Princeton Plasma Physics Laboratory NSTX Experimental Proposal									
Title: Edge turbulence and blobs during H-mode									
OP-XP-622	DP-XP-622Revision: Effective Date: 5 May 06 (<i>Ref. OP-AD-97</i>) 2006 Expiration Date:								
	PROPOSAL APPROV	ALS							
Author: R. Maqueda, J. B	oedo		Date						
ATI – ET Group Leader:	R. Maingi		Date						
RLM - Run Coordinator:	R. Raman		Date						
Responsible Division: Exp	perimental Research Operation	IS							
MINOR MODIFI	CATIONS (Approved by Exp	erimental R	esearch Operations)						
Scheduling close to a boronization may be necessary to access H-mode at low heating power, ideally down to Ohmic H-modes. The "base" shot for this XP, #119083 but with 1.6 MW NBI beam power (src. A) should be "tested" before the XP to evaluate its H-mode access capability.									

NSTX EXPERIMENTAL PROPOSAL

Edge turbulence and blobs during H-mode

1. **Overview of planned experiment**

In NSTX the edge turbulence/blobs/intermittency is much reduced during H-modes compared to typical L-mode (or Ohmic) activity. This is typically characterized by a reduction in the blob frequency during H-modes in contrast with a reduction in the density characteristic of the blobs. In addition the blob frequency during H-modes is seen to increase as the time from the transition increases. In the case for instance of Ohmic H-modes this frequency remains low (almost non-existent blobs) through out the H-mode phase. In other cases, this frequency approaches that characteristic of L-mode blobs.

This experiments plans to explore the conditions at which H-modes turbulence/blobs are observed, both in terms of the edge pedestal and in terms of the plasma shape and X-point geometry.

2. Theoretical/ empirical justification

It is well known that the cross-field transport in the edge of tokamaks has a substantial, if not dominant, contribution from intermittent convective processes. Filamentary structures, with a long parallel scale length relative to the magnetic field, have been measured in many experiments. In the National Spherical Torus Experiment (NSTX) the radial vs. poloidal cross section of these filaments, known as 'blobs', is imaged with high spatial and temporal resolution with a diagnostic known as Gas Puff Imaging (or GPI). In this diagnostic, a local gas puff is used to increase the contrast and brightness of the blobs while observing the emitting gas cloud (approximately) parallel to the local magnetic field.

The 'blob' phenomena are observed to be born from edge turbulence which is, in turn, most likely due to drift wave and/or curvature-driven instabilities. In general, in NSTX, both

a) Ohmic (L-mode): shot 115513, from 191.233 ms to 191.299 ms

Fig. 1 Blob regimes in NSTX. Sequence of images obtained at 120000 frames/s with each image exposed for 3 μ s. A deuterium puff is injected from the right and D_{α} light is imaged. Each image corresponds to ~23 cm x 23 cm (solid line: separatrix, dotted line: antenna limiter shadow).

turbulence and blobs are substantially reduced during H-mode respect to the Ohmic or L-mode (lower confinement) regimes. An example is shown in Fig. 1 in which images from a \sim 23 cm x 23 cm radial vs. poloidal portion of the edge just above the outer midplane are shown. The characteristics of the H-mode turbulence and blobs in NSTX present a continuum from a turbulence level just above that measurable (a "quiescent" H-mode as in Fig. 1(b)) to that approaching L-mode level (an "active" H-mode, Fig. 1(c)), at least for brief periods of time. The H-mode blobs observed in NSTX seem to be highly localized and are not the same as small (type V) ELMs.

Theoretical predictions from edge turbulence codes like BOUT indicate that the governing process for the edge turbulence blobs, the resisitive ballooning instability, links the activity to the pressure pedestal/gradient. In addition, the X-point geometry/topology is an important factor in the physics behind the edge turbulence.

This experimental proposal will test the predictions of these codes as well as providing important data for benchmarking. The dependence with the pedestal characteristics will be explored, trying to uncouple the temperature and density pedestals as well as exploring the dependence with the magnetic topology (LSN, DN, and USN) and X-point geometry (low and high triangularity/elongation).

3. Experimental run plan

The main scan in this XP is a power (NBI) scan with additional shots taken at the intermediate value of 1.6 MW. Each successful shot will be repeated 2 times. In addition, <u>up to</u> 2 unsuccessful shots (discharge development) will be allowed for each shot.

BASE shot:

The base shot has the following characteristics: 800 kA, 4.5 KG, LSN ($d_{rsep} \sim -1.5$ cm), low κ , δ , 1.6 MW NBI, with HFS fuelling. Coil configuration should be similar to **shot 119083** with the following changes:

- 1 source NBI, source A (de-rated to 1.6 MW).

- Outer gap adjusted to make best use the 30 channel MPTS.

Shot sequence:

The list below is divided into two groups, in priority order.

NBI source power (MW) indicated in last three columns: **bold** indicates source being used, "c" indicates source being configured for next needed power. (See "Physics Operation Request" section for timing of sources.)

