### National Spherical Torus eXperiment Upgrade

#### *TO: PFC REQUIREMENTS WORKING GROUP FROM: J. MENARD SUBJECT: DESCRIPTION OF REDUCED MODEL FOR ESTIMATING NSTX-U DIVERTOR HEAT LOADS*

The following slides outline the theoretical background and give examples for a distributed version of a code to calculate heat fluxes to NSTX-U plasma facing components.

The source code, scripts to define inputs and execute the code as well as the input equilibria are available at:

http://w3.pppl.gov/~jmenard/NSTXU/physics\_design/divertor\_heat\_flux \_\_scans/version\_03/



NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

# Description of reduced model for estimating NSTX-U divertor heat loads

### J. Menard, PPPL

May 4, 2017 Version 3







### Parametric fits to divertor heat flux

• T. Eich, et al., Nucl. Fusion 53 (2013) 093031, Eqn 1

$$q(\bar{s}) = \frac{q_0}{2} \cdot \exp\left(\left(\frac{S}{2\lambda_q}\right)^2 - \frac{\bar{s}}{\lambda_q \cdot f_x}\right) \cdot \operatorname{erf} c\left(\frac{S}{2\lambda_q} - \frac{\bar{s}}{S \cdot f_x}\right) + q_{BG}$$
  
$$\bar{s} = s - s_0 = (R_{sep} - R) \cdot f_x$$



Figure 1. Typical outer target power parallel heat flux for each machine and result of fitting equation (1).

### Model for SOL heat flux width $\lambda_q$

• T. Eich, et al., Phys. Rev. Lett. **107** (2011) 215001 – Equations 5, 7-10  $\rightarrow$  Goldston heuristic drift model for  $\lambda_q$ 

Map 
$$\lambda_m$$
 to outer midplane:  $\lambda_m^* = \frac{R_{\text{geo}}}{(R_{\text{geo}} + a)} \frac{B_p}{B_p^{mp}} \lambda_m$   $B_p = \frac{\mu_0 I_p}{2\pi a \sqrt{(1 + \kappa^2)/2}}$   
 $\lambda_m = 2.02 \frac{f_{\text{AZ}}}{\sqrt{(1 + \kappa^2)} \epsilon^{1/8}} B_T^{-7/8} q_{\text{cyl}}^{9/8} P_{\text{SOL}}^{1/8}$   $q_{\text{cyl}} = \frac{2\pi a \epsilon B_T}{\mu_0 I_p} \frac{(1 + \kappa^2)}{2}$   
with  $\lambda_m$  in [mm],  $P_{\text{SOL}}$  in [MW],  $B_T$  in [T]

$$f_{\rm AZ} = \left(\frac{2A}{1+\bar{Z}}\right)^{7/16} \left(\frac{Z_{\rm eff}+4}{5}\right)^{1/8} \qquad \bar{Z} = \sum_i Z_i n_i / \sum_i n_i \qquad \bar{A} = \sum_i n_i A_i / \sum_i n_i$$
  
Use  $\lambda_q = \lambda_m^*$ 

### Data for private flux region width w<sub>pvt</sub>=S

• T. Eich, et al., Nucl. Fusion

**53** (2013) 093031

- M. Makowski et al., Phys. Plasma **19**, 056122 (2012)
  - $R^2 = 0.603$ C-Mod DIII-D NSTX A A MAST C-Mod AUG Div I w<sub>pvt</sub> (mm) AUG DivIlb S [mm] D3D  $3.01 \pm 0.62$ JET Exponent -1.31 ± 0.15  $-0.29 \pm 0.06$  $-0.33 \pm 0.10$  $1.03 \pm 0.29$ ŤG 0 2 0 3 0 8 10 6 2 4  $\lambda_{fit}$  (mm) ۸<sub>a</sub> [mm]

**Table 5.** Variation of mean power spreading factor, *S* and  $S/\lambda_q$  for the various devices.

|                                        | JET       | DIII-D    | AUG DivI  | AUG DivII | C-Mod     | MAST      | NSTX      |
|----------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| $\frac{S \text{ (mm)}}{S / \lambda_q}$ | 0.59–1.04 | 0.39–2.27 | 0.35–0.56 | 0.79–2.02 | 0.86–1.46 | 1.11–4.95 | 0.46–4.35 |
|                                        | 0.26–0.81 | 0.24–1.14 | 0.26–0.28 | 0.40–0.94 | 0.67–2.32 | 0.17–0.95 | 0.15–0.95 |

## Generalized divertor heat-flux model consistent with Eich parametric fitting

- SOL heat flux approximately field-aligned  $\Rightarrow \vec{q} \approx \vec{q}_{||} = q_{||}\hat{b} = q_{||}\vec{B}/B$
- No SOL heat source  $\Rightarrow \nabla \cdot \vec{q} = \vec{B} \cdot \nabla(q_{||}/B) = 0 \Rightarrow q_{||} = f(\psi)B$
- $q_{||} \equiv q_{||0} B \hat{q}(\hat{\psi})$   $\hat{q}(\hat{\psi}) \equiv 0.5 \exp(\sigma_0^2 \sigma) \operatorname{erfc}(\sigma_0 \sigma/2\sigma_0)$
- $\sigma_0 \equiv S/2\lambda_q$   $\sigma \equiv \hat{s}/\hat{\lambda}_q$   $\hat{s} \equiv \hat{\psi} 1$   $\hat{\psi} \equiv (\psi \psi_{axis})/\Delta\psi$
- $\hat{\lambda}_q \equiv \lambda_q |\nabla \psi|_{omp} / \Delta \psi$   $\Delta \psi \equiv (\psi_{edge} \psi_{axis})$
- Note:  $q_{||0} \approx P_{div}/(2\pi |\nabla \psi|_{omp} \lambda_q)$  for  $\sigma_0 \to 0$
- Divertor surface normal unit vector  $\equiv \hat{n} \Rightarrow q_{divertor} = (\hat{n} \cdot \hat{b})q_{||0}B\hat{q}(\hat{\psi})$
- Define total B-field angle of incidence  $\theta_B \Rightarrow \hat{n} \cdot \hat{b} = \sin(\theta_B)$
- For  $q_{divertor} = \text{Eich } q(\bar{s}) = q_0 \hat{q}(\bar{s}) \Rightarrow q_0 = \sin(\theta_B) q_{||0} B$

