Princeton Plasma Physics Laboratory NSTX Experimental Proposal

	I -			
Title: Ip Dependence of L-H threshold, Hysteresis and Confinement Quality				
OD VD 022	Revision: 0	Effective	Effective Date:	
OF-AF-922		Expiratio	n Date:	
	PROPOSAL A	PPROVALS		
Responsible Author: Star	nley Kaye		Date 2/9/09	
ATI – ET Group Leader: Kevin Tritz		Date		
RLM - Run Coordinator:	RLM - Run Coordinator: Roger Raman		Date	
Responsible Division: Ex	perimental Research C	perations		
<u>Chit</u>	Review Board (desig	nated by Run Coordin	<u>ator)</u>	
MINOR MODIFICATIONS (Approved by Experimental Research Operations)				

NSTX EXPERIMENTAL PROPOSAL

TITLE: Ip Dependence of L-H threshold, Hysteresis and
Confinement QualityNo. OP-XP-922Confinement QualityDATE: Eth. 0. 200

AUTHORS: S. Kaye, R. Maingi, W. Solomon

1. Overview of planned experiment

The goal of this experiment is to the measure the dependence of the L-H threshold power on plasma current, confinement quality for powers just above the threshold, and H-L hysteresis.

2. Theoretical/ empirical justification

This XP studies the effect plasma current on the L-H threshold. This has direct bearing on developing an understanding of the thresholds in future devices at both low rotation (ITER) and at higher rotation (NHTX, ST-CTF). This study is an element of an ITPA JEX. It further assesses confinement quality for powers just above the threshold power (can H~1 be attained at this power level?) as well as the H-L hysteresis. Both these issues are the foci of ITPA JEXs.

3. Experimental run plan

- Establish L-H threshold power in high-κ, δ LSN discharge (127267 baseline, but with I_p=700 kA). This shape was chosen in order to avoid OH H-modes. The power will be varied by either lowering the beam voltage, or modulating the source if necessary.
 - Use optimal n=3 error field correction (-300 A in SPA1) and n=1 mode control
- Maintain plasma discharge at P~P_{LH} (once in H-mode) for as long as possible
 - Assess confinement quality
 - \circ Determine H-L hysteresis as density increases (does P_{heat} drop below "new" P_{LH}?)
- Vary I_p in two additional steps (150 kA each step)
 - Establish threshold, H, H-L hysteresis in same manner at each level (may not be possible at highest current)
- Use 10-15 mg/min Li evaporation.
- No HeGDC between shots.
- Start with Source A on 10 ms after I_p flattop reached
 - Do not use preheat unless necessary to achieve good discharge conditions. If necessary, preheat with Source A from 80 to 140 ms.

TABULAR SHOT LIST

Condition	I _p (MA)	B _T (T)	SPA 1 Current (+low-n feedback)
1	0.7	0.45	-300 A (optimum)
2	0.850	0.45	-300 A (optimum)
3	1.0	0.45	-300 A (optimum)

Total: ~12 shots

If there is additional time, assess confinement quality, hysteresis at one current at different powers (2 shots each)

 $\begin{array}{l} P \sim 1.15 \ P_{LH} \\ P \sim 1.3 \ P_{LH} \end{array}$

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Discharge reproducibility, ability to achieve H-mode with one source.

5. Planned analysis

EFIT, TRANSP, specialized codes

6. Planned publication of results

Joule milestone, TTF, ITPA, IAEA

PHYSICS OPERATIONS REQUEST

TITLE: I _p D	ependence of L-H threshold, Hysteresis and	No. OP-XP-922
Cor	ifinement Quality	
AUTHORS:	S. Kaye, R. Maingi, W. Solomon	DATE: Feb. 9, 2009

Describe briefly the most important plasma conditions required for the XP: Discharge reproducibility, ability to achieve H-mode with one source.

List any pre-existing shots: 127267

Machine conditions (specify ranges as appropriate)

I _{TF} (kA): 52 (4.5 kG)	Flattop start/stop (s):		
I _P (MA): 0.7, 0.85, 1.0	Flattop start/stop (s):		
Configuration: LSN			
Outer gap (m):	Inner gap (m):		
Elongation κ: ~ 1.9	Upper/lower tr	Upper/lower triangularity δ : ~ 0.65	
Z position (m): 0			
Gas Species: D	Injector(s):		
NBI Species: D Sources:	3 Voltage (kV):	55-80 (B, C), 90 (A) Duration (s): <0.6 s	
ICRF Power (MW): 0	Phasing:	Duration (s):	
CHI: Off Ban	k capacitance (mF):		

LITER: On 15 mg/min

Or: Sketch the desired time profiles, including inner and outer gaps, κ , δ , heating, fuelling, etc.

Start without Source A preheat; use only if necessary.

DIAGNOSTIC CHECKLIST

TITLE: I_p Dependence of L-H threshold, Hysteresis and Confinement Quality

AUTHORS: S. Kaye, R. Maingi, W. Solomon

Diagnostic	Need	Want
Bolometer – tangential array		
Bolometer – divertor		
CHERS – toroidal		
CHERS – poloidal		
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic	\checkmark	
Fast ion D_alpha - FIDA	\checkmark	
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		
Gas puff imaging		
Hα camera - 1D		
High-k scattering		
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops		
Magnetics – Locked modes		
Magnetics – Pickup coils		
Magnetics – Rogowski coils		
Magnetics – Halo currents		
Magnetics – RWM sensors		
Mirnov coils – high f.	\checkmark	
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.		

DATE: Feb. 9, 2009

Note special diagnostic requirements in Sec. 4			
Diagnostic	Need	Want	
MSE			
NPA – ExB scanning			
NPA – solid state			
Neutron measurements			
Plasma TV			
Reciprocating probe			
Reflectometer – 65GHz			
Reflectometer – correlation			
Reflectometer – FM/CW			
Reflectometer – fixed f			
Reflectometer – SOL			
RF edge probes			
Spectrometer – SPRED	\checkmark		
Spectrometer – VIPS	\checkmark		
SWIFT – 2D flow			
Thomson scattering	\checkmark		
Ultrasoft X-ray arrays	\checkmark		
Ultrasoft X-rays – bicolor			
Ultrasoft X-rays – TG spectr.			
Visible bremsstrahlung det.	\checkmark		
X-ray crystal spectrom H			
X-ray crystal spectrom V			
X-ray fast pinhole camera			

X-ray spectrometer - XEUS

5/5

 $\sqrt{}$

No. **OP-XP-922**