Princeton Plasma Physics Laboratory NSTX Experimental Proposal

		oposa				
Title: Effect of Rotation on Energy and Impurity Confinement						
OP-XP-812	Revision:	Effective Date: 2/25/2008 Expiration Date: (2 yrs. unless otherwise stipulated)				
PROPOSAL APPROVALS						
Responsible Author: S. Ka	ye		Date			
ATI – ET Group Leader: S. Kaye		Date				
RLM - Run Coordinator: N	/I. Bell		Date			
Responsible Division: Expe	erimental Research Operations					
	eview Board (designated by R					
MINOR MODIFICATIONS (Approved by Experimental Research Operations)						

NSTX EXPERIMENTAL PROPOSAL

TITLE: Effect of rotation on energy and impurity confinement AUTHORS: S. Kaye, L. Delgado-Aparicio

No. **OP-XP-812**

DATE: Feb 12, 2008

1. Overview of planned experiment

The goal of this experiment is to study the effect of varying rotation on energy and impurity confinement and transport in steady H-modes. Steady n=3 braking fields will be used to vary the plasma rotation.

2. Theoretical/ empirical justification

ExB shear could have profound effect on local turbulence and transport, and rotation and shear can be varied using the n=3 braking. There were attempts to do this last year in dedicated scans, but MHD activity led to plasma distress, and the changes in transport properties could not be assessed properly. A subsequent NTM experiment used the n=3 braking fields without destabilizing MHD immediately, and these discharges will be used as a basis for this year's experiment. This XP addresses one of the elements of the 2008 Joule milestone.

3. Experimental run plan

- Attempt to attain MHD quiescent H-mode condition with no Lithium, shot 123848 (2-4 shots); no n=3 braking (decrease I_p to 0.9 MA, increase B_T to 5.5 kG)
- If this fails, attempt MHD quiescent condition with 121154 (2-4 shots); no n=3 braking
- If failure in ½ day: Cut losses and move on
 - Return later in no-Li portion of run, or with Li
- If successful in either condition
 - Increase n=3 fields in 4 to 5 steps
 - 400 A, 600 A, 650 A, 700 A, until MHD shortens discharge
 - » Ensure no large islands at any n=3 current (SXR, profiles)
 - 3 shots/condition: no impurity injection, impurity injection @ 400 ms, no impurity injection
- Total: 15-21 shots

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Shot development needed to attain MHD quiescent H-mode condition

5. Planned analysis

LRDFIT, TRANSP, NTV analysis (IPEC), specialized codes

6. Planned publication of results

Joule milestone, TTF, IAEA, PRL (?)

PHYSICS OPERATIONS REQUEST

TITLE: Effect of rotat confinement	tion on energy and impurity	No. OP-XP-812
AUTHORS: S. Kaye, I	L. Delgado-Aparicio	DATE: Feb 12, 2008
Machine conditions (speci	ify ranges as appropriate)	
I _{TF} (kA): 64 (5.5 kG)	Flattop start/stop (s):	
I _P (MA): 0.9	Flattop start/stop (s):	
Configuration: LSN		
Outer gap (m):	Inner gap (m):	
Elongation κ: 2.3	Upper/lower triangularity	δ: 0.8
Z position (m): 0		
Gas Species: D	Injector(s):	
NBI Species: D Sources:	: 3 Voltage (kV): 80, 90	Duration (s): full shot
ICRF Power (MW): 0	Phasing:	Duration (s):
CHI: Off Bar	nk capacitance (mF):	
LITER: Off (during init	tial attempt at XP)	

Previous shot numbers for setup: 123848, 121154

DIAGNOSTIC CHECKLIST

TITLE: Effect of rotation on energy and impurity confinement	No. OP-XP-812
AUTHORS: S. Kaye, L. Delgado-Aparicio	DATE: Feb 12, 2008

Diagnostic	Need	Want
Bolometer – tangential array	х	
Bolometer – divertor		
CHERS – toroidal	х	
CHERS – poloidal	х	
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic		X
Fast ion D_alpha - FIDA	х	
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		X
Filterscopes	х	
FIReTIP		X
Gas puff imaging		X
Hα camera - 1D		
High-k scattering		x
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes - divertor		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	X	
Magnetics - Flux loops	X	
Magnetics - Locked modes	X	
Magnetics - Pickup coils	X	
Magnetics - Rogowski coils	X	
Magnetics - RWM sensors	X	

Diagnostic	Need	Want
Mirnov coils – high f.	X	
Mirnov coils – poloidal array	X	
Mirnov coils – toroidal array	X	
MSE	x	
NPA – ExB scanning		
NPA – solid state		х
Neutron measurements	X	
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		X
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED	X	
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering	x	
Ultrasoft X-ray arrays	X	
Ultrasoft X-rays – bicolor	X	
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		х
X-ray crystal spectrom'r - H		
X-ray crystal spectrom'r - V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		X