$$q_{divertor} = q_{||0} \sin(\theta_B) B\hat{q}(\hat{\psi})$$

### Choice of S for NSTX-U calculations

- Options:
  - $-S_{Mak} = S$  from Makowski scaling
  - $-S_{rel} = MIN(S / \lambda_q) \times \lambda_q = 0.15 \times \lambda_q$ 
    - MIN(S /  $\lambda_q$ ) = 0.15, 0.17 for NSTX, MAST
  - $-S_{fix} = fixed / constant value of S$
- NSTX-U model uses combination of all these options as follows:
  - First set S = MIN(  $[S_{Mak}, S_{rel}]$ )
  - Then enforce  $S_{\text{min}} \leq S \leq S_{\text{max}}$ 
    - S<sub>min</sub> = 0.1mm, S<sub>max</sub> = 0.5mm
  - S typically set by S =  $S_{rel} \approx 0.2$ -0.3mm
  - $-\,S=0.15\,\times\,\lambda_{q}\approx\,S_{mak}(f_{G}=0.4,\,2MA,\,1T)$ 
    - → Consistent w/ physics/ops goal  $f_G \ge 0.5$



### Model for power conducted to divertor target

- P<sub>heat</sub> = total heating power (ohmic + auxiliary + alpha)
- $f_{rad}$  = fraction of heating power radiated from core - For NSTX-U projections assume  $f_{rad}$  = 0.3
- $P_{rad} = f_{rad} \times P_{heat} = power radiated from core$
- $P_{sol} = P_{heat} \times (1-f_{rad}) = power into SOL$
- $N_{div} = Number of in/out divertor legs connected to target$  $- <math>N_{div} = 1$  for single null (SN),  $N_{div} = 2$  for double null (DN)
- $f_{obl}$  = fraction of power to outboard divertor leg(s) - For NSTX-U projections assume  $f_{obl}$  = 0.8 for DN, 0.65 for SN
- $f_{ibl} = (1-f_{obl}) = fraction of power to inboard divertor leg$
- $f_{leg} = f_{obl}$  or  $f_{ibl} =$  fraction of power to chosen divertor leg

 $P_{div} = P_{sol} f_{leg} / N_{div} = power conducted to divertor target$ 

### NSTX example: low $\delta$ , $I_P = 0.8MA$



#### **NSTX-U**

### NSTX example: high $\delta$ , $I_P = 1.2MA$



#### **NSTX-U**

### Comments on comparison to NSTX and extrapolation to NSTX-U

- Have looked at very limited number of NSTX cases
  - $-f_{rad} = 0.2-0.3$  and S = S<sub>Mak</sub> *might* be reasonable scaling assumption for NSTX / NSTX-U
    - Peak heat fluxes can match, but exact profile shapes differ
    - There is substantial uncertainty in both f<sub>rad</sub> and S<sub>Mak</sub>
  - Need DIVSOL TSG to identify more cases for comparison
  - More detailed analysis of NSTX S-scaling would be valuable
- For scaling to NSTX-U, use more conservative (i.e. smaller) S = S<sub>rel</sub> = 0.15 ×  $\lambda_q$
- Detachment is option for reducing NSTX-U heat-flux
  - Showed reduction of  $q_{\perp}$  by ~50-70% in NSTX
  - Prefer not to rely on detachment for NSTX-U scenarios
    - Beneficial to have more operating margin if PFCs will allow

### NSTX-U projection example: high $\delta$ , I<sub>P</sub> = 2MA with high flux expansion divertor



| • A = 1.75, κ | = 2.74, | balanced | DN |
|---------------|---------|----------|----|
|---------------|---------|----------|----|

- $I_P = 2MA, B_T = 1T, P_{heat} = 10MW$
- $\lambda_{q-mid} = 1.97mm$ ,  $S/\lambda_q = 0.15$
- Poloidal flux expansion = 36
  - Also assume B-field angle of incidence  $\theta_B$  must be  $\geq 1^\circ$  (tile alignment / leading edge tolerance)
- Radiation fraction = 30%
- 80% of power to outboard
- 50-50 split between upper/lower
- P<sub>div</sub> ~ 2.8MW to divertor target
- $q_{div-peak} = 7.8 \text{ MW/m}^2$

### Example case from 96 with high I<sub>PF1A</sub>

• A=1.84,  $\kappa$ =2.5,  $\delta_{U, L}$  = 0.193, 0.375,  $I_{OH}$ =0,  $I_{PF1AU,L}$  = 15, 7kA



#### **NSTX-U**

### Example: Scan 1: No PF1B, use PF1C for high flux expansion IBDH tile heat flux projections



**NSTX-U** 

PFCR-MEMO-004-01

### Possible next steps / future work

• Add simple core emission source to compute core radiation heat loads on first wall, divertor

- Generalize model to compute 2D incident  $q_{\parallel,\perp}$  and  $\Gamma_{\text{rad}}$  on entire limiter boundary
- Include 3D tile / boundary shapes?