Princeton Plasma Physics Laboratory NSTX Experimental Proposal				
Title: Basic Operation with Reversed TF				
OP-XP-955	Revision: 0	(Approval da Expiratio	Date: 8/4/09 ate unless otherwise stipulated) n Date: 8/4/11 s otherwise stipulated)	
	PROPOSAL AP			
Responsible Author:	D. Mueller		Date 8/4/09	
ATI – ET Group Lea	der:		Date 8/4/09	
RLM - Run Coordina	RLM - Run Coordinator: R. Raman Date 8/4/09		Date 8/4/09	
Responsible Division:	Experimental Research O	perations		
MINOR MOI	DIFICATIONS (Approve	d by Experimental R	esearch Operations)	

NSTX EXPERIMENTAL PROPOSAL

TITLE:Basic Operation with Reversed TFNo. OAUTHORS:D. Mueller, M. Bell, R. MaingiDATE

No. **OP-XP-955** DATE: **7/29/2009**

1. Overview of planned experiment

The toroidal field direction on NSTX will be changed from its normal, *i.e.* clockwise viewed from above, to the reversed, *i.e.* counter-clockwise viewed from above, direction. The goals of this experiment are to:

- 1) Establish standard plasma operation with reversed TF;
- 2) Compare the NB-heated LSN fiducial plasma with reversed TF to that with normal TF;
- 3) Compare this fiducial plasma with the sign of the EFIT control parameter DRSEP changed to move the dominant divertor from the bottom to the top of NSTX;
- 4) Perform USN, LSN and DN discharges and assess their performance, including differences in H-Mode power threshold, ELMs and MHD activity.

2. Theoretical/empirical justification

This work is a prerequisite for other physics investigations planned to exploit reversed-TF operation.

3. Experimental run plan

	Shots	Total
 Run recent LSN fiducial shot with reversed TF with both 4 and 6 MW NBI, repeating as necessary to optimize the startup and gas puffing, outer gap = 10cm. Check for signs of increased fast ion losses (increased Prad, and TV pictures), increase outer gap and/or delay beams as is appropriate. 	4	4
2) Change sign of DRSEP after start-up phase and run shots with 4 and 6 MW NBI Use RWM feedback from negative B _T for only the last shot Decision point, skip to steps 9 and 10 when new matrix is ready.	4	8
3) Run LSN shot 117747 repeating as necessary to optimize the startup and gas puffing	2	10
4) Perform power scan 4.5, 3.5, 3, 2 MW to get H-Mode threshold for LSN	6	16
5) Run USN shot 117750 repeating as necessary to optimize the startup and gas puffing	2	18
6) Perform power scan 4.5, 3.5, 3, 2 MW to get H-Mode threshold for USN	6	24
7) Run DN shot 117745 repeating as necessary to optimize the startup and gas puffing	2	26
8) Perform power scan 4.5, 3.5, 3, 2 MW to get H-Mode threshold for DN	6	32
9) If $\beta_N > 4.5$ in steps 1) or 2), using the plasma with highest β_N , perform an n=3 error field	d 6	38
correction scan using Table 1 below.		
10) Using the "best" value of n=3 correction from 9), perform a scan of the phase of the	8	44
n=1 feedback in 45° steps. using the standard gains from 134808 with the new matrix.		2/4

OP-XP-955

- 11) Fine tune scans in 4), 6) and 8) to get threshold power more accurately as time allows 6 50
- 12) Add lithium powder at 30 mg/min starting before t=0 and continuing through the shot 4 54 for the best conditions established for the USN discharges
- 13) Add lithium powder at 30 mg/min starting before t=0 and continuing through the shot56 for the best conditions established for a complementary LSN discharges
- 14) Using the best performing shot from 10), perform an outer gap scan
 (10, 7, 13, 16, 19 cm), taking care to increase the early outer gap to match the flattop value.

TABLE 1.

SPA1 (A)	SPA2 (A)	SPA3 (A)	Shot No.
0	0	0	
-250	250	250	
250	250	-250	
-500	-500	500	
500	500	-500	
-750	-750	750	

4. Required machine, NBI, RF, CHI and diagnostic capabilities

TF reversed and ISTP for operating with it completed.

NBI A @2 MW, B @1.5 MW, C @1 MW with possible changes in voltage, including 6 MW total power			
Apply lithium evaporation at a rate of 200 mg/shot and run on a 10 min shot cycle.			
One lithium powder dropper, preferably both, is required for