Goals: Collect HC Data Using the New "Shunt Tile" Diagnostics in the Lower Divertor

- New Diagnostic Advantages: Shunt Tiles ("STs")
 - Excellent spatial resolution.
 - Sensitive to smaller halo currents.
- Method For Generating VDEs
 - Use Gap-Control (PCC) algorithm for shape control.
 - "Freeze" the upper and lower PF3 voltages at a given time, disabling the vertical position control.
 - Apply a differential voltage "kick" between PF3U and PF3L to push the plasma down.
- What to do with 1/2 day.
 - Test dependence of localized HC on discharge shape.
 - Verify I_P and B_T scaling of these more localized measurements.
 - Test scaling of halo currents with vertical velocity by changing the "kicking" voltage.

Starting Point: Matched B_T, I_P, at Two Values of Triangularity (s1)

- S1: Note: start with $B_T = 0.45$, $I_P = 0.6$, prefer D_{2} . May be necessary to drop I_P or raise B_T if the HC is too large.
- Low Triangularity Case: (2-4 shots)
 - Reload 129446, switch from He to D_2 , downward voltage "kick" of 20V
 - Take D₂ LFS gas from this year's shot 132124
 - One shot with no PF3 Voltage Freeze, one or two shots with freeze.
 No freeze With Freeze With Freeze
- Higher Triangularity Case: (2-4 shots)
 - Reload 129416, switch from He to D_2 , downward voltage kick of 20V
 - Take D_2 LFS gas from this year's shot 132124
 - One shot with no PF3 Voltage Freeze, one or two shots with freeze.

No freeze _____ With Freeze _____

Next: I_p and B_T scans

 S2: Pick one of the two configurations in S1 or S2, based on reliability. Scan I_P and B_T to fill in the following table. Better to simply change I_P and B_T in a working shot from S1 than reload old ones. (4 Shots)

I _P	B _T	Previous Examples	Shot Taken
500	0.45		
600	0.55		
700 (*)	0.55		
700 (*)	0.45		
400	0.45		

Reference Shot for this Scan:_

* Be careful not to saturate the Shunt Tiles, which is likely possible at the highest values of I_P/B_T .

Next Scan of Downward Kick Velocity

Goal goal of S3: assess if the level of halo current is a function of vertical velocity, as expected from "theory" (Humpreys, et al 1999). (4 Shots) Reference Shot for this Scan:

Voltage Level	lp	Bt	Shot Taken
20			
30			
40			
50			

Time Permitting go on to *either* step S4 or S5

Time Permitting: Develop a Shape with Even Higher Triangularity

- S4: Take higher-triangularity reference case – Reference: <u>129414</u>
- Increase the triangularity: (3 Shots)
 - Increase Flat-Top PF1A request to 0.017 kA/MA
 - Reduce the PF2 request to 0.004 kA/MA, followed by reduction to zero. Shots ______
- Add voltage freeze and kick-down (2 Shots).

– Shots _____

Time Permitting: Repeat $I_{\rm P}$ and $B_{\rm T}$ Scans for Second Shape

(5 Shots) Reference Shot for this Scan:_____

I _P	B _T	Previous Examples	Shot Taken
500	0.45		
600	0.55		
700 (*)	0.55		
700 (*)	0.45		
400	0.45		

* Be careful not to saturate the Shunt Tiles, which is likely possible at the highest values of I_P/B_T .