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TO: M. MARDENFELD, A. BROOKS, M. SIBILIA, S. GERHARDT, J. MENARD 
FROM: M.L. REINKE 
SUBJECT: IMPACT OF FACETING ON HEAT FLUX TO THE OUTBOARD 
DIVERTOR PFCS 
 
FINDING: The present structure of the outboard divertor (OBD) approximates an 
axisymmetric surface by joining multiple flat plates, creating a faceted surface.  
This leads to varying areas of enhanced and reduced heat flux across each of 
the 48 nominally similar structures.  For plasmas in the range of those specified 
in the PFC Requirements document, this would lead to heat flux enhancements 
of greater than 2.0.  The ‘fish-scale’ shaping of tiles to hide leading edges and 
fastener access holes cannot be used to reduce this and actually makes the 
effect worse. Shaping of the PFC surfaces to be more axisymmetric, like the 
IBDV or CSFW, or shaping of tiles and/or backing plates for small-cube type 
schemes would reduce the enhancement but also complicate the design.  This 
analysis can be used to help determine if/how the OBD needs to be modified to 
create a ‘high heat flux’ handling surface. 
 
As shown in Section 11 of the Vacuum Vessel and In-Vessel Hardware SDD and 
Figure 1, the NSTX-U outboard divertor is composed of multiple (48) flat plates 
that are angled relative to horizontal by 𝜃𝑠𝑢𝑟𝑓 = 21.5𝑜  by mounting to the upper 

and lower ‘BBQ rails’ shown in DB1014  and DB1043.  This results in a surface 
that is non-axisymmetric, leading to a variation in the heat flux across the tile 
surface, reducing the nominally axisymmetric heat flux that can be deposited 
before reaching temperature or stress limits.   
 
To first examine this effect, it helps to look at a geometrically limiting cases.  For 
a horizontal flat plate divertor, faceting does not lead to any enhancement, while 
the effect is maximzed for a vertical plate divertor, shown in Figure 2.  The 
variation in the heat flux to the target is computed by looking at the variation 

of �̂� ∙ �̂�, the dot product of the magnetic field with the surface normal, derived in 
Appendix A.   
 

�̂� ∙ �̂� = −
sin 𝜃𝑠𝑢𝑟𝑓

√1 + 𝑏𝑟𝑎𝑡
2

[sin(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙) cos 𝜙 − 𝑏𝑟𝑎𝑡 sin 𝜙 +
cos(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙)

tan 𝜃𝑠𝑢𝑟𝑓
] 

 
where 𝑏𝑟𝑎𝑡 = 𝐵𝑇/𝐵𝑃 and the angles, 𝜃𝑠𝑢𝑟𝑓 , 𝜃𝑝𝑜𝑙  and 𝜙 are defined in Figure 2.  An 

enhancement factor will be discussed, defined as 𝐸𝐹 ≡ (�̂� ∙ �̂�)/(�̂� ∙ �̂�)
𝜙=0

 which 

for 𝜃𝑠𝑢𝑟𝑓 → 𝜋/2 and 𝜃𝑝𝑜𝑙 → 0  reduces to 𝐸𝐹 = cos 𝜙(1 − tan 𝜙 / tan 𝛼) 

 
Before plotting variations for the OBD it helps to look at some magnified cases, 
constructed geometrically, to illustrate some basic phenomenology.  In Figure 3, 

a view from the top down for a case with 9 facets (thus Δ𝜙 = 40𝑜 toroidal 
segments) and a field line angle of 𝛼 = 15𝑜 illustrates how the heat flux changes.  
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At the center of the plate the heat flux is the same as for a perfectly conformal 
surface, but moving counter clockwise, towards the field line angle (in this case 

𝑏𝑟𝑎𝑡 < 0 since 𝐵𝜙 is in the −�̂� direction), the angle between the plate and the 

field line increases, enhancing the heat flux.  Moving clockwise, the opposite 
occurs and the heat flux is reduced.  In cases like this shown where the facet 

toroidal angle, Δ𝜙, is such that Δ𝜙 2⁄ > 𝛼, then the field lines become tangent, 
miss the surface and a shadowed area develops.  A shadowed area in the 
counter-clockwise direction also forms, but this requires a rather detailed 
calculation, and is shown in Appendix B.   
 
