Princeton Plasma Physics Laboratory NSTX Experimental Proposal			
Title: Core Momentum	Confinement Studies		
OP-XP-820	Revision:	Effective Date: 2/15/08 Expiration Date: (2 yrs. unless otherwise stipulated)	
	PROPOSAL APPROVA	ALS	
Responsible Author: S. Ka	ye		Date
ATI – ET Group Leader: S	. Kaye		Date
RLM - Run Coordinator: N	/I. Bell		Date
Responsible Division: Expo	erimental Research Operations	·	
	Eview Board (designated by R		

NSTX EXPERIMENTAL PROPOSAL

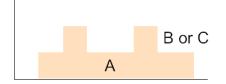
TITLE: Core momentum confinement studies AUTHORS: S. Kaye

No. **OP-XP-820** DATE: **2/15/08**

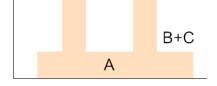
1. Overview of planned experiment

The goal of this experiment is to study the momentum confinement in an H-mode plasma core by applying perturbative torques through the use of beam blips.

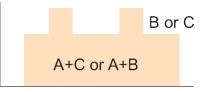
2. Theoretical/ empirical justification


This XP is an element of the study of the momentum confinement characteristics in NSTX plasmas. This study directly addresses the 2008 Joule milestone. This is a companion XP to 813, which will be using perturbative application of n=3 braking fields to study the momentum confinement characteristics in the outer part of the plasma.

3. Experimental run plan


- Attempt to attain MHD quiescent H-mode condition with no Lithium, shot 123848 (2 shots); no n=3 braking (decrease I_p to 0.9 MA, increase B_T to 5.5 kG) to establish steady-state momentum confinement baseline
 - This presumably will have been done in conjunction with XPs 812 and 813
- Establish beam blip duration/separation (4 shots)
 - Want to see change with both on and off, but to minimize duration/separation times to avoid significant profile evolution
 - Considerations are density profile evolution, momentum confinement time, fast particle slowing down time
 - Start off with 40 ms on/100 ms off (370-410, 510-550 ms)
- One steady source (A), one blip source (B)
 - If cannot achieve H-mode, then either
 - A+B A, then blip B, or
 - A+C, blip B
 - Fix I_p (0.7 MA), vary B_T (0.35, 0.45, 0.55 T) (6 shots)
 - Fix \dot{B}_{T} (0.55 T), vary I_{p} (0.9, 1.1 MA) (4 shots)

- Fix I_p (0.9 MA), B_T (0.55 T); perform 3 blip scenarios:


A) (4 shots, may be reduced to 2 shots, depending on blip scenario above and ability to achieve H-mode with one source)

B) (2 shots, again dependent on ability to achieve H-mode with one source)

C) (4 shots)

TABULAR SHOT LIST

Condition	I _p (MA)	B _T (T)	Steady Beam	Blip Beam
	-			
1	0.9	0.55	А	В
2	0.7	0.55	А	В
3	1.1	0.55	А	В
4	1.1	0.35	А	В
5	0.9	0.35	А	В
6	0.7	0.35	А	В
7	0.9	0.55	А	С
8	0.9	0.55	А	B+C
9	0.9	0.55	A+B	С
10	0.9	0.55	A+C	В

Total: 24 shots

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Discharge reproducibility, ability to achieve H-mode with one source

5. Planned analysis

LRDFIT, TRANSP, specialized codes

6. Planned publication of results

Joule milestone, TTF, IAEA, PRL (?)

PHYSICS OPERATIONS REQUEST

TITLE: Core momentum AUTHORS: S. Kaye	confinement studies	No. OP-XP-820 DATE: 2/15/08
Machine conditions (specify r	anges as appropriate)	
I_{TF} (kA): 64 kA (5.5 kG) Fla	attop start/stop (s):	
I _P (MA): 1.1 MA Fla	attop start/stop (s):	
Configuration: LSN		
Outer gap (m):	Inner gap (m):	
Elongation κ: 2.3	Upper/lower triangularit	ty δ: 0.8
Z position (m): 0		
Gas Species: D	Injector(s):	
NBI Species: D Sources: 3	Voltage (kV): 80, 90	Duration (s): full shot
ICRF Power (MW): 0	Phasing:	Duration (s):
CHI: Off Bank ca	apacitance (mF):	

LITER: Off (during initial attempt at XP)

Shot numbers for setup: 123848, 121154; baseline condition from XP812

DIAGNOSTIC CHECKLIST

TITLE: Core momentum confinement studies AUTHORS: S. Kaye

No. **OP-XP-820** DATE: **2/15/08**

Diagnostic	Need	Want
Bolometer – tangential array	X	
Bolometer – divertor		
CHERS – toroidal	X	
CHERS – poloidal	X	
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic		X
Fast ion D_alpha - FIDA	X	
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		X
Filterscopes	X	
FIReTIP		X
Gas puff imaging		х
Hα camera - 1D		
High-k scattering		X
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes - divertor		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	X	
Magnetics - Flux loops	X	
Magnetics - Locked modes	X	
Magnetics - Pickup coils	X	
Magnetics - Rogowski coils	X	
Magnetics - RWM sensors	X	

Diagnostic	Need	Want
Mirnov coils – high f.	Х	
Mirnov coils – poloidal array	X	
Mirnov coils – toroidal array	Х	
MSE	Х	
NPA – ExB scanning		
NPA – solid state		X
Neutron measurements	Х	
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		X
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED	Х	
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering	X	
Ultrasoft X-ray arrays	Х	
Ultrasoft X-rays – bicolor	Х	
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		X
X-ray crystal spectrom'r - H		
X-ray crystal spectrom'r - V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		X