Princeton Plasma Physics Laboratory NSTX Experimental Proposal

Title: Poloidal extent and distribution of edge turbulence and intermittency

OP-XP-839

Revision:

Effective Date: (Approval date unless otherwise stipulated) Expiration Date: (2 yrs. unless otherwise stipulated)

PROPOSAL APPROVALS

Responsible Author: R. MaquedaDateATI - ET Group Leader: V. SoukhanovskiiDateRLM - Run Coordinator: M. BellDate

Responsible Division: Experimental Research Operations

Chit Review Board (designated by Run Coordinator)

MINOR MODIFICATIONS (Approved by Experimental Research Operations)

NSTX EXPERIMENTAL PROPOSAL

TITLE:**Poloidal extent and distribution of edge turbulence**NoAUTHORS:**R. J. Maqueda**DA

No. **OP-XP-839** DATE: **6/30/2008**

1. Overview of planned experiment

The edge turbulence born blobs seen near the midplane on the low field side of NSTX have been observed to extend up to the divertor target plates. This XP intends to characterize this relationship between midplane and divertor blobs as well as explore theory predictions on X-point "disconnection" by flux tube squeezing due to the high shear near the X-point. At the same, the presence and characteristics of intrinsic (i.e., locally born) turbulence and intermittency near the divertor will be explored..

2. Theoretical/ empirical justification

Theoretical studies by Cohen and Ryutov have indicated that flux tube stretching due to the high magnetic shear near the X-point may cause the elongated filaments characteristic of blobs to be narrower than the ion gyro-radius. In such cases it is then expected that midplane blobs will be "disconnected" from the divertor (and *vice versa*). This then introduces the possibility of inducing turbulence close to the divertor target plates and widen the heat deposition profiles without degrading the scrape-off layer transport near the midplane.

Preliminary results in 2007 have shown that midplane intermittency (blobs) are well correlated to "footprints" on the divertor target plates. One of the objectives of this experimental proposal is to explore the conditions at which this good correlation is lost by imaging simultaneously the midplane intermittency (gas puff imaging) and the divertor footprints on the lower divertor from above. At the same time, the newly installed Bay E divertor gas puffer can be used to image the turbulence and blobs tangentially from Bay F.

In addition, the imaging systems available will be used to search for intrinsic filamentation in the divertor region (particularly in the private flux region and vicinity to the X-point) that is not related to midplane blobs.

3. Experimental run plan

Reproduce the following shots (repeat 2-3 times), the main objective being changes in the X-point topology and its position within the divertor region.

128640 (1 MA, 5.5 kG, 6 MW NBI, high X-point)
128630 (1 MA, 5.5 kG, 6 MW NBI, medium height X-point)
128642 (1 MA, 5.5 kG, 6 MW NBI, low X-point, high δ)
128646 (1 MA, 5.5 kG, 6 MW NBI, low X-point, lower δ)
128349 (800 kA, 4.5 kG, 4 MW NBI, low κ)
128948 (900 kA, 5.5 kG, 4 MW NBI, low-to-high κ, X-point limiter)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

3 Phantom 7 cameras (GPI, top view of lower divertor and tangential view of lower divertor)

new Bay E lower divertor gas puff

3 NBI sources (it may be possible to run with just 2)

5. Planned analysis

EFIT/LRDFIT needed.

GPI and divertor imaging data will be analyzed to infer characteristics of turbulence/blobs/intermittency.

6. Planned publication of results

If successful, results will be submitted to appropriate journal.

PHYSICS OPERATIONS REQUEST

TITLE: Poloi AUTHORS: 1	dal extent and di R. J. Maqueda	stribution of ed	lge turbu	lence	No. OP-X DATE: 6/3	P-839 0/2008
Machine conditi	ons (specify range	s as appropriate)			
I _{TF} (kA): many	Flattop	start/stop (s):				
$I_{P}(MA)$: many	Flattop	start/stop (s):				
Configuration: L	. SN					
Outer gap (m):		Inner gap (m):				
Elongation k :		Upper/lower tri	iangularity	γδ:		
Z position (m):	~ 0.0					
Gas Species: D		Injector(s): HF	S midpla	ne		
NBI Species: D	Sources: A/B/C	Voltage (kV):	90	Duration	n (s):	
ICRF Power (M	(W): no	Phasing:		Duration	n (s):	
CHI: Off	Bank capaci	tance (mF):				

LITER: Off

Previous shot numbers for setup:

128640 (1 MA, 5.5 kG, 6 MW NBI, high X-point)
128630 (1 MA, 5.5 kG, 6 MW NBI, medium height X-point)
128642 (1 MA, 5.5 kG, 6 MW NBI, low X-point, high δ)
128646 (1 MA, 5.5 kG, 6 MW NBI, low X-point, lower δ)
128349 (800 kA, 4.5 kG, 4 MW NBI, low κ)
128948 (900 kA, 5.5 kG, 4 MW NBI, low-to-high κ, X-point limiter)

DIAGNOSTIC CHECKLIST

TITLE: Poloidal extent and distribution of edge turbulence No. OP-XP-839 AUTHORS: R. J. Maqueda

DATE: 6/30/2008

Note special diagnostic requirements in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array	\checkmark	
Bolometer – divertor	\checkmark	
CHERS – toroidal	\checkmark	
CHERS – poloidal		\checkmark
Divertor fast camera	\checkmark	
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		\checkmark
Edge pressure gauges		\checkmark
Edge rotation diagnostic	\checkmark	
Fast ion D_alpha - FIDA		\checkmark
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging	\checkmark	
Hα camera - 1D		\checkmark
High-k scattering		
Infrared cameras	\checkmark	
Interferometer - 1 mm		
Langmuir probes – divertor	\checkmark	
Langmuir probes – BEaP		\checkmark
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes		
Magnetics – Pickup coils	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		
Magnetics – RWM sensors		
Mirnov coils – high f.	\checkmark	
Mirnov coils – poloidal array	\checkmark	
Mirnov coils – toroidal array	\checkmark	
Mirnov coils – 3-axis proto.		

Diagnostic	Need	Want
MSE	\checkmark	
NPA – ExB scanning		
NPA – solid state		
Neutron measurements		\checkmark
Plasma TV		\checkmark
Reciprocating probe		\checkmark
Reflectometer – 65GHz	\checkmark	
Reflectometer – correlation		\checkmark
Reflectometer – FM/CW	\checkmark	
Reflectometer – fixed f	\checkmark	
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT – 2D flow		\checkmark
Thomson scattering	\checkmark	
Ultrasoft X-ray arrays	\checkmark	
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		