It’s also apparent from this figure that if one were to shape the tiles toroidally to 
hide leading edges, the strategy would be different depending on the expected 

range of field line angles.  If 𝛼 < Δ𝜙 2⁄  over all operational space, then there is 
already no power going to the leading edges and in fact, it may be favorable to 
rotate the tiles toward the field (a rotation about the +𝑧-axis) which could slightly 

reduce the faceting enhancement.  If there is operational space where 𝛼 > Δ𝜙 2⁄  
then the leading edges at the facet corners will be exposed and a rotation away 

from the field (a rotation about the −𝑧-axis) would be necessary, further 
exacerbating the heat flux handling problem at small impact angles. 
 
As shown in Figure 1, each of the 48 facets have two tiles, a larger ‘over’ and 
smaller ‘under’ tile, so variation of the heat flux will be shown that actually spans 

Figure 1:  Images from EA3010 showing the faceted and angled structure of the present NSTX-U 
outboard divertor 
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both tile surfaces, with the ‘under’ tile seeing higher heat flux than the ‘over’.  The 

heat flux enhancement, 𝐸𝐹, for the geometry of the NSTX-U outboard divertor is 
shown in Figure 4-Figure 6, for varying values of 𝑏𝑟𝑎𝑡 and 𝜃𝑝𝑜𝑙.  While it is not 

directly apparent in the �̂� ∙ �̂� equation, the dot product is not very sensitive to the 

sign of 𝜃𝑝𝑜𝑙 so the results shown are characteristic of a wide variety of poloidal 

impact angles.   
 
For Figure 4, 𝜃𝑝𝑜𝑙 = 0 results in 𝛼 = tan (1/𝑏𝑟𝑎𝑡), which for 𝑏𝑟𝑎𝑡 = 15 corresponds 

to 𝛼 = 3.8𝑜 and 𝑏𝑟𝑎𝑡 = 55 corresponds to 𝛼 = 1.05𝑜.  As 𝑏𝑟𝑎𝑡 increases, the 
enhancement factor changes more strongly over the tile.  For the nominally 1𝑜 
angle of incidence cases that are characteristic of high poloidal flux expansion, 
there will be substantial change of heat flux over the tile in the toroidal direction.  

This increases as |𝜃𝑝𝑜𝑙| > 0. 

 
For the particulars of the NSTX-U OBD geometry, there is some operational 

space for which shadowing due to the facet structure will occur (e.g. 𝑏𝑟𝑎𝑡 = 45, 55 
for 𝜃𝑝𝑜𝑙 = 20𝑜 , 40𝑜).  This means that for smaller values of 𝑏𝑟𝑎𝑡 the leading edges 

will be exposed and to avoid this, a ‘fish-scale’ shaping could be used, due to the 
fixed helicity expected for OBD operations.  As evident from Figure 3, a rotation 
to hide leading edges would worsen the enhancement due to the faceting and 

increase the shadowing for large 𝑏𝑟𝑎𝑡.  The quantitative extent of this could be 
investigated if necessary by furthering the method in Appendix A.   
 
Presently the Recovery Project is considering various scenarios to improve heat 
flux handling for PFCs.  For the OBD, there is the expectation that some toroidal 
variation in heat flux originates from the lack of axisymmetry in the ‘BBQ rails’ 
mounting structure.  Even if this is fixed, the faceting effect discussed here will 
remain unless accounted for via shaping of the PFCs or mounting structures to 
better approximate a conical surface.  This should be taken into account when 
considering the full scope of work necessary to make the OBD a ‘high heat flux’ 
handling structure, in contrast to simply restricting operations. 
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Figure 2:  Setup of the geometry for a vertical plate, faceted divertor. 
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Figure 3:  Exacerbated, 𝒏 = 𝟗, vertical plate faceted divertor with 𝜶 = 𝟏𝟓𝒐, highlighting the how 
the impact angle changes across the facet and can become tangent, leading to shadowing. 
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Figure 4: Enhancement for the NSTX-U OBD with 𝜽𝒑𝒐𝒍 = 𝟎𝒐, and varying angles of incidence. 

