Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Early error-field correction in long-pulse plasmas					
					OP-XP-954
PROPOSAL APPROVALS					
Responsible Author: Jon Menard	Jonathan E. M	enard	Date July 30, 2009		
ATI – ET Group Leader: David Gates			Date July 30, 2009		
RLM - Run Coordinator: Roger Raman			Date July 30, 2009		
Responsible Division: Experimental Research Operations					
<u>Chit R</u>	eview Board (designate	ed by Run Coordir	<u>nator)</u>		
MINOR MODIFI	CATIONS (Approved b	y Experimental R	esearch Operations)		

NSTX EXPERIMENTAL PROPOSAL

TITLE: Early error-field correction in long-pulse plasmasNo. **OP-XP-954**AUTHORS: J. Menard, S. Gerhardt, D. GatesDATE: 07/30/2009

1. Overview of planned experiment

The combination of active suppression of n=1 RFA, n=3 pre-programmed error field correction (EFC), and LITER have produced record plasma pulse-durations in NSTX. High elongation + EFC + LITER have produced record poloidal beta and record low flux-consumption in NSTX. This experiment will attempt to systematically lower the plasma density while avoiding disruptive MHD activity by optimizing early error-field correction to reduce mode locking. Reduced density could increase the NBI CD efficiency, and if Te increases at reduced density, density reduction could increase the conductivity and further increase NBI-CD and reduce OH flux consumption. This experiment will focus on discharges with little or no late MHD activity to simplify NBICD analysis, and with sufficient flat-top that the inductive and non-inductive profiles become equilibrated.

2. Theoretical/ empirical justification

Reduced density is predicted to increase beam current drive efficiency, and higher Te at reduced density could further increase NBI-CD efficiency and conductivity – all resulting in increased pulse duration and higher non-inductive fraction plasmas. Higher non-inductive fraction is important for improved operation of NSTX and NSTX-Upgrade and is essential to future ST devices such as NHTX and ST-CTF. Variations in plasma density should modify the beam current drive fraction at fixed heating power, thereby providing data for the ITPA IOS group for validating beam current drive models. Finally, this experiment is important for the anticipated operation of the liquid lithium divertor (LLD) which could result in reduced early density and locked-modes if the LLD acts as an effective pump.

3. Experimental run plan

FIRST 1/2 RUN DAY

- A. Reproduce a long-pulse and late-MHD-free discharge at 700-750kA (3 shots)
 - 1. Start with evaporation rate = 20mg/min for 10mins, 12 min shot cycle, no He glow
 - i. Use XP836 shot 135445 with 1.2-1.4s period without low-n MHD
 - ii. Use 16cm outer gap, increase TF to 4kG if MHD free-window is too short.
 - iii. Modify squareness and/or PF1AL current to maintain elongation ≤ 2.6 after t=1s
- B. Reduce pre-fill and/or low-field-side gas to trigger early MHD event/mode locking
 - 1. Reduce early NBI power if beta-limit is reached, but maintain early H-mode
 - 2. Start n=3 EF correction at t=20ms with gain = 200A/10kA (I_{RWM}/I_{PF5}) (2 shots)
 - i. Assess locking behavior and rotation modification from n=3 EFC
 - 3. With n=3 EFC off, turn on n=1 OHxTF EFC from XP 614 (120335) (5 shots)
 - i. Ramp-down OHxTF EFC by t=350ms to transition to n=1 FB control and n=3 EFC
 - ii. Scan timing of OHxTF correction ramp-up in steps of 20ms (moving earlier)
 - iii. Assess locking behavior and rotation modification from n=1 EFC
 - 4. Combine early n=3 and n=1 EFC, and assess mode-locking and rotation (2 shots)
- C. Reduce HFS gas in 200 Torr steps to trigger MHD event near early H-mode onset (4 shots)
 - 1. Assess stable density reduction achievable from early EFC

SECOND ¹/₂ RUN DAY

- D. Working at an early density near and above locking threshold:
 - 1. Attempt to produce an MHD-stable discharge with reduced late density by replacing the LFS/HFS fueling with SGI-based fueling from XP-912 shot 134134 (4 shots)
 - 2. Increase LITER evaporation rate to 30mg/min, adjust SGI fueling for stability (6 shots)
- E. Time permitting, increase I_P to 0.8, 0.9, 1MA to assess n_e evolution at higher current (6 shots)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Describe any prerequisite conditions, development, XPs or XMPs needed. Attach completed Physics Operations Request and Diagnostic Checklist.

5. Planned analysis

The usual diagnostic capabilities are required, NBI voltage on A, B, C = 90, 90, 80kV.

6. Planned publication of results

Results will be published in conference proceedings and/or journal such as Nuclear Fusion or Physics of Plasmas within one year of experiment.

PHYSICS OPERATIONS REQUEST

TITLE: Early error-field correction in long-pulse plasmasNo. OP-XP-954AUTHORS: J. Menard, S. Gerhardt, D. GatesDATE: 07/30/2009

(use additional sheets and attach waveform diagrams if necessary)

Describe briefly the most important plasma conditions required for the experiment:				
Long flat-top of 1.5-1.8s flat-top with long window (1-1.5s) free of low-n MHD activity				
Previous shot(s) which can be repeated: 135445				
Previous shot(s) which can be modified: 135440, 129125				
Machine conditions (specify ranges as appropriate, strike out inapplicable cases)				
I_{TF} (kA): up to 63kA Flattop start/stop (s): 0.0 , ~2s				
I _P (MA): 0.7 to 1MA Flattop start/stop (s): 0.2 , \sim 2s				
Configuration: DN / LSN				
Equilibrium Control: Isoflux (rtEFIT)				
Outer gap (m): 16cm Inner gap (m): 2-8cm Z position (m): ~0m				
Elongation κ : 2.4-2.6 Upper/lower triangularity δ : 0.5/0.7				
Gas Species: D Injector(s): CS midplane, outer midplane, SGI				
NBI Species: D Voltage (kV) A: 90kV B: 90kV C: 80kV Duration (s): 2s				
ICRF Power (MW): 0MW Phase between straps (°): 0 Duration (s): 0				
CHI: Off Bank capacitance (mF):				
LITERs: On Total deposition rate (mg/min): 20mg/min (increase later to 30)				
EFC coils: On Configuration: Odd				

DIAGNOSTIC CHECKLIST

TITLE: Early error-field correction in long-pulse plasmas AUTHORS: J. Menard, S. Gerhardt, D. Gates

No. **OP-XP-954** DATE: **07/30/2009**

Note special diagnostic requirements in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array		
Bolometer – divertor		
CHERS – toroidal	X	
CHERS – poloidal		
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic		
Fast ion D_alpha - FIDA	X	
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	X	
FIReTIP		
Gas puff imaging		
$H\alpha$ camera - 1D		
High-k scattering		
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism	X	
Magnetics – Flux loops	X	
Magnetics – Locked modes	X	
Magnetics – Pickup coils	Χ	
Magnetics – Rogowski coils	X	
Magnetics – Halo currents		
Magnetics – RWM sensors	X	
Mirnov coils – high f.	X	
Mirnov coils – poloidal array	X	
Mirnov coils – toroidal array	X	
Mirnov coils – 3-axis proto.		

Need	Want
X	vv unt
X	
X	
Χ	
X	
Χ	
Χ	
	Need X