Princeton Plasma Physics Laboratory NSTX Experimental Proposal				
Title: Early divertor and H-mode development for long pulse in LSN				
OP-XP-507Revision: (Ref. OP-AD-97)				
	PROPOSAL APPROVA	ALS		
Author:	J. Menard		Date	May 2, 2005
ATI – ET Group Leader:	R. Maingi		Date	May 2, 2005
RLM - Run Coordinator:	J. Menard (S. Sabbagh)		Date	May 2, 2005
Responsible Division: Exp	perimental Research Operations	5		
<u>Chit R</u>	eview Board (designated by R	<u>tun Coordin</u>	<u>aator)</u>	
MINOR MODIFI	CATIONS (Approved by Expe	erimental Ro	esearch	Operations)

NSTX EXPERIMENTAL PROPOSAL

Early divertor and H-mode development for long pulse in LSN

OP-XP-507

1. Overview of planned experiment

This experiment will attempt to further increase the pulse-length at high- β in long-pulse NSTX plasmas. This work is a continuation of previous proposals XP432 (long-pulse development), XP440 (develop early H-mode startup), and XP451 (very early LSN). We will attempt to divert the plasma by t=50ms with good gap control. An I_P ramp-rate scan will be utilized to maximize I_P by t=50ms. A pause in the current ramp will then be used to attempt to induce H-mode. NBI timing and X-point position will be scanned if early H-mode is not easily obtained. The plasma lower triangularity and squareness will then be adjusted to try to reduce tearing and ELM activity in the discharge. Scans of TF and/or plasma current will then be performed to find the maximum achievable flat top duration.

2. Theoretical/ empirical justification

High elongation, stronger shaping (via PF1B), and early H-mode have resulted in NSTX record pulse-length discharges at high current ($I_P \ge 1MA$) in a lower-single-null divertor configuration. However, these discharges suffer from increased tearing activity in the flat-top and larger ELMs than obtained previously in lower κ =2-2.1 LSN plasmas. The experiment aims to further reduce both ohmic flux consumption and deleterious MHD activity.

3. Experimental run plan

Day 1 – 30 shots

- a) Re-obtain FY04 long-pulse discharges at 4.5kG and document *q* profile (10 shots)
 i) <u>Multiply all PF1AL and PF1AU normalized current waveforms × 2.0</u>
 ii) Reproduce 0.8MA (112546), 0.9 (112570), 1.0 (112581) and 1.2 MA (112596)
 iii) Document *q*(R,t) of existing early H-mode scenarios with MSE
 b) Modify early discharge evolution to divert ASAP and reduce flat-top I_P (5 shots)
 i) Reproduce 113460 with 1.2MA flat-top and diverted boundary at 50ms
 ii) Reduce flat-top current to 1MA at t=230ms

 (1) Remove source C, move source A as early as possible without flat-top disruption

 c) Find highest stable I_P ramp-rate before t=50ms in 1MA target from 3.b.ii (15 shots)
 i) Increase I_P request at t=50ms from 350kA in 100kA increments
 ii) Increase current linearly from I_P value at t=50ms to 1MA at t=230ms
 - iii) Control inner gap = 8cm, outer gap = 10cm during ramp and flat-top

Day 2 - 30 shots

d)	Attempt to induce H-mode at t=50ms at highest stable current from 3.c	(10 shots)
	i) Add current pause after t=45ms for 15ms	
	ii) Move source A start-time to t=35ms if it is not already on that early	
	iii) If H-mode transition is not obtained, add source B beam at t=40ms	
	iv) If transition still not obtained, reduce bottom X-point height	
	v) If transition still not obtained, increase bottom X-point major radius with PF2	
e)	Scan I_P ramp-rate after t=50ms to minimize tearing (w/ or w/o early H-mode)	(5 shots)
f)	Scan lower squareness during ramp and flat-top to determine impact on MHD	(5 shots)
g)	Maximize plasma flat-top duration	(8 shots)
	i) If pulse-length is limited by TF coil, reduce TF in 0.25kG steps at fixed I_P	
	ii) If pulse-length is limited by OH coil or MHD, reduce I_P in 0.50kA steps at fix	ked TF
h)	Increase IP to 1.2MA to document OH, TF, and/or MHD limits at high current	(2 shots)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

The usual diagnostic capabilities are required, NBI voltages are A, B, C = 90, 90, 80kV

5. Planned analysis

EFIT, TRANSP, MPTS, CHERS, and internal magnetic sensor analysis will be performed.

