| Princeton Plasma Physics Laboratory<br>NSTX Experimental Proposal |                                     |                                                       |                                                                                                                                            |  |
|-------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Title: CHI use of absor                                           | ber coils                           |                                                       |                                                                                                                                            |  |
| OP-XP-927                                                         | Revision: <b>0</b>                  | Effective<br>(Approval o<br>Expiratio<br>(2 yrs. unle | Effective Date: 7/28/09<br>(Approval date unless otherwise stipulated)<br>Expiration Date: 7/28/11<br>(2 vrs. unless otherwise stipulated) |  |
|                                                                   | PROPOSAL AI                         | PROVALS                                               | • /                                                                                                                                        |  |
| Responsible Author: Mue                                           | ller                                |                                                       | Date 7/28/09                                                                                                                               |  |
| ATI – ET Group Leader:                                            | TI – ET Group Leader: Mueller/Raman |                                                       | Date 7/28/09                                                                                                                               |  |
| RLM - Run Coordinator:                                            | Raman                               |                                                       | Date 7/28/09                                                                                                                               |  |
| Responsible Division: Exp                                         | erimental Research O                | perations                                             |                                                                                                                                            |  |
| MINOR MODIFI                                                      | CATIONS (Approve                    | d hy Experimental R                                   | esearch Operations)                                                                                                                        |  |
|                                                                   |                                     |                                                       |                                                                                                                                            |  |

# NSTX EXPERIMENTAL PROPOSAL

TITLE: **CHI use of absorber coils** AUTHORS: **Mueller** 

No. **OP-XP-927** DATE: **3/24/2009** 

#### 1. Overview of planned experiment

CHI experiments have suffered from absorber arcs at the top of NSTX. These arcs, while they do not result incomplete elimination of the desired injector current, do discharge the capacitor and rob voltage and current the injector, furthermore, the absorber arcs are a likely source of the low Z impurities seen in CHI initiated discharges. See Fig. 1. The SPAs will be used to power the two absorber coils in order to lower the poloidal field connecting the inner and outer vessel, thus raising the impedance to reduce the incidence of absorber arcs and/or reduce the current in such arcs.



Fig. 1 Capacitor bank current for a variety of CHI discharges.

## 2. Theoretical/ empirical justification



Fig. 2. Flux and ModB at 7.5 ms in 128401, a CHI initiated discharge.

The calculated modB and flux for CHI start-up is shown in Fig. 2. Fig. 3 shows the results with -600 and 600A in absorber coils PFAB1 and PFAB2. It is clear that the poloidal field in the absorber region shown in Fig. 3 is lower than for the case without the absorber coils energized. Because the geometry of the coils and of the absorber insulator is complex, it is not possible to completely eliminate poloidal fields connecting the two electrodes. Broadly speaking the location of the minimum in modB moves out with more negative PFAB1 and down with more positive PFAB2. Fig. 4 shows the results for FPAB1 = -800 A and PFAB2 = 600 A. Since the inner and outer vessel surfaces locations of closest approach is the region below the large vertical insulator, it is there that the field should be minimized. (-800, 600) is a good starting point.



Fig. 3. Flux and ModB for 128401 with -600 A in PFAB1 and 600 A in PFAB2.

#### **OP-XP-927**



Fig. 4. Flux and ModB for 128401 with -800 A in PFAB1 and 600 A in PFAB2.

The above assumes that it is Mod B that must be minimized to avoid absorber arcs. However, the above increases the slope of the field so it connects the inner and outer vessel radially, just as the presence of Ip would. The data indicate that absorber arcs occur when the slope of the field in the absorber region changes as Ip increases to connect the inner and outer vessel radially. If the best choice is to maintain a vertical field in the absorber, then a different approach is needed and the PFAB 1&2 coils should both have positive current.

