Princeton Plasma Physics Laboratory NSTX Experimental Proposal				
Title: Beta Scaling of Confinement in Weakly Shaped Plasmas				
OP-XP-910	Revision:	Effective (Approval d Expiratio (2 yrs. unle.	e Date: late unless otherwise stipulated) on Date: ss otherwise stipulated)	
	PROPOSAL A	PPROVALS		
Responsible Author: S. Ka	aye		Date 4/7/09	
ATI – ET Group Leader:	K. Tritz	Date		
RLM - Run Coordinator:	R. Raman		Date	
Responsible Division: Exp	perimental Research C	Operations		
Chit Review Board (designated by Run Coordinator)				
MINOR MODIFICATIONS (Approved by Experimental Research Operations)				

NSTX EXPERIMENTAL PROPOSAL

TITLE: Beta Scaling of Confinement in Weakly Shaped Plasmas

No. OP-XP-910

AUTHORS: S. Kaye

DATE: 4/7/09

1. Overview of planned experiment

This XP follows up on last year's confinement scaling XP in which the degradation of energy confinement with beta was found to be negligible. That scan was done in a strongly shaped plasma (κ ~2.1, δ ~0.8). This result supported results found in other strongly shaped tokamak devices, while experiments in more weakly shaped plasmas indicated a strong degradation of confinement with beta. This XP will address the shape issue by redoing the power scan but in an ITER-shaped plasma, **and using Li to suppress ELMs**.

2. Theoretical/ empirical justification

The results from last year's XP showed very little degradation of confinement with beta. This conclusion was obtained from a scan in which B_T , I_p and line-averaged density were the same, and in which the beam power was varied from one to three sources. Over this beam power range, the

effective collisionality and electron gyroradius were constant to within 20%, while beta varied by a factor of 2.5 to 3. The results are shown below.

These results supported the lack of beta scaling on other devices (DIII-D and JET) with strongly shaped plasmas, but differed from those on AUG and JT60-U, which showed a strong degradation of confinement with beta. In these latter two experiments, the plasma shaping was weaker. It has been hypothesized that the difference in the beta degradation results is due to the differences in plasma shaping. NSTX will test this hypothesis by redoing the beta scan in an ITER-shaped plasma with κ ~1.7 and δ ~0.4

3. Experimental run plan

Redo beta scan with κ ~1.7 and δ ~0.45. Shot 127301, developed for the small ELM experiment, but with B_T increased to 5.5 T will be used as a baseline. In addition, 15-20 mg/min of Li injection will be used to suppress large ELMs. This is a ½ day experiment, and the shot list is given below.

Case	Power
Low-β	Source A
Med-β	Source A,B
High-β	All sources

If there is time, the medium β case will be rerun with sources A&C. Two shots per condition will be taken, with 2 to 3 setup shots anticipated.

If the high- β case disrupts with all three sources, the voltage on source C will be lowered. Start off with full energy on each beam, but then might have to lower voltage to get wide enough range in beta without hitting beta limit. Will also consider modulating beam instead of, or in addition to, lowering voltage.

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Optimum EF, low-n mode stabilization feedback on.

5. Planned analysis

EFIT, TRANSP, etc.

6. Planned publication of results

APS, journal article, ITPA

PHYSICS OPERATIONS REQUEST

TITLE: I	Beta Scaling of Confinement in Weakly Shaped	No. OP-XP-910
I	Plasmas	
AUTHOR	S: S. Kaye	DATE: 4/7/09

Describe briefly the most important plasma conditions required for the XP:

Quiescent, ELM-free discharges that are capable of attaining high-betan at the highest beam power.

List any pre-existing shots: 127301

Equilibrium Control: Gap Control / rtEFIT(isoflux control):

Machine conditions (specify ranges as appropriate, use more than one sheet if necessary)

I _{TF} (kA): 66 kA (0.55	T) Flattop start	t/stop (s):			
I _P (MA): 0.8 MA	Flattop start	t/stop (s):			
Configuration: LSN					
Outer gap (m):	Inner ga	p (m):		Z position	n (m):
Elongation κ: 1.7	Upper/lc	wer triang	ularity δ:	0.45 (low	er)
Gas Species: D	Injector(s):			
NBI Species: D Volt	tages (kV or off)	A: max	B: max	C: max	Duration (s): ~1 s
ICRF Power (MW):	0 Pha	sing:		Duration	(s):
CHI: Off	Bank capacitance	e (mF):			
LITERs: On	Total deposition	rate (mg/n	nin): ~ 1	5	
EFC coils: On	Configuration: Other (optimal EF correction with low-n feedback)				

DIAGNOSTIC CHECKLIST

TITLE: Beta Scaling of Confinement in Weakly Shaped Plasmas

AUTHORS: S. Kaye

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array		
Bolometer – divertor		
CHERS – toroidal		
CHERS – poloidal		
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic		
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		
FIReTIP		
Gas puff imaging		
$H\alpha$ camera - 1D		
High-k scattering		
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism		
Magnetics – Flux loops		
Magnetics – Locked modes		
Magnetics – Pickup coils		
Magnetics – Rogowski coils		
Magnetics – Halo currents		
Magnetics – RWM sensors		
Mirnov coils – high f.		
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.		

No. **OP-XP-910**

DATE: 4/7/09

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE		
NPA – ExB scanning		
NPA – solid state		
Neutron measurements		
Plasma TV		\checkmark
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering		
Ultrasoft X-ray arrays		
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		