Princeton Plasma Physics Laboratory **NSTX Experimental Proposal** Title: Characterization of GAE modes and their effect on electron thermal transport Effective Date: 8/3/09 (Approval date unless otherwise stipulated) **OP-XP-921** Revision: 0 Expiration Date: 8/3/11 (2 yrs. unless otherwise stipulated) **PROPOSAL APPROVALS Responsible Author: Kevin Tritz** Date 8/3/09 ATI – ET Group Leader: Kevin Tritz/Stan Kaye Date 8/3/09 **RLM - Run Coordinator: Roger Raman** Date 8/3/09 **Responsible Division: Experimental Research Operations** Chit Review Board (designated by Run Coordinator) **MINOR MODIFICATIONS** (Approved by Experimental Research Operations)

NSTX EXPERIMENTAL PROPOSAL

TITLE: Characteriza	ation of GAE modes and their effect on	No. OP-XP-921
electron the	rmal transport	
AUTHORS: Tritz, S	tutman, Gorelenkov, et al.	DATE: 4/4/09

1. Overview of planned experiment

Fast ion MHD, specifically GAE modes with frequencies ~ 0.6 to >1MHz, have been identified as a possible mechanism explaining the flat electron temperature profiles and apparent rapid electron thermal transport in the center of NSTX plasmas. The goal of this XP is twofold: first, to characterize the spatial structure and amplitude of the GAE modes to compare against numerical calculations predicting their effect on electron thermal transport; second, to change the magnetic fields to try to observe and isolate predicted effects on both the GAE modes and their effect on electron thermal transport.

2. Theoretical/ empirical justification

Correlations between GAE activity and electron transport have been previously observed in past experiments (e.g. Stutman FY08). GAE activity and chi_e both scaled strongly with input NB power, and GAE mode amplitudes were measured in the region where GAEs were predicted to drive electron thermal transport. These predictions were made using the ORBIT code to track particle transport induced by GAE activity, though quantitative comparisons require a more complete characterization of the radial mode structure and mode amplitude.

3. Experimental run plan

This XP has two parts. The first run day for the XP will focus on a detailed analysis of the GAE mode structure and amplitude as a function of NBI power:

Reload conditions from 130335 (0.9MA, 0.45T, 6MW NBI power) Shot plan: use LITER @ 10mg/min, 10 minute shot cycle	
Initial high-k position: 110cm (r/a \sim .25)	
Restore reference shot 130335 (6MW preheat, beam step @ $0.45s$): Ip = $0.9MA$, Bt = $0.45T$, PNBI = 6MW, gas adjusted for LITER	(2)
Scan beam power: Repeat shot with no beam step (4MW) Repeat shot with step down @ 0.45s (2MW)	(2) (1)
Full power (6 MW) shot with no steps	(1)
Scan magnetic field: Ip = 1.1MA, Bt = .55T, PNBI = 6MW Ip = .8MA, Bt = .4T, PNBI = 6MW	(2) (1)
VF-AF-741	

If too much low-f MHD, use 1MA, E	3t =.5T	(1)
Sub-total		10 shots, 100min.
Controlled access, move high-k to 115cm (r/	(a ~ .35)	25min.
Repeat previous scan:		10 shots, 100min.
Controlled access, move high-k to 120cm (r/	′a ~ .45)	25min.
Repeat previous scan: w/neon injection altern	nate shots	10 shots, 100min.
Break for Tuesday:		
Controlled access, move high-k to 126cm (r/	(a ~ .6)	25min.
Repeat previous scan:		10 shots, 100min.
If time left > 75 min.		
Controlled access, move high-k to 132cm (r/	′a ~ .7)	25min.
Repeat previous scan: w/neon injection alter	nate shots	10 shots, 100min.
Total:	50 shots, 600min. (10 hours)	

Top priority is first 3 positions

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Machine conditions and diagnostics as specified in attached sheets. Remote high-k radial position capability is a requirement for this XP. Li deposition will be used if it enhances repeatability and low-f MHD free operation. FIReTIP bandwidth upgrade is highly desired, but may not be ready for this XP.

