## National Spherical Torus eXperiment Upgrade

## *TO: K. ERICKSON FROM: M.L. REINKE SUBJECT: INITIAL GUIDANCE FOR EXAMINING UPGRADES NECESSARY FOR NSTX-U TO SUPPORT IMAGING SYSTEMS FOR REAL TIME CONTROL*

## **Background**

As part of the Recovery Project, NSTX-U will be designing new plasma facing components. These are expected to be a combination of temperature-limited and stress-limited designs, and temperature limited tiles may have a small margin before reaching allowable stress limits. As outlined in PCRF-MEMO-001, responding to Extend of Condition committee recommendations, the PFCR-WG suggested that "An intra-shot, PCS-based control system using real-time PFC temperature data should be considered only if tile designs in high heat flux areas remain stress-limited". The working group R18-1/1-G5 (see PFCR-MEMO-014) has a goal to "Determine necessary PCS enhancements for doing real-time control from imaging systems".

This MEMO outlines more detailed information to allow that activity to be carried out. The deliverable should be a written report, to be submitted as a PFCR-WG MEMO in mid/late August 2018. It should be assumed that any real-time imaging systems that will be developed for NSTX-U are to be used for plasma control purposes and are not protection systems.

There are two primary objectives for this work:

- Review literature from existing examples of image-based real-time monitoring systems. Comment on whether their methods of integrating imaging data is compatible with NSTX-U PCS and operations environment (e.g. do we need to innovate or adapt?). Links are given below to begin this, please request more information as necessary if it is unavailable publically. I have some internal presentations that could be shared.
  - a. JET: [1] [2] [3]
  - b. WEST: [1]
  - c. ASDEX Upgrade: [1] [2]
  - d. W7-X: [1] [2] [3]
- Outline upgrades necessary for PCS to be able to integrate two methods of data collection from the imaging system (defined below) for real-time control algorithms
  - a. 'region of interest': Scalar information (e.g. maximum in a region, average, median) is delivered for a finite number (assume < 256) of sub-domains. Use of this data is expected to be simple, e.g. if scalar exceeds a set point, do pre-determined PCS action.</li>
  - b. 'full image': All imaging data is collected and available for use for PCS algorithm decision making. Use of data is expected to be



more intense and require shot-to-shot configurable image processing.

The level of rigor and detail should be such that a CDR would be possible with minimal additional research in FY19 (although likely a lot more paperwork!). Please comment on whether these solutions for image-based control for PFCs could be used for other diagnostic systems, e.g. spectroscopy.

A secondary goal, if sufficient time is available is to consider what near-term or emerging technology or data analysis methods may be available when NSTX-U resumes operations that would provide a substantial advancement beyond existing demonstrations of real-time control from imaging on tokamaks and stellarators.

Working Requirements for Imaging System

If NSTX-U decides to develop an image-based control solution, a full requirements document will be developed which will drive the design of the frontend optics and camera system(s). To drive decisions regarding how data from such a system could be integrated into NSTX-U, the scale and magnitude of possible imaging system must be defined. These represent possible requirements resulting system design choices.

- A. To view all of the plasma facing components should require 4-8 distinct cameras
- B. To observe surface temperature rises these cameras should frames rates of at least 60 Hz, but should not be greater than 240 Hz
- C. To observe surfaces with sufficient resolution these cameras will have no less than 320 x 240 pixels but may have up to 1280 x 1024 pixels.
- D. USB 3.0, Camera Link and GIG-E may be considered as possible mechanisms for data transfer from the camera. Cameras should assume to be connected to DAQ system by fiber-optic link.
- E. Measurements should be available to PCS in less than 1/60 seconds (due to the relatively slow evolution of thermal 'problems').
- F. All camera information must be able to be stored and available after the shot similar to standard image-based NSTX-U diagnostics (e.g. Plasma TV).
- G. Calibration or configuration (e.g. hot pixel maps) information for the camera may evolve on a shot-to-shot basis and should be stored in MDSPlus.



## **Record of Changes**

| Rev. | Date     | Description of Changes                                            |
|------|----------|-------------------------------------------------------------------|
| 0    | 5/3/2018 | Initial release for review                                        |
| 1    | 5/4/2018 | Added clarifying details after discussion w/ K.E. and added links |
|      |          | to literature for the machines.                                   |
|      |          |                                                                   |