#	NBI (MW)	Conf.	Goal	Other	A	B	С
1	0 (Ohmic)	LSN	H-mode		1.6	0.6	2
2	0.6	LSN	H-mode		1.6	0.6	2
3	1.6	LSN	H-mode	This is the base shot.	1.6	С	2
4	1.6	LSN	L-mode	if not obtained yet during #3.	1.6	С	2
5	1.6	LSN	H-mode	High fuelling (add SGI to HFS fuelling).	1.6	С	2

6	1.6	LSN	H-mode	Low fuelling (replace LFS for HFS			
				fuelling).	1.6	С	2
7	2	LSN	H-mode		С	С	2
8	4	LSN	H-mode		С	2	2
9	6	LSN	H-mode		2	2	2

Part 2

#	NBI (MW)	Conf.	Goal	Other	Α	В	С
10	0 (Ohmic)	DN	H-mode	give it a try.	с	с	2
11	0.6	DN	H-mode	give it a try.	с	0.6	2
12	1.6	DN	H-mode		1.6	0.6	2
13	1.6	DN	L-mode	if not obtained yet during			
				#12.	1.6	0.6	2
14	1.6	USN	H-mode	give it a try.	1.6	0.6	2
15	1.6	LSN	H-mode	High κ and δ .	1.6	0.6	2

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Well conditioned walls (as close to boronization as possible) to achieve H-mode access at low NBI power (ideally down to Ohmic H-modes). GDC between shots will be adjusted according to need (7 to 12 minutes). NBI power scanned up to 3 sources (start **B: 0.6 MW, A: 1.6 MW, C: 2.0 MW**).

GPI from time of L-H transition and scanning probe a must.

5. Planned analysis

EFIT/LRDFIT needed.

GPI and scanning probe data will be analyzed to infer characteristics of turbulence/blobs/intermittency.

6. Planned publication of results

If successful, results will be submitted to appropriate journal. Results will also be available for 2006 IAEA meeting.

PHYSICS OPERATIONS REQUEST

Edge turbulence and blobs during H-mode

OP-XP-622

Machine conditions (specify ranges as appropriate)

I _{TF} (kA): 4.5 kG	Flattop start/stop (s): -0.1/1.0
-------------------------------------	----------------------------------

I_P (MA): **0.8** Flattop start/stop (s): ~**0.17/0.35**

Configuration: Lower Single Null / Upper SN / Double Null

Outer gap (m): ~**0.06**, Inner gap (m): ~**0.04**

Elongation κ : **~2**, varied, Triangularity δ : **~0.5**, varied

Z position (m): 0.00

Gas Species: **D**, Injector: **Midplane / Inner wall/SGI**

NBI - Species: **D**, Sources: **A/B/C**, Voltage (kV): var., Duration (s): 0.5 (max)

ICRF – Power (MW): 0, Phasing: , Duration (s):

- CHI: Off
- *Either:* List previous shot numbers for setup: base shot is 800 kA, 4.5 KG, low κ , δ , LSN, 1.6 MW NBI, with HFS fuelling (use 119083 as model).

For USN swap PF3U/L and PF2U/L coil currents.

For DN make these coil currents symmetric.

Or: Sketch the desired time profiles, including inner and outer gaps, κ , δ , heating, fuelling, etc. as appropriate. Accurately label the sketch with times and values.

H-	mode	Ip (8	00kA)				
			Src	. A (2.0 N	MW)		
			Sro	. B (2.0 N	/W)		
			Src. Src.	C (2.0 VA (1.6 N B (0.6 N	IW) W)		

OP-	XP-622		
OP-	XP-622		

	5/6

DIAGNOSTIC CHECKLIST

Edge turbulence and blobs during H-mode

OP-XP-622

Diagnostic	Need	Desire	Instructions
Bolometer - tangential array		\checkmark	
Bolometer array - divertor		✓	
CHERS	✓		
Divertor fast camera		\checkmark	
Dust detector		✓	
EBW radiometers		✓	
Edge deposition monitor		✓	
Edge pressure gauges		✓	
Edge rotation spectroscopy		\checkmark	
Fast lost ion probes – IFLIP		\checkmark	
Fast lost ion probes – SFLIP		✓	
Filtered 1D cameras		\checkmark	
Filterscopes		✓	
FIReTIP		\checkmark	
Gas puff imaging	✓		Helium puffs preferable.
High-k scattering		√	
Infrared cameras		✓	
Interferometer – 1 mm		✓	
Langmuir probes - PFC tiles		\checkmark	
Langmuir probes - RF antenna		✓	
Magnetics – Diamagnetism		✓	
Magnetics – Flux loops	✓		
Magnetics – Locked modes		\checkmark	
Magnetics – Pickup coils	✓		
Magnetics - Rogowski coils	\checkmark		
Magnetics - RWM sensors		✓	
Mirnov coils – high frequency		√	
Mirnov coils – poloidal array		✓	
Mirnov coils – toroidal array		✓	
MSE		✓	
Neutral particle analyzer		\checkmark	
Neutron Rate (2 fission, 4 scint)		✓	
Neutron collimator		\checkmark	
Plasma TV		\checkmark	
Reciprocating probe	\checkmark		
Reflectometer - FM/CW		\checkmark	
Reflectometer - fixed frequency homodyne		\checkmark	
Reflectometer - homodyne correlation		\checkmark	
Reflectometer - HHFW/SOL		\checkmark	
RF antenna camera		\checkmark	
RF antenna probe		✓	
Solid State NPA		\checkmark	
SPRED		\checkmark	
Thomson scattering - 20 channel	\checkmark		
Thomson scattering - 30 channel		\checkmark	Extremely highly desirable
Ultrasoft X-ray arrays		✓	
Ultrasoft X-ray arrays - 2 color		\checkmark	
Visible bremsstrahlung det.		\checkmark	
Visible spectrometers (VIPS)		\checkmark	
X-ray crystal spectrometer - H	ļ	\checkmark	
X-ray crystal spectrometer - V		\checkmark	
X-ray PIXCS (GEM) camera		✓	
X-ray pinhole camera		\checkmark	
X-ray TG spectrometer			