , np . s q r t (var [3])

770)

771

772 #Check i f f i l e e x i s t s f o r c r e a t i n g a header row

773 e x i s t s f l a g = 0

774 i f not os . path . e x i s t s (csv path + import model + ’ /mean stddev . csv ’) :

775 e x i s t s f l a g = 1

776

777 fh = open (summary path , ’ a ’)

778 i f e x i s t s f l a g == 1 :

779 pr in t (” Creat ing new summary f i l e . . . ”)

780 fh . wr i t e (header row)

781 fh . wr i t e (data row)

782 fh . c l o s e ()

783

784 pr in t (”Wrote data to c svs here :\n { : s }\n” . format ((csv path + import model) ,)

)

785

786

787 i f name == ’ ma in ’ :

788 main ()

155

Vita

Tom was raised in a small town, at 9400ft elevation, deep in the Colorado Rockies. He

spent a large portion of his childhood outside, exploring the wilderness in his backyard.

After high school, he moved to the Pacific Coast, where he began working on Motor-yachts

as a deckhand, and was first introduced to engineering in the engine room of a 130 foot

motoryacht off the coast of Mexico. After cruising the western coast of North America, he

relocated to Boise, where he spent a year working as a locomotive electrician and exploring

the northern Rockies. He returned to Colorado and obtained his associates degree from

Colorado Mountain College in Glenwood Springs while working as an electrician in Aspen.

Due to his upbringing in the mountains, Tom was inspired to take action to promote

environmental conservation. He determined that the best method for reducing oil

consumption was to replace fossil fuel with a cheaper, higher energy density alternative,

and his quest to contribute to the development of nuclear fusion as an energy source was

born. Tom completed his Bachelor’s Degree in Electrical Engineering at the University of

Denver. Simultaneously, he spent two years working as an electrical engineer for an electric

utility, where he designed and tested advanced technologies for intelligent infrastructure

systems (smart cities / smart grid) under the guidance of veteran engineer Dan Nordell, PE.

Currently, Tom is a Nuclear Engineering graduate student working with Dr. David Donovan

at the University of Tennessee - Knoxville. During his first semester in graduate school,

Tom connected with Dr. Matt Reinke (Oak Ridge National Lab) and began assisting him

with work on the National Spherical Tokamak eXperiment (NSTX), which is the origin of

the contents of this thesis. Additionally, Tom spent a summer working at Sandia National

Laboratories, under the supervision of Dr. Mark Savage at the Z-Machine. When Tom isn’t

156

working, you are likely to find him exploring somewhere in the closest mountain range, with

his trusty dog, Tesla.

157

	Front Matter
	Title
	Abstract

	Table of Contents
	1 Introduction
	1.1 Background Information
	1.2 Project Objectives

	2 Background Physics and Engineering
	2.1 Eich Heat Flux Model
	2.2 Neural Networks
	2.3 Convolutional Neural Networks

	3 Simulating NSTX-U Graphite Tile Response to Heat Flux
	3.1 Hardware
	3.2 Tile Assumptions
	3.3 Constant Heat Flux Results
	3.4 Simplified Eich Model
	3.5 Monte Carlo Heat Flux Generator
	3.6 ANSYS ACT Solver

	4 Deriving Eich Scaling Parameters
	4.1 Creating a Closed Loop System
	4.2 Trade Study
	4.3 Tools for CNN Implementation
	4.4 CNN Architecture
	4.5 Degeneracies
	4.6 The Final NSTX-U Thermocouple CNN
	4.7 Simulating Systematic Error

	5 Concluding Remarks
	5.0.1 Potential Improvements / Further Applications

	Bibliography
	Appendix
	A Monte Carlo Flux Generator - Fortran95
	B ANSYS ACT Script - Python
	C ANSYS ACT Script - XML
	D Data Cleaner Script - Perl
	E Tensorflow Training Script - Python
	F Tensorflow Predictor Script - Python

	Vita

