	inceton Plasma Ph STX Experime			
Li pumping and retention on NSTX				
OP-XP-824	Revision:	Expiratio	ate unless otherwise stipulated)	
	PROPOSAL AF	PROVALS		
Responsible Author:			Date:	
ATI – ET Group Leader:			Date	
RLM - Run Coordinator:			Date	
Responsible Division: Exp	erimental Research O	perations	I	
	eview Board (design			
MINOR MODIFI	CATIONS (Approve	d by Experimental R	esearch Operations)	

NSTX EXPERIMENTAL PROPOSAL

TITLE: Li pumping and retention on NSTX – part 1No. OP-XP-824AUTHORS: C. H. Skinner, R. Maingi, V. Soukhanovski,DATE: 4/9/08W. BlanchardDATE: 4/9/08

1. Overview of planned experiment

- To measure the fraction of the injected deuterium that is retained in the NSTX vessel both with and without PFCs coated with fresh (active) lithium.
- The measurement will compare the static pressure rise in the vessel after ohmic and RF discharges with the pressure rise in the vessel in a gas-only shot, all with the valves closed.
- This XP focusses on measuring retention before LiTER operations. Retention will be dominated by D implantation followed by outgassing. QMB measurements have shown that codeposition is small in the short term. A subsequent XP will address retetion during LiTER operations.

2. Theoretical/ empirical justification

This is important information for the NSTX lithium program which aims at density control via a reduction in the recycling of hydrogenic species using lithium pellet injection and lithium evaporation. It is also needed for the Joint US tokamak FY 2009 milestone on pumping and retention.

3. Experimental run plan

- 1. Assume previous XP ends with standard He-GDC
- 2. <u>2-3 Gas only shots</u> 2 puff (128266) and 4 puff (128268) to establish baseline 'retention' < 1%. If > 1% repeat one gas-only shot then continue.
- 3. <u>3-5 shots discharge development:</u>
 - i. Use RF conditioning shot #128133 as starting point to develop and reproduce non-disruptive ohmic discharges (0.5-0.6 MA) with 100-200 ms flattop, and controlled rampdown.
 - ii. Drop Bt to 0.45 T. Ramp down current before OH runs out e.g. at 0.5 s to make sure it is smooth. Replace HFS gas puff with more gas from injector #2.
 - iii. NB valve is always closed. TMP valves closed 30 s before shot (RGA valve stays open).
 - iv. Leave valves closed for 5 mins after each discharge.
 - v. Follow with He-GDC. Establish minimum He-GDC needed for reproducible discharges.
- 4. 1-shot repeat of optimal ohmic discharge.
- 5. 1 shot repeat of gas-only shot at closest IG_110 pressure. (7-10 shots so far.)
- 6. 3 shots RF discharge 0.65 mA, 1.5 MW RF power (enough for H-mode ?). Use ohmic discharges as baseline, with steady RF power added during flattop and maybe part of ramp up.
- 7. 1 shot repeat of gas-only discharge.
- 8. 1-shot repeat of optimal RF discharge. Last shot of the day keep TMP (and NB) TIVs closed for 24+ hrs to monitor long term outgassing.

Total 12-15 shots. If there is no time for RF part still keep TMP TIV closed after final ohmic shot.

9. Repeat above during LITER operation to measure retention fraction with fresh lithium coating and 10, 20, 30 minutes after LITER shutter closed.

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Prior to running this XP, the feasibility of separating the He and D contributions to the total pressure should be demonstrated using variable mixtures of He and D puffed from the NSTX fueling system.