For the CHI shot, 133704, this field is vertical with 0 in both coils and becomes more sloped until it barely connects the inner and outer vessels at Ip=180 kA (where absorber arcs are observed) and clearly connects inner and outer at 300 kA (a region we have not been able to reach due to absorber arcs). It is unclear what would happen if the field has slope in the other direction, if we take that as the maximum absorber field then the best starting point is PFAB1=300A and PFAB2=400A. That has a field that is vertical at Ip=0 and barely OK at Ip=300kA (similar to 170kA without the absorber coils) and the ModB is essentially unchanged. At higher PFAB currents, the field slope becomes negative at Ip=0, with unknown effects and can keep the field from connecting the vessels radially until higher Ip. By the time Ip reaches about 400 kA, an X-point appears in the vessel (lower Ip with higher PFAB currents), with an X=point, the field in the absorber coils do provide some control of the X-point location but the Ip ramp rate is high and conducting structures around the absorber coils limit the rate at which they can change the field. For the later reasons, we will begin with static absorber coils, ramping them down to zero after the CHI voltage is removed. The Table below gives the static response (no eddy currents considered) to various Ip and absorber coil currents.

| Ip (kA) | PFAB1 (A) | PFAB2 (A) | ModB (G) | "Vertical property" |
|---------|-----------|-----------|----------|---------------------|
| 0       | 0         | 0         | 47       | OK                  |
| 177     | 0         | 0         | 37       | B-ok                |
| 306     | 0         | 0         | 30       | Bad                 |
| 0       | 300       | 400       | 47       | V                   |
| 177     | 300       | 400       | 37       | V                   |
| 306     | 300       | 400       | 30       | V                   |
| 450     | 300       | 400       | 17       | ОК                  |
| 0       | 400       | 600       | 47       | B-N                 |
| 177     | 400       | 600       | 37       | V                   |
| 306     | 400       | 600       | 31       | N to X-Point        |
| 450     | 400       | 600       | 17       | X-Point             |
| 0       | 600       | 800       | 53       | N                   |
| 177     | 600       | 800       | 41       | N                   |
| 306     | 600       | 800       | 36       | X-Point             |
| 450     | 600       | 800       | 20       | X-Point             |
| 0       | 400       | 400       | 50       | B-N                 |
| 177     | 400       | 400       | 39       | ОК                  |
| 306     | 400       | 400       | 31       | ОК                  |
| 450     | 400       | 400       | 20       | ОК                  |
|         |           |           |          |                     |

Here V is vertical in the absorber gap, OK is nearly vertical, Bad connects across the gap, N connects across the gap in the opposite sense, X-point has curved field in the gap with no simple description.

# 3. Experimental run plan

Start with the CHI setup for shot 128401 or 133704 (or a more recent CHI discharge).

Examine the shot for signs of an absorber arc (sudden increase in CHI current, drop in CHI voltage, and low Z impurity influx from upper divertor).

Stabilize the discharge at a constant Li evporation rate.

| SHOT | Reason                     | PFAB1 | PFAB2 | I CHI | UD Oii |
|------|----------------------------|-------|-------|-------|--------|
|      | Baseline                   | 0     | 0     |       |        |
|      | "best" Estimate            | 300   | 400   |       |        |
|      | To see if N is OK          | 400   | 400   |       |        |
|      | Test of higher currents    | 400   | 600   |       |        |
|      | Higher currents            | 600   | 800   |       |        |
|      | Test if Mod B is important | -600  | 600   |       |        |
|      |                            |       |       |       |        |
|      |                            |       |       |       |        |
|      |                            |       |       |       |        |
|      |                            |       |       |       |        |
|      |                            |       |       |       |        |

Perform a shot-to shot scan in PFAB1 and PFAB2, select best estimate of PFAB1 and PFAB2 and make small variations about that.

#### 4. Required machine, NBI, RF, CHI and diagnostic capabilities

The Absorber coils must be connected to the SPAs and the ISTP for their use must be completed.

The usual conditions for CHI operation must be satisfied (Capacitor banks configured,  $V_{OH} < 6$  kV, PF2U/L reversed, etc.).

# 5. Planned analysis

EFIT analysis

### 6. Planned publication of results

SOFE conference in June 2009 and other reports of CHI results on NSTX.

# PHYSICS OPERATIONS REQUEST

| TITLE: | CHI use of absorber coils |
|--------|---------------------------|
| AUTHO  | RS: Mueller               |

No. **OP-XP-927** DATE: **3/24/2009** 

(use additional sheets and attach waveform diagrams if necessary)

