Princeton Plasma Physics Laboratory NSTX Experimental Proposal					
Title: Long Pulse Plasmas at Lower Toroidal Fields					
XP-509	Revision:	(<i>Ref. OP-Al</i> Expiration	Effective Date: 03/02/05 (<i>Ref. OP-AD-97</i>) Expiration Date: (2 yrs. unless otherwise stipulated)		
	PROPOSAL AI				
Author:C. E. Kesse	l, J. Menard		Date05/17/05		
ATI – ET Group L	eader:R. Maingi, C. E. Kessel	l (deputy)	Date 05/17/05		
RLM - Run Coordi	nator: J. Menard (S. Sat	obagh)	Date		
Responsible Divisio	n: Experimental Research O	perations			
MINOR MO	ODIFICATIONS (Approve	ed by Experimental R	esearch Operations)		

NSTX EXPERIMENTAL PROPOSAL

Long Pulse Plasmas at Lower Toroidal Fields

1. Overview of planned experiment

Establish long pulse discharges at varying toroidal fields, plasma current and elongation, to examine the impact on pulse length from the safety factor/current profile evolution

2. Theoretical/ empirical justification

Simulations of NSTX with NBI to reach 100% non-inductive current fraction have shown that high elongation increases off-axis bootstrap current, density control is critical to control the non-inductive current sources, early heating/H-mode transition can significantly delay the onset of q(0) or qmin reaching 1, and broader beam driven current profiles can keep q(0) and qmin > 1.5 even at increased plasma current. In the 2004 run campaign, high elongation plasmas were demonstrated, early heating/H-mode in the current ramp was achieved, longer pulses even at plasma currents up to 1.2 MA, and MSE was installed and operational. These results indicate it is time to do systematic discharges that vary the current/safety factor profile to understand what is limiting the pulse length. These can be compared with simulations to identify the best approaches to reach 100% non-inductive high beta discharges.

3. Experimental run plan

2005 shot reference: 115755 (800kA), 115763 (900kA), 115764 (1 MA)

- 1) Ip = 800 kA, kappa \approx 2.25, Bt = 0.45T (2 shots)
- 2) Ip = 800 kA, kappa \approx 2.0, Bt = 0.45T (**2 shots**)
- 3) Ip = 800 kA, kappa \approx 2.5 (highest without VDE), Bt = 0.45 (2 shots)
- 4) Ip = 800 kA, kappa \approx 2.25, Bt = 0.425T (**2 shots**)
- 5) Ip = 800 kA, kappa \approx 2.0, Bt = 0.425T (**2 shots**)
- 6) Ip = 800 kA, kappa \approx 2.5, Bt = 0.425T (**2 shots**)
- 7) Ip = 800 kA, kappa \approx 2.25, Bt = 0.40T (**2 shots**)
- 8) Ip = 800 kA, kappa \approx 2.0, Bt = 0.40T (2 shots)
- 9) Ip = 800 kA, kappa \approx 2.5, Bt = 0.40T (**2 shots**)
- 10) Ip = 800 kA, kappa \approx 2.25, Bt = 0.375T (**2 shots**)
- 11) Ip = 800 kA, kappa \approx 2.0, Bt = 0.375T (2 shots)
- 12) Ip = 800 kA, kappa \approx 2.5, Bt = 0.375T (**2 shots**)
- 13) Ip = 900 kA, a few cases from above (4 shots)
- 14) Ip = 1 MA, a few cases from above (4 shots)

Total shots = 24 (+8 for higher I_P)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Time for "cross-cutting" shape control development for high elongation with new PF1A, LSN Utilizing early heating/H-mode at 60-80ms, 2 NB sources, flat-spot in Ip ramp NBI, all sources at 90 keV for up to 1.5s (source A at 90 keV for MSE) NBI timing is B at 60 ms, A at 80 ms, C at 120 ms (possible change in C timing if necessary) MSE diagnostic in equilibrium reconstruction.

5. Planned analysis

EFIT analysis with MSE constraint TRANSP analysis TSC free-boundary analysis

6. Planned publication of results

Present results at APS meeting, subsequently submit for publication in Nuc. Fus. Or Phys. Plasmas.

PHYSICS OPERATIONS REQUEST

Long Pulse Plasmas at Lower Toroidal FieldsXP-509						
Machine conditions (s	Machine conditions (specify ranges as appropriate)					
I _{TF} (kA): 41-53	Flattop st	art/stop (s): 0/1.0				
I _P (MA): 0.8-1.0	Flattop st	art/stop (s): 0.175	5-0.250/1.0			
Configuration: LS	N					
Outer gap (m):	0.05-0.10 , Inner gap (m): $> 2cm$					
Elongation κ:	2.0 - 2.5 , Triangularity δ : > 0.5					
Z position (m):	Z position (m): use ref shot					
Gas Species: D , Injector: Midplane/Inner Wall (use ref shot)						
NBI - Species: D,	Sources: A/B	/C, Voltage (kV): 90 ,	Duration (s): 1.5		
ICRF – Power (MW): 0 , Phasing: Heating / CD , Duration (s):						
CHI: OFF						

Either: Previous shot numbers for setup: **115755** (**0.8MA**), 115763 (0.9MA), 115764 (1 MA)

Or: Sketch the desired time profiles, including inner and outer gaps, κ , δ , heating, fuelling, etc. as appropriate. Accurately label the sketch with times and values.

DIAGNOSTIC CHECKLIST

Long Pulse Plasmas at Lower Toroidal Fields

XP-509

Diagnostic	Need	Desire	Instructions
Bolometer - tangential array			
Bolometer array - divertor			
CHERS	Х		
Divertor fast camera			
Dust detector			
EBW radiometers			
Edge deposition monitor			
Edge pressure gauges			
Edge rotation spectroscopy			
Fast lost ion probes – IFLIP	X		
Fast lost ion probes – SFLIP	X		
Filtered 1D cameras	Δ		
Filterscopes			
FIRETIP	X		
Gas puff imaging	A		
High-k scattering			
Infrared cameras			
Interferometer – 1 mm	X		
Interferometer – 1 mm	Λ		
Langmuir probes - PFC tiles Langmuir probes - RF antenna		┼───┤	
	V		
Magnetics – Diamagnetism	<u>X</u>		
Magnetics – Flux loops	√		
Magnetics – Locked modes	X		
Magnetics – Pickup coils	√		
Magnetics - Rogowski coils	✓ 		
Magnetics - RWM sensors	X		
Mirnov coils – high frequency	<u>X</u>	-	
Mirnov coils – poloidal array	X		
Mirnov coils – toroidal array	<u> </u>	-	
MSE	X		
Neutral particle analyzer	X		
Neutron Rate (2 fission, 4 scint)	X		
Neutron collimator			
Plasma TV			
Reciprocating probe			
Reflectometer - FM/CW			
Reflectometer - fixed frequency homodyne			
Reflectometer - homodyne correlation			
Reflectometer - HHFW/SOL			
RF antenna camera			
RF antenna probe			
Solid State NPA	Х		
SPRED			
Thomson scattering - 20 channel	\checkmark		
Thomson scattering - 30 channel		Х	
Ultrasoft X-ray arrays			
Ultrasoft X-ray arrays - 2 color			
Visible bremsstrahlung det.	Х		
Visible spectrometers (VIPS)			
X-ray crystal spectrometer - H			
X-ray crystal spectrometer - V			
X-ray PIXCS (GEM) camera			
X-ray pinhole camera		1	
X-ray TG spectrometer			
	- I		