- Ion Gauges.
- Sensotec for Inj. #2
- Trend RGA trend and shot RGA
- Penning gauge
- Infrared camera
- Bolometers
- 1D H α camera
- Quartz Microbalances

Needed for simulations:

- TS
- CHERS
- Langmuir probe BeaP
- Edge neutral density diagnostic
- GPI for Te fluctuations

Desired capabilities:

- Penning gauge piggy back data
- Penning gauge calibration data from He & D gas-only shots
- IG and IG_110 trending data
- RGA data transfer to MDS tree. Data is on PC transfer can be done later
- Piggy back data on RGA impurity fraction with higher power NBI if available

5. Planned analysis

DEGAS, UEDGE

6. Planned publication of results

Presentations at DPP APS & ITPA Div/Sol Group. Joint publication with other tokamaks.

PHYSICS OPERATIONS REQUEST

AUTHORS: (mping and reten C. H. Skinner, R. V. Blanchard	tion on NSTX Maingi, V. Soukha	anovski,	No. OP-XP-824 DATE: 4/8/08
Machine condition	ons (specify range	s as appropriate)		
I _{TF} (kA): -53	Flattop	start/stop (s): -0.02	2 / 0.9	
I _P (MA): 0.65	Flattop	start/stop (s): 0.15	0.5	
Configuration: L	SN			
Outer gap (m):	0.05	Inner gap (m):	0.02	
Elongation k:	2	Upper/lower triang	ularity δ:	0.5
Z position (m):	-0.03			
Gas Species:	Deuterium	Injector(s): #2		
NBI Species: D	Sources: none	Voltage (kV):	Durat	ion (s):
ICRF Power (MV	W): 1.5	Phasing: 0 π	Durat	ion (s): 0.3
CHI: OFF				
LITER: OFF				

Shot numbers for setup: 128133

DIAGNOSTIC CHECKLIST

TITLE: Li pumping and retention on NSTX AUTHORS: C. H. Skinner, R. Maingi, V. Soukhanovski, W. Blanchard

No. **OP-XP-824** DATE: 4/7/08

Note special	diagnostic	requirements	in	Sec.	4
THORE Speciel	anasnosno	requirententis	UIU.	see.	

Diagnostic	Need	Want
Bolometer – tangential array		\checkmark
Bolometer – divertor		\checkmark
CHERS – toroidal	\checkmark	
CHERS – poloidal		\checkmark
Divertor fast camera		\checkmark
Dust detector		\checkmark
EBW radiometers		
Edge deposition monitors	\checkmark	
Edge neutral density diag.	\checkmark	
Edge pressure gauges	\checkmark	
Edge rotation diagnostic		\checkmark
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		
Gas puff imaging	\checkmark	
Hα camera - 1D	\checkmark	
High-k scattering		
Infrared cameras	\checkmark	
Interferometer - 1 mm		
Langmuir probes – divertor	\checkmark	
Langmuir probes – BEaP	\checkmark	
Langmuir probes – RF ant.	\checkmark	
Magnetics – Diamagnetism		
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes		
Magnetics – Pickup coils	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		
Magnetics – RWM sensors	1	
Mirnov coils – high f.		
Mirnov coils – poloidal array	1	
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.	1	

Diagnostic	Ineed	Want	
MSE			
NPA – ExB scanning			
NPA – solid state			
Neutron measurements			
Plasma TV		\checkmark	
Reciprocating probe	\checkmark		
Reflectometer – 65GHz			
Reflectometer – correlation			
Reflectometer – FM/CW			
Reflectometer – fixed f			
Reflectometer – SOL			
RF edge probes			
Spectrometer – SPRED		\checkmark	
Spectrometer – VIPS		\checkmark	
SWIFT – 2D flow			
Thomson scattering	\checkmark		
Ultrasoft X-ray arrays			
Ultrasoft X-rays – bicolor			
Ultrasoft X-rays – TG spectr.			
Visible bremsstrahlung det.		\checkmark	
X-ray crystal spectrom H			
X-ray crystal spectrom V			
X-ray fast pinhole camera			
X-ray spectrometer - XEUS		\checkmark	
Ionization gauges	\checkmark		
Penning gauge	\checkmark		
RGA	\checkmark		
Shot RGA	\checkmark		