Princeton Plasma Physics Laboratory NSTX Experimental Proposal Dependence of the H-mode Pedestal Structure on Aspect Ratio					
	PROPOSAL AF	PPROVALS			
Responsible Author:			Date		
ATI – ET Group Lea	der:		Date		
RLM - Run Coordinator:		Date			
Responsible Division:	Experimental Research O	perations			
	hit Review Board (design	hated by Run Coordin	nator)		
	DIFICATIONS (Approve	a by Experimental R	esearch Operations)		

NSTX EXPERIMENTAL PROPOSAL

TITLE: Dependence of the H-mode Pedestal on Aspect RatioNo. OP-XP-529AUTHORS: R. Maingi, T. Osborne, A. KirkDATE: 4/18/2008

1. Overview of planned experiment

We propose to study the dependence of pedestal structure (heights, widths, and gradients) on aspect ratio. The basic idea is to match certain dimensionless parameters (ρ_* , v_*^e , and certain shape parameters) between DIII-D, NSTX and MAST to determine if the pedestal structure, i.e. height, width and gradient, is dependent on the aspect ratio. More specifically we hope to resolve the dependence of the T_e width and the pressure pedestal height on aspect ratio. This experiment was originally executed on 4/25/06, and we are requesting new data based on analysis of the old data.

2. Theoretical/ empirical justification

Profile and stability analysis of the NSTX discharges has been completed for discharges from 4/25/06. The natural ELM frequency obtained for 120190-120205 was ~ the Thomson d/acq frequency. i.e. 60 Hz, such that only a few profiles just before the ELM triggering were obtained. Here we propose to change the Thomson timing to be 5 ms apart, and to take repeat shots to insure sufficient profile resolution for optimum stability analysis. The profile analysis will be performed in the control room to judge when repeat shots are sufficient.

3. Experimental run plan

- I. Reproduce 120200, which has the Ip=0.73 kA, Bt=0.5 T. SGI @ 2400 torr from 100-300ms was used to reduce the CS gas to 200 torr. (2-3)
- II. Repeat the discharge until a sufficient number of profiles are obtained to allow profile fitting of the last 20% of the ELM cycle using Osborne's tools. (3-5)
- III. Repeat with 6 MW, as in 120202 (3-5)
- IV. Time permitting, repeat with 50% higher SGI rate to get rapid ELMs (3-5)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

This XP requires an operational NBI system, as well as the capability of DND discharges with the plasma control system. We desire HeGDC between shots of ~ 6.5 minutes for a 12.5 minute repetition rate.

5. Planned analysis

Profile analysis and edge stability calculations will be done with a number of codes.

6. Planned publication of results

APS 2008.

OP-XP-529 Rev. 2

PHYSICS OPERATIONS REQUEST

TITLE: Dependence of the H-1	node Pedestal on Aspect	Ratio No. OP-XP-529	
AUTHORS: R. Maingi, T. Os	DATE: 4/18/2008		
Machine conditions (specify rang	es as appropriate)		
I _{TF} (kA): 59 Flatto	start/stop (s): See #120200		
$I_{\rm P}$ (MA): 0.73 Flatto	start/stop (s):		
Configuration: Limiter / DN / LS	SN / USN		
Outer gap (m): 0.1	iter gap (m): 0.1 Inner gap (m): 0.05		
Elongation κ: 1.8	Upper/lower triangularity	γ δ: 0.5-0.6	
Z position (m): 0.0			
Gas Species: D	Injector(s): A/B/C		
NBI Species: D Sources: D	Voltage (kV): 90	Duration (s): <1.0	
ICRF Power (MW):	Phasing:	Duration (s):	
CHI: On / Off Bank capac	citance (mF):		
LITER: On / <u>Off</u>			
Previous shot numbers for setup:	120200, 1202	02	

DIAGNOSTIC CHECKLIST

TITLE: Dependence of the H-mode Pedestal on Aspect Ratio No. **OP-XP-529** AUTHORS: R. Maingi, T. Osborne, A. Kirk

DATE: 4/18/2008

Note special diagnostic requirements in Sec. 4				
Diagnostic	Need	Want		
Bolometer – tangential array		\checkmark		
Bolometer – divertor		\checkmark		
CHERS – toroidal	\checkmark			
CHERS – poloidal		\checkmark		
Divertor fast camera		\checkmark		
Dust detector				
EBW radiometers				
Edge deposition monitors				
Edge neutral density diag.		\checkmark		
Edge pressure gauges		\checkmark		
Edge rotation diagnostic		\checkmark		
Fast ion D_alpha - FIDA				
Fast lost ion probes - IFLIP				
Fast lost ion probes - SFLIP				
Filterscopes	\checkmark			
FIReTIP		\checkmark		
Gas puff imaging		\checkmark		
Hα camera - 1D		\checkmark		
High-k scattering				
Infrared cameras		\checkmark		
Interferometer - 1 mm				
Langmuir probes – divertor		\checkmark		
Langmuir probes – BEaP		\checkmark		
Langmuir probes – RF ant.				
Magnetics – Diamagnetism	\checkmark			
Magnetics – Flux loops	\checkmark			
Magnetics – Locked modes		\checkmark		
Magnetics – Pickup coils	\checkmark			
Magnetics – Rogowski coils	\checkmark			
Magnetics – Halo currents		\checkmark		
Magnetics – RWM sensors		\checkmark		
Mirnov coils – high f.	\checkmark			
Mirnov coils – poloidal array	\checkmark			
Mirnov coils - toroidal array	\checkmark			
Mirnov coils – 3-axis proto.				

Note special diagnostic	requirements	in Sec. 4
-------------------------	--------------	-----------

Diagnostic	Need	Want
MSE	\checkmark	
NPA – ExB scanning		
NPA – solid state		
Neutron measurements		
Plasma TV		\checkmark
Reciprocating probe		
Reflectometer – 65GHz		\checkmark
Reflectometer – correlation		\checkmark
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		\checkmark
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray arrays		\checkmark
Ultrasoft X-rays – bicolor		\checkmark
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		\checkmark
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		