5. Planned analysis

This XP will require EFIT/LRDFit equilibrium reconstructions as well as TRANP runs to calculate the measured electron thermal transport for comparison to numerical predictions. The predictions of GAE induced electron thermal transport will be from the ORBIT code using mode structures and amplitudes as inferred from the high-k radial scans. The shot-to-shot radial scans will be normalized to external magnetic measurements, or FIReTIP if available.

6. Planned publication of results

Any significant results will be in PoP or similar journal.

PHYSICS OPERATIONS REQUEST

TITLE: Characterization of GAE modes and their effect on	No. OP-XP-921	
AUTHORS: Tritz, Stutman, Gorelenkov, et al.	DATE: 8/3/09	
(use additional sheets and attach waveform diagrams	if necessary)	
Describe briefly the most important plasma conditions require	ed for the experiment:	
Low-f MHD quiescence during GAE window (~ $0.45 - 0.6s$)		
<u>Repeatability</u>		
Note: these shots use NBI 6MW preheating and 4MW constant with beam steps (+2MW, +0MW, -2MW) at 450ms to obtain relevant conditions (as per shot 130335)		
Previous shot(s) which can be repeated: 130335 Previous shot(s) which can be modified:		
	1. 11	
Machine conditions (specify ranges as appropriate, strike out in	applicable cases)	
I_{TF} (kA): 0.4 – 0.55 T Flattop start/stop (s):		
I_P (MA): 0.8 – 1.1 Flattop start/stop (s):		
Configuration: Limiter / DN / LSN / USN		
Equilibrium Control: Outer gap / Isoflux (rtEFIT)		
Outer gap (m):Inner gap (m):Z pos	sition (m):	
Elongation κ : Upper/lower triangularity δ :		
Gas Species: D Injector(s):		
NBI Species: D Voltage (kV) A: 90 B: 90 (60) C: 90	Duration (s): ~1s	
ICRF Power (MW): Phase between straps (°):	Duration (s):	
CHI: <u>Off</u> / On Bank capacitance (mF):		
LITERs: Off / <u>On</u> Total deposition rate (mg/min): 10-15		
EFC coils: <u>Off</u> /On Configuration: Odd / Even / Other (attach detailed sheet		

DIAGNOSTIC CHECKLIST

TITLE: Characterization of GAE modes and their effect on electron thermal transport

AUTHORS: Tritz, Stutman, Gorelenkov, et al.

No. **OP-XP-921**

DATE: 8/3/09

Note special diagnostic requirements in Sec. 4			
Diagnostic	Need	Want	
Bolometer – tangential array			
Bolometer – divertor			
CHERS – toroidal			
CHERS – poloidal			
Divertor fast camera			
Dust detector			
EBW radiometers			
Edge deposition monitors			
Edge neutral density diag.			
Edge pressure gauges			
Edge rotation diagnostic			
Fast ion D alpha - FIDA			
Fast lost ion probes - IFLIP			
Fast lost ion probes - SFLIP			
Filterscopes			
FIReTIP			
Gas puff imaging			
Hα camera - 1D			
High-k scattering			
Infrared cameras			
Interferometer - 1 mm			
Langmuir probes – divertor			
Langmuir probes – BEaP			
Langmuir probes – RF ant.			
Magnetics – Diamagnetism			
Magnetics – Flux loops			
Magnetics – Locked modes			
Magnetics – Pickup coils			
Magnetics – Rogowski coils			
Magnetics – Halo currents			
Magnetics – RWM sensors			
Mirnov coils – high f.			
Mirnov coils – poloidal array			
Mirnov coils – toroidal array			
Mirnov coils – 3-axis proto.			

Note special	diagnostic	requirements	in Sec.	4
--------------	------------	--------------	---------	---

Diagnostic	Need	Want
MSE		
NPA – E B scanning		
NPA – solid state		
Neutron measurements		
Plasma TV		
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT – 2D flow		
Thomson scattering		
Ultrasoft X-ray arrays		
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		