Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Measurement of SOL widths in ELM-free H-mode plasmas			
	PROPOSAL APP	ROVALS	
Responsible Author: J-W.	Ahn		Date 7/8/09
ATI – ET Group Leader:	V. Soukhanovskii		Date 7/8/09
RLM - Run Coordinator:	R. Raman		Date 7/8/09
Responsible Division: Exp	oerimental Research Ope	erations	
Chit F	Review Board (designat	ed by Run Coordir	ator)
MINOR MODIFICATIONS (Approved by Experimental Research Operations)			

NSTX EXPERIMENTAL PROPOSAL

TITLE: Measurement of SOL widths in ELM-free	No. OP-XP-952
H-mode plasmas	
AUTHORS: J-W. Ahn, R. Maingi, J. Boedo, R. Maqueda,	DATE: 06/25/09
J. Myra, S. Zweben	

1. Overview of planned experiment

This experiment aims to measure SOL plasma profiles (T_e , n_e , j_{sat} , and q_{target}) for ELM-free Hmode discharges for fixed operation parameters (eg, I_p , B_t , and power). The T_e , n_e , and j_{sat} profiles are measured by the mid-plane fast probe and the q_{target} profile is measured by divertor IR cameras. The newly installed high speed (up to 6.3 kHz) IR camera will be used for detailed measurement of heat flux profiles. Various other diagnostics (GPI, FIReTIP, USXR, fast visible camera, etc) will also measure blob characteristics in the SOL plasma. All the measured profiles will be flux mapped to the mid-plane for comparison.

Previous data for ELMy plasmas from NSTX showed that the relation between λ_{Te} and λ_q at the midplane followed the prediction by electron conduction model within 25-30%. However, λ_{Te} measured by TS was by a factor of ~2 shorter than by the probe. This is believed to be due to the time scale issue of the TS measurement, which is instantaneous. That is, unless the line of sight of the TS laser intersects with an ELM filament at a particular time slice, it will not reflect the T_e and n_e information carried by the ELM, while the probe measurement is over 30-40ms time period and averages over multiple ELMs and inter-ELMs periods. Therefore, we could check this hypothesis and complete the picture by measuring profiles for ELM-free H-mode plasmas. Particularly important is the comparison of T_e profiles between the probe and TS measurements. Our hypothesis expects that they would agree with each other in the ELM-free case, and it will confirm that ELMs do broaden temperature and heat flux profiles, as well as the parallel heat transport is dominated by electron conduction.

Another goal of this experiment is to provide a solid experimental basis for the SOLT modeling. ELM-free H-mode plasma is a good candidate because of the absence of electromagnetic disturbance by the ELMs. GPI measurement is necessary to provide constraint in the modeling.

2. Theoretical/ empirical justification

The electron temperature and heat flux SOL widths, λ_{Te} and λ_q respectively, have a conventional relation of $\lambda_{Te}=7/2\lambda_q$, assuming a dominant parallel electron heat conduction and a simple exponential function for the T_e and q_{target} profiles. However, it has been observed that the profiles have a long tail in the far SOL and this can be approximated by introducing an offset value in the exponential function, $ie_{a=a_0+a_1}\exp\left(-\frac{R-R_{sep}}{\lambda_a}\right)$ with *a* defined as a plasma parameter, such as T_e , n_e , and q_{target} , which we want to fit to the offset exponential function as a function of R- R_{sep} . λ_a is the decay length of the fitted

want to fit to the offset exponential function as a function of R- R_{sep} . λ_a is the decay length of the fitted curve. If we use the offset exponential function for both T_e and q profiles and apply it to the parallel electron heat conduction equation in the near SOL, we obtain a new relation between λ_{Te} and λ_q ,

$$\lambda_{Te,u} = \frac{7}{2} \lambda_q \left(\frac{T_{e,u} - T_{e0}}{T_{e,u} - Cq_0 T_{e,u}^{-5/2}} \right)$$

, where T_{e0} and q_0 are the offset T_e and q values, and κ_0 is the electron conduction coefficient. *C* is defined as $(7/2)(L_c/\kappa_0)$, where L_c is the connection length from the midplane to the target. Subscript *u* represents 'upstream'. The measured value of λ_{Te}/λ_q differs from the new prediction by 17%, compared to the 26% difference from the conventional prediction. The use of offset temperature and heat flux values, T_{e0} and q_0 , in the parallel e-conduction equation can be interpreted as a representation of relatively strong perpendicular heat transport.

Although all other plasma parameters will be kept constant, the density will increase during the Hmode phase. This will give a chance for a density scan. We plan to take two density points by plunging the probe at different times. We would be able to investigate the dependence of SOL width on the density using the probe data. Previous investigation using the TS data revealed a strong insensitivity to the line averaged density, implying that the separatrix density does not increase with increasing core density. This issue will be also investigated by the SOLT modeling and a first round discussion was already made with Lodestar modelers.