6. Planned publication of results

Results will be published in conference proceedings and/or journal such as Nuclear Fusion or Physics of Plasmas within one year of experiment.

PHYSICS OPERATIONS REQUEST

Early divertor and H-	Early divertor and H-mode development for long pulse in LSN OP-XP-507				
Machine conditions (s	specify ranges	as appropriate)			
I _{TF} (kA): 42-53kA	Flat	top start/stop (s): _	0.02s_/_1-1.5s		
$I_{P}(MA): 0.8-1.2$	Flat	top start/stop (s):	0.12-0.18 / 0.4		
Configuration: LS	Ν				
Outer gap (m):	5-10cm,	Inner gap (m):	4-6cm		
Elongation k:	2.1-2.5,	Triangularity δ :	0.5-0.7		
Z position (m):	0.00				
Gas Species: D ,	Injector	r: CS Midplane, C	Outer Midplane		
NBI - Species: D,	Sources: <u>A,B</u>	<u>,C</u> Voltage (kV): 9	00,90,80kV, Durat	ion (s): 1s	
ICRF – Power (M	W):, P	Phasing: N/A,	Durat	ion (s):	
CHI: Off					

Either: Previous shot numbers for setup: 112546, 112570, 112581, 112596, 113460

Or: Sketch the desired time profiles, including inner and outer gaps, κ , δ , heating, fuelling, etc. as appropriate. Accurately label the sketch with times and values.

DIAGNOSTIC CHECKLIST

Early divertor and H-mode development for long pulse in LSN

OP-XP-507

Diagnostic	Need	Desire	Instructions
Bolometer - tangential array	1	✓	
Bolometer array - divertor		✓	
CHERS	✓		
Divertor fast camera		✓	
Dust detector		✓	
EBW radiometers		✓	
Edge deposition monitor		✓	
Edge pressure gauges		✓	
Edge rotation spectroscopy		✓	
Fast lost ion probes – IFLIP		✓	
Fast lost ion probes – SFLIP		✓	
Filtered 1D cameras		✓	
Filterscopes	✓		
FIReTIP	✓		
Gas puff imaging		✓	
High-k scattering	1	✓ ✓	
Infrared cameras	1	· ·	
Interferometer – 1 mm	1	✓ ✓	
Langmuir probes - PFC tiles		\checkmark	
Langmuir probes - RF antenna		\checkmark	
Magnetics – Diamagnetism	✓	-	
Magnetics – Flux loops	 ✓		
Magnetics – Locked modes	· ·		
Magnetics – Pickup coils	 ✓		
Magnetics - Rogowski coils	· ·		
Magnetics - RWM sensors			
Mirnov coils – high frequency	· ·		
Mirnov coils – poloidal array	· ·		
Mirnov coils – toroidal array	· ·		
MSE	 ✓		
Neutral particle analyzer		\checkmark	
Neutron Rate (2 fission, 4 scint)	✓	-	
Neutron collimator	-	✓	
Plasma TV	✓		
Reciprocating probe		\checkmark	
Reflectometer - FM/CW		· ·	
Reflectometer - fixed frequency homodyne		· •	
Reflectometer - homodyne correlation		\checkmark	
Reflectometer - HHFW/SOL		· ✓	
RF antenna camera		· ✓	
RF antenna probe		· •	
Solid State NPA		· ✓	
SPRED	+	· ·	
Thomson scattering - 20 channel			
Thomson scattering - 20 channel	+ •	✓	
Ultrasoft X-ray arrays		· ·	
Ultrasoft X-ray arrays - 2 color	+ •	\checkmark	
Visible bremsstrahlung det.	+	✓ ✓	
Visible spectrometers (VIPS)	+	✓ ✓	
X-ray crystal spectrometer - H	+	▼ ✓	
X-ray crystal spectrometer - V		▼ ✓	
X-ray pinhole camera		▼ ✓	
		▼ ✓	
X-ray TG spectrometer			