Figure 5: Enhancement for the NSTX-U OBD with 𝜽𝒑𝒐𝒍 = 𝟐𝟎𝒐, and varying angles of incidence. 
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Figure 6: Enhancement for the NSTX-U OBD with 𝜽𝒑𝒐𝒍 = 𝟒𝟎𝒐, and varying angles of incidence. 
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APPENDIX A:  Calculation of the Magnetic Field and Surface Normal Dot 
Product for a Faceted Surface 
 

Computing �̂� ∙ �̂� is simply a matter of keeping track of coordinate systems and 
field and surface parameterizations.  The axisymmetric magnetic field in a 
tokamak is 
 

𝐵  = 𝐵  𝜙 + 𝐵  𝑃 = 𝐹(𝜓)∇𝜙 + ∇𝜙 × ∇𝜓 
 

Where ∇𝜙 = 𝑅�̂� and 𝜓 = (1 2𝜋⁄ ) ∫ 𝐵  𝑝 ∙ 𝑑 𝐴  is the poloidal flux function.  The 

poloidal field can be further broken down into the radial field, 𝐵𝑅 = −𝑅−1 𝑑𝜓 𝑑𝑍⁄  

and vertical field, 𝐵𝑍 = 𝑅−1 𝑑𝜓 𝑑𝑅⁄ .  The functions for 𝐹(𝜓) and 𝜓(𝑅, 𝑍) are found 
using equilibrium codes when can forward model the expected fields from coil 
currents and assumptions about the plasma or attempt to infer these from 
experimental measurements.  This is a standard forward and inverse problem 
that is solved throughout the community, so it can be assumed that the magnetic 
field unit vector,   
 

�̂� =
𝐵𝑅

𝐵
�̂� +

𝐵𝜙

𝐵
�̂� +

𝐵𝑍

𝐵
𝑍  

 

is known everywhere, with 𝐵2 = 𝐵𝜙
2 + 𝐵𝑅

2 + 𝐵𝑍
2.  For non-conical surfaces, the 

radial and azimuthal unit vectors need to be converted, and we will use co-

located Cartesian system that for 𝜙 = 0, has �̂� = �̂� and �̂� = �̂�, which is the 
Front/Top/Right system in Figure 7, referred to as (𝑥𝑦𝑧)0.  This allows the field 
unit vector to be expressed as 
 

�̂� = 𝐵−1[(𝐵𝑅 cos 𝜙 − 𝐵𝜙 sin 𝜙)�̂� + (𝐵𝑅 sin 𝜙 + 𝐵𝜙 cos 𝜙)�̂� + 𝐵𝑍�̂�] 

 
The faceted surface is a rotated and displaced plane, also shown in Figure 7 as 
Plane 11, referred to as (𝑥𝑦𝑧)1.  For a single rotation of 𝜃𝑠𝑢𝑟𝑓 about �̂�0, �̂�1 is the 

surface normal which in the (𝑥𝑦𝑧)0 coordinate system is 
 

�̂� = − sin 𝜃𝑠𝑢𝑟𝑓�̂� + cos 𝜃𝑠𝑢𝑟𝑓 �̂� 

 

Note that a further rotation about �̂�1 would be used for things like fish-scaling or 
to study leading edges.  Before combining, another change in parameterization is 
proposed, since in many cases, the radial and vertical field are generally not 
numbers that are not carried or listed in all analysis like in the tables for JEMv3.  
As shown in in Figure 2, the poloidal field is known (or designed to have) some 
misalignment with the surface normal, 𝜃𝑝𝑜𝑙 making  

 

𝐵𝑅 = 𝐵𝑝 sin(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙) 

𝐵𝑍 = −𝐵𝑝 cos(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙) 
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Combining these and computing �̂� ∙ �̂� results in  
 

�̂� ∙ �̂� = − sin 𝜃𝑠𝑢𝑟𝑓 [
𝐵𝑝

𝐵
sin(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙) cos 𝜙 −

𝐵𝜙

𝐵
sin 𝜙] +

𝐵𝑝

𝐵
cos 𝜃𝑠𝑢𝑟𝑓 cos(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙) 

 

In the limit of 𝜃𝑠𝑢𝑟𝑓 → 0 this reduces to �̂� ∙ �̂� =
𝐵𝑝

𝐵
cos 𝜃𝑝𝑜𝑙 and there is no 

dependence on 𝜙 as expected.  In the limit of 𝜃𝑠𝑢𝑟𝑓 → 𝜋 2⁄  the dot product 

becomes �̂� ∙ �̂� = − (
𝐵𝑝

𝐵
cos 𝜃𝑝𝑜𝑙 cos 𝜙 −

𝐵𝜙

𝐵
sin 𝜙). 