3. Experimental run plan

- 10mg/min Lithium rate, 12.5 min shot cycle
- Use NBI source A and B to minimize the fast ion effect
- Use rtEFIT: rmidout = 149cm at z=0 (147.5cm at z = -17.3cm)
- No strike point control program until the last 5-8 shots
- GPI gas puff start time 60ms earlier than max probe plunge time
- Establish a baseline shot: 132958
 NBI time: A(180-600ms: 0.6MW at const. 55kV, no modulation), B(60-140ms: 2MW)
 I_p=800kA, B_t =0.45T
 Plunge time: Max penetration at 300ms (5 shots)
- 2. Plunge probe at later time (Max penetration at 500ms) for density scan (2 shots)
- 3. Raise NBI power to 1.1MW for power scan, baseline shot 132956. Perform strike point control to fix strike point position (**2-3 shots**)
- **NBI time**: A(180-600ms: **1.1MW at const. 100kV, no modulation**), B(60-140ms: 2MW) Keep other conditions the same.
 Plunge time: Max penetration at 300ms (**5 shots**)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

This XP requires at least 2 sources of NBI system operational.

5. Planned analysis

The SOL widths will be analyzed from the data obtained from the fast probe, TS, and the IR camera, and relationships between the SOL widths will be investigated. Comparison of λ_{Te} between the probe and TS is the most important. There is an issue of surface emissivity change due to the Lithium coating on the tiles, therefore the heat flux measurement from the IR data is subject to the detailed analysis for the relation between surface temperature and emissivity. The GPI data will be analyzed to yield blob characteristics and this will be used as inputs to the SOLT code. EFIT will be necessary for the flux mapping of the profiles to the mid-plane.

6. Planned publication of results

Data and analysis for the measured SOL widths will be presented in major international conferences and will be published in an appropriate refereed journal.

PHYSICS OPERATIONS REQUEST

TITLE: Measurement of SOL widths in ELM-free	No. OP-XP-952
H-mode plasmas	
AUTHORS: J-W. Ahn, R. Maingi, J. Boedo, R. Maqueda	DATE: 06/25/09
J. Myra, S. Zweben,	

Describe briefly the most important plasma conditions required for the XP:

Access to ELM-free H-mode in low NBI power (≤ 1.1 MW) is the most important plasma condition.

List any pre-existing shots: 132713

Equilibrium Control: Gap Control / rtEFIT(isoflux control):

Machine conditions (specify ranges as appropriate, use more than one sheet if necessary)

I _{TF} (kA): 63	Flattop start/stop (s):	
I _P (MA): 0.8 – 1.0	Flattop start/stop (s): 0.15/1.0 (max)
Configuration: Limit	er / DN / <u>LSN</u> / USN (strike out inap	oplicable cases)
Outer gap (m): 0.1	Inner gap (m): 0.05-0.1	Z position (m): 0.0
Elongation κ: 2.0	Upper/lower triangularity δ:	0.45
Gas Species: D	Injector(s): Inner wall Mid-	-plane
NBI Species: D Volt	tages (kV or off) A: B:	C: N/A Duration (s): <1sec
ICRF Power (MW):	Phasing:	Duration (s):
CHI: Off	Bank capacitance (mF):	
LITERs: On	Total deposition rate (mg/min): 1	l0mg/min
EFC coils: Off/On	Configuration: Odd / Even / Other	: (attach detailed sheet)

DIAGNOSTIC CHECKLIST

TITLE: Measurement of SOL widths in ELM-free H-mode plasmas

AUTHORS: J-W. Ahn, R. Maingi, J. Boedo, R. Maqueda, J. Myra, S. Zweben

DATE: 06/25/09

No. **OP-XP-952**

Note special diagnostic requirements in Sec. 4			
Diagnostic	Need	Want	
Bolometer – tangential array			
Bolometer – divertor			
CHERS – toroidal			
CHERS – poloidal			
Divertor fast camera			
Dust detector			
EBW radiometers			
Edge deposition monitors			
Edge neutral density diag.			
Edge pressure gauges			
Edge rotation diagnostic			
Fast ion D_alpha - FIDA			
Fast lost ion probes - IFLIP			
Fast lost ion probes - SFLIP			
Filterscopes			
FIReTIP			
Gas puff imaging			
$H\alpha$ camera - 1D			
High-k scattering			
Infrared cameras			
Interferometer - 1 mm			
Langmuir probes – divertor			
Langmuir probes – BEaP			
Langmuir probes – RF ant.			
Magnetics – Diamagnetism			
Magnetics – Flux loops			
Magnetics – Locked modes			
Magnetics – Pickup coils			
Magnetics – Rogowski coils			
Magnetics – Halo currents			
Magnetics – RWM sensors			
Mirnov coils – high f.			
Mirnov coils – poloidal array			
Mirnov coils – toroidal array			
Mirnov coils - 3-avis proto		1	

Note special diagnostic requirements in Sec.	4

Need	Want
itteu	$\sqrt{1}$
	1
	,
	•
J V	
•	
	,
	Need √ √ √ √ √ √ √