Princeton Plasma Physics Laboratory NSTX Experimental Proposal Robustness of improved error field suppression in long-pulse discharges				
	PROPOSAL APPROV	ALS		
Responsible Author: J. Me	enard Jonathan E. M	enard	Date March 26, 2008	
ATI – ET Group Leader:	David Gates		Date	
RLM - Run Coordinator:	Michael Bell		Date	
Responsible Division: Exp	erimental Research Operations	5		
MINOR MODIFICATIONS (Approved by Experimental Research Operations)				

NSTX EXPERIMENTAL PROPOSAL

TITLE:Robustness of improved error field suppressionNo.OP-XP-823in long-pulse dischargesAUTHORS:J. Menard, D. Gates, S. Gerhardt, S. SabbaghDATE:03/26/2008

1. Overview of planned experiment

The combination of active suppression of n=1 RFA and n=3 pre-programmed error field correction (EFC) improved 900kA discharges in 2007. In particular, the plasma rotation was broadened and sustained which improved confinement and resulted in record pulse-length at I_p =900kA. This experiment will attempt to extend this improvement to a wider range of plasma current values for use by all experiments. This experiment will empirically determine if the n=3 error field present on NSTX is proportional to the plasma current and therefore can be attributed to a PF coil error field. This experiment will also attempt to optimize the n=1 feedback gain and low-pass filtering to improve EFC robustness.

2. Theoretical/ empirical justification

Improved EFC has been demonstrated to increase rotation, beta, and confinement, all of which are important for improved operation of NSTX and future ST devices such as NHTX and ST-CTF.

3. Experimental run plan DAY 1

A. Determine optimal n=3 EFC gain relative to I_{PF5} and/or I_{P}

- 1. Re-verify existence of n=3 EF in I_p =900kA reference discharge recent shot = 127252
 - i. Reload SPA currents from shot 125329 for n=3: $I_{SPA1,2,3} = +270A, +270A, -270A$
 - ii. Test $I_{SPA-1}/I_P = 0.3, 0, -0.3 \text{ kA/MA} (0.3 \text{ is optimal from 2007 data})$ (6 shots)
- 2. Optimize n=3 EFC for two new plasma currents: 700kA and 1.2MA
 - i. Start with $I_{n=3}/I_P = 0.3$ kA/MA and scale by: 0, 1, -1, 2, 1.5, 0.5 (12 shots)

B. Test combined n=3 EFC + n=1 RFA suppression for I_p=0.7, 0.9, 1.2MA (1.1MA as backup)

1. Add n=1 feedback – 2 shots for each I_p – use 2007 optimal gain and phase (6 shots)

DAY 2

C. Optimize n=1 RFA suppression controller

- 1. Reproduce proportional gain scan (from 0 to 0.7) of reference shots 125320-3 which used n=1 RFA feedback to suppress an externally applied n=1 error field (3 shots)
- 2. Scan RWM control proportional gain until feedback system is unstable (4 shots)
 - i. Add LPF to reduce coil currents as necessary to avoid very large SPA currents
- 3. With gain at highest stable value, increase τ_{LPF} from 0 to:
 - i. 1ms, 3ms, 10ms, 30ms, 100ms (2 shots for each τ_{LPF}) (10 shots)
- 4. For τ_{LPF} where AC RMS control power is reduced by factor 2-4, increase gain again and determine highest stable value, then reduce by 15% to operate below marginal (5 shots)
- 5. Test n=1 controller at 700kA and 1.2 (or 1.1)MA including optimal n=3 EFC (4 shots)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

The usual diagnostic capabilities are required, NBI voltage on A, B, C = 90, 90, 80kV.

Also need modified RWM/EF control algorithm with low-pass filter capability implemented.

5. Planned analysis

EFIT/LRDFIT, TRANSP, MPTS, CHERS, and RWM/EF sensor analysis will be performed.

6. Planned publication of results

Results will be published in conference proceedings and/or journal such as Nuclear Fusion or Physics of Plasmas within one year of experiment.

PHYSICS OPERATIONS REQUEST

TITLE:Robustness of improved error field suppression
in long-pulse discharges
AUTHORS:No. OP-XP-823
DATE: 03/26/2008Machine conditions (specify ranges as appropriate)DATE: 03/26/2008

$I_{TF}(kA)$:	53kA			Flattop	start/stop	(s): 0.2s			
$I_{P}(MA)$:	0.7, 0.9,	1.2 M	4	Flattop	start/stop	(s): 1.5 s			
Configuratio	on: DN	I/LSI	N						
Outer gap (n	n): 10	cm		Inner gap (m):		2-8cm		
Elongation k	:: 2. 2	2-2.6		Upper/lowe	er triangul	arity δ:	0.75 / 0).5	
Z position (r	n): O o	em							
Gas Species	: D			Injector(s):	CS mi	dplane, ou	ter mid	plane	
NBI Species	:D Sou	rces:	A, B,	C Volta	ge (kV):	90, 90, 80	kV D	uration (s):	1.5 s
ICRF Power	r (MW):	0		Phasing:	0	Durati	on (s):	0	
CHI:	Off	Bank	capaci	itance (mF):					

LITER: Off (reserve the right to use LITER in later experiments)

Either: List previous shot numbers for setup: 127252 (n=3 info from 125329)

Or: Sketch the desired time profiles, including inner and outer gaps, κ , δ , heating, fuelling, etc. as appropriate. Accurately label the sketch with times and values.

1	1	1	

DIAGNOSTIC CHECKLIST

TITLE: Robustness of improved error field suppression in long-pulse discharges

No. **OP-XP-823**

AUTHORS: J. Menard, D. Gates, S. Gerhardt, S. Sabbagh

DATE: 03/26/2008

Note special diagnostic requir	ements ir	n Sec. 4
Diagnostic	Need	Want
Bolometer – tangential array		X
Bolometer – divertor		
CHERS – toroidal	X	
CHERS – poloidal	X	
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		X
Edge pressure gauges		
Edge rotation diagnostic		X
Fast ion D_alpha - FIDA		X
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		X
Filterscopes		X
FIReTIP		X
Gas puff imaging		
Hα camera - 1D		X
High-k scattering		X
Infrared cameras		X
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	X	
Magnetics – Flux loops	X	
Magnetics – Locked modes	Χ	
Magnetics – Pickup coils	X	
Magnetics – Rogowski coils	X	
Magnetics – Halo currents		
Magnetics – RWM sensors	Χ	
Mirnov coils – high f.	Χ	
Mirnov coils – poloidal array	X	
Mirnov coils – toroidal array	X	
Mirnov coils – 3-axis proto.		

Note special diagnostic requirements in Sec. 4				
Diagnostic	Need	Want		
MSE	Χ			
NPA – ExB scanning				
NPA – solid state				
Neutron measurements	X			
Plasma TV		X		
Reciprocating probe				
Reflectometer – 65GHz				
Reflectometer – correlation				
Reflectometer – FM/CW				
Reflectometer – fixed f				
Reflectometer – SOL				
RF edge probes				
Spectrometer – SPRED		Χ		
Spectrometer – VIPS		X		
SWIFT – 2D flow				
Thomson scattering	Χ			
Ultrasoft X-ray arrays	X			
Ultrasoft X-rays – bicolor		X		
Ultrasoft X-rays – TG spectr.				
Visible bremsstrahlung det.	Χ			
X-ray crystal spectrom. – H				
X-ray crystal spectrom. – V				
X-ray fast pinhole camera				
X-ray spectrometer – XEUS		X		