 
One further reduction (or complication) can be to replace the field ratios, defining 
𝑏𝑟𝑎𝑡 = 𝐵𝑇/𝐵𝑃 where the field line angle, 𝛼, for a horizontal plate (𝜃𝑠𝑢𝑟𝑓 = 0) with 

𝜃𝑝𝑜𝑙 → 0 is 𝛼 = atan 1/𝑏𝑟𝑎𝑡.  This makes the dot product 

 

�̂� ∙ �̂� = −
sin 𝜃𝑠𝑢𝑟𝑓

√1 + 𝑏𝑟𝑎𝑡
2

[sin(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙) cos 𝜙 − 𝑏𝑟𝑎𝑡 sin 𝜙 +
cos(𝜃𝑠𝑢𝑟𝑓 + 𝜃𝑝𝑜𝑙)

tan 𝜃𝑠𝑢𝑟𝑓
] 

 

and an enhancement factor is defined to be 𝐸𝐹 ≡ (�̂� ∙ �̂�)/(�̂� ∙ �̂�)
𝜙=0

 which for 

𝜃𝑠𝑢𝑟𝑓 → 𝜋/2 and 𝜃𝑝𝑜𝑙 → 0  reduces to 𝐸𝐹 = cos 𝜙(1 − tan 𝜙 / tan 𝛼).  Since we 

expect that 𝜙 is relatively small for a reasonably designed divertor, the primary 
change in the heat flux is to linearly increase (and decrease) away from the 
center towards (away) from the direction of the field.  This also foreshadows 

something strange happening when 𝜙 > 𝛼, which is discussed in Appendix B. 
  

Figure 7: Layout of the facet coordinate system (Plane 11) from the center of the tokamak center. 
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APPENDIX B:  Calculation of Shadowed Areas on a Faceted, Vertical Plate 
Divertor 
 
As discussed in the main text, when toroidal angle of the facet becomes large 

relative to the angle of incidence from the plasma, 𝛼, shadowed areas will 
develop on the tile.  While the heat flux enhancement can computed from the 

change of �̂� ∙ �̂�, its domain need to be computed independently.  In practice, this 
can done by assuming regions on the tile beyond which the field lines become 
tangent, and then use power balance to calculate the other angle, but in this 
Appendix, for the case of the vertical plate divertor, a set of implicit equations can 
be solved which can be shown to be consistent with that approach. 
 
Power Balance 

For a conformal surface, the power per unit height on the plate, 𝑃𝑐𝑦𝑙
′ , is 

 

𝑃𝑐𝑦𝑙
′ = 𝑛 ∫ 𝑞∥ sin 𝛼 𝑅𝑜𝑑𝜙

+Δ𝜙/2

−Δ𝜙/2

 

 

where 𝑛 is the number of facets and Δ𝜙 = 2𝜋/𝑛.  For the faceted plates of length 
Δ𝑙, the same amount of power, 𝑃𝑓𝑙𝑎𝑡

′ , must be exhausted with 

 

𝑃𝑓𝑙𝑎𝑡
′ = 𝑛 ∫ 𝑞∥

+Δ𝑙 2⁄

−Δ𝑙 2⁄

�̂� ∙ �̂� 𝑑𝑙 

 

Setting the two equal to each other and converting the integral over 𝑑𝑙 to 𝑑𝜙 
 

𝑛𝑞∥ sin 𝛼 𝑅𝑜Δ𝜙 = 𝑛𝑞∥ ∫
�̂� ∙ �̂�

cos2 𝜙
𝑅𝑜𝑑𝜙

+Δ𝜙/2

−Δ𝜙/2

 

 

Δ𝜙 = ∫
�̂� ∙ �̂�

sin 𝛼

1

cos2 𝜙
𝑑𝜙

+Δ𝜙/2

−Δ𝜙/2

 

 
This gives an easy way to check and make sure the calculation has been done 
properly, as well as demonsrates a suitable enhancment factor to be defined, 

𝐸𝐹 = �̂� ∙ �̂� sin 𝛼⁄ . 
 