#### Describe briefly the most important plasma conditions required for the experiment: CHI configuration with absorber coils connected to SPAs. **Previous shot(s) which can be repeated:** 128401 Previous shot(s) which can be modified: **Machine conditions** *(specify ranges as appropriate, strike out inapplicable cases)* I<sub>TF</sub> (kA): -58.5 Flattop start/stop (s): -0.020/0.5 $I_P(MA)$ : Flattop start/stop (s): Configuration: LSN Equilibrium Control: Outer gap / Isoflux (rtEFIT) Outer gap (m): **.01** Inner gap (m): .01 Z position (m): 0 Elongation $\kappa$ : 2 Upper/lower triangularity $\delta$ : .4 Injector(s): Lower Dome, inj 2 Gas Species: **D** NBI Species: D Voltage (kV) A: 90 **B: 90 C:** 90 Duration (s): .5 **ICRF** Power (MW): 2 Phase between straps (°): Duration (s): .5 Bank capacitance (mF): 5, 10, 15 CHI: On Total deposition rate (mg/min): LITERs: Off Configuration: Other SPAs connected to PFAB1 and PFAB2 EFC coils: Off

# **DIAGNOSTIC CHECKLIST**

# TITLE: **CHI use of absorber coils** AUTHORS: **Mueller**

Note special diagnostic requirements in Sec. 4

| Diagnostic                    | Need | Want         |
|-------------------------------|------|--------------|
| Bolometer – tangential array  |      | $\checkmark$ |
| Bolometer – divertor          |      |              |
| CHERS – toroidal              |      |              |
| CHERS – poloidal              |      |              |
| Divertor fast camera          |      |              |
| Dust detector                 |      |              |
| EBW radiometers               |      |              |
| Edge deposition monitors      |      |              |
| Edge neutral density diag.    |      |              |
| Edge pressure gauges          |      |              |
| Edge rotation diagnostic      |      |              |
| Fast ion D_alpha - FIDA       |      |              |
| Fast lost ion probes - IFLIP  |      |              |
| Fast lost ion probes - SFLIP  |      |              |
| Filterscopes                  |      |              |
| FIReTIP                       |      |              |
| Gas puff imaging              |      |              |
| Hα camera - 1D                |      |              |
| High-k scattering             |      |              |
| Infrared cameras              |      |              |
| Interferometer - 1 mm         |      |              |
| Langmuir probes – divertor    |      |              |
| Langmuir probes – BEaP        |      |              |
| Langmuir probes – RF ant.     |      |              |
| Magnetics – Diamagnetism      |      |              |
| Magnetics – Flux loops        |      |              |
| Magnetics – Locked modes      |      |              |
| Magnetics – Pickup coils      |      |              |
| Magnetics – Rogowski coils    |      |              |
| Magnetics – Halo currents     |      |              |
| Magnetics – RWM sensors       |      |              |
| Mirnov coils – high f.        |      |              |
| Mirnov coils – poloidal array |      |              |
| Mirnov coils – toroidal array |      |              |
| Mirnov coils – 3-axis proto.  |      |              |

#### No. **OP-XP-927** DATE: **3/24/2009**

| Note special diagnostic requirements in Sec. 4 |      |      |  |  |
|------------------------------------------------|------|------|--|--|
| Diagnostic                                     | Need | Want |  |  |
| MSE                                            |      |      |  |  |
| NPA – E  B scanning                            |      |      |  |  |
| NPA – solid state                              |      |      |  |  |
| Neutron measurements                           |      |      |  |  |
| Plasma TV                                      |      |      |  |  |
| Reciprocating probe                            |      |      |  |  |
| Reflectometer – 65GHz                          |      |      |  |  |
| Reflectometer – correlation                    |      |      |  |  |
| Reflectometer – FM/CW                          |      |      |  |  |
| Reflectometer – fixed f                        |      |      |  |  |
| Reflectometer – SOL                            |      |      |  |  |
| RF edge probes                                 |      |      |  |  |
| Spectrometer – SPRED                           |      |      |  |  |
| Spectrometer – VIPS                            |      |      |  |  |
| SWIFT $-2D$ flow                               |      |      |  |  |
| Thomson scattering                             |      |      |  |  |
| Ultrasoft X-ray arrays                         |      |      |  |  |
| Ultrasoft X-rays – bicolor                     |      |      |  |  |
| Ultrasoft X-rays – TG spectr.                  |      |      |  |  |
| Visible bremsstrahlung det.                    |      |      |  |  |
| X-ray crystal spectrom H                       |      |      |  |  |
| X-ray crystal spectrom V                       |      |      |  |  |
| X-ray fast pinhole camera                      |      |      |  |  |
| X-ray spectrometer - XEUS                      |      |      |  |  |