Enhancment Factor Limits 

The equation for �̂� ∙ �̂� that is derived in Appendix A can be computed for an 

arbitrary range of 𝜙, but this does not indicate, directly, which areas are 

shadowed.  On the 𝐸𝐹 < 1 side of the facet, when �̂� ∙ �̂� crosses zero, the 

remaining region is shadowed.   For 𝐸𝐹 > 1, either power balance or the 
following calculation can be used.  This is derived for 𝜃𝑠𝑢𝑟𝑓 = 90𝑜 and is shown to 

be consistent with power balance.  For non-vertical, faceted divertors, a more 
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complicated analytical formalism is requried, so power balance is recommended 
and is what is used in the main section of the memo for the NSTX-U outboard 
divertor. 
 

In Figure 9 and Figure 10, the relevant triangles are highlighted for the 𝑛 = 9 
faceted divertor with 𝐵𝑍 = 0 (𝜃𝑝𝑜𝑙 = 0) and tan 𝛼 = 𝐵𝑅/𝐵𝜙 with 𝛼 = 15𝑜.  The field 

line which just misses the facet to the right is constructed geometrically, by 
extrapolating a the field line to progressively larger cicles, and re-adjusting the 

angle to be 15𝑜.  In practice this is a logrithmic spiral.  There are two triangles 

which are used to find the the angle, 𝜙′, from center, after which the shadowed 
area begins on the 𝐸𝐹 > 1 side of the facet.  Equating the sum of the vertical 
distances gives 
 

𝑅𝑜

cos 𝛼
cos(Δ𝜙 − 𝛼) + 𝑙2 sin Δ𝜙 = 𝑅′ cos 𝜙′ 

 
1

cos 𝛼
cos(Δ𝜙 − 𝛼) + (tan

Δ𝜙

2
− tan 𝛼) sin Δ𝜙 =

1

cos 𝛼
𝑒(Δ𝜙−𝜙′−𝛼) tan 𝛼 cos 𝜙′ 

 

If 𝛼 = Δ𝜙/2  then the LHS reduces to 1 and the solution becomes 𝜙′ = Δ𝜙/2, as 
expected.  An approximate solution could be found, but its simply easier to 
numerically solve this relation.  Energy balance can be used to confirm that the 

integration bounds move from −
Δ𝜙

2
< 𝜙 < +

Δ𝜙

2
 to −𝛼 < 𝜙 < 𝜙′. 

 
In Figure 8, the heat flux enhancment is shown for a vertical plate divertor with 
𝑛 = 96, with a 𝑏𝑟𝑎𝑡 which correspond to 𝛼 = 5.7𝑜 (𝑏𝑟𝑎𝑡 = 10) to 𝛼 = 0.95𝑜 
𝑏𝑟𝑎𝑡 = 60).  For large poloidal flux expansion, this effect is important and creates 

a large amount of shadowed area.  For the ITER monoblock divertors, 𝑛~1000, 

so the effect is much weaker.  For Alcator C-Mod, the outer divertor has 𝑛 = 120, 
but the tiles are machined to have a cylindirical front face, avoiding the 
enhancement. 
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Figure 8: Calculation of heat flux enhancement factor, 𝑬𝑭, for vertical plate, showing the 

shadowed regions for large values of 𝒃𝒓𝒂𝒕. 
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Figure 9: Top down view of faceted, vertical plate divertor for 𝒏 = 𝟗 and 𝜶 = 𝟏𝟓𝒐 exacerbating the effect. 
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Figure 10:  Zoom in of the setup shown in Figure 9 highlighting the shadowed region for 𝑬𝑭 > 𝟏 
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Record of Changes 
 

 

Rev. Date Description of Changes 

0 6/12/2017 initial draft release to PFCR-WG 

1 6/12/2017 Updated OBD to be 𝜃𝑠𝑢𝑟𝑓 = 21.5 and used 𝑛 = 48 after 

discussions with Mardenfeld correctly indicated the over/under 

tiles are on the same facet. 

   

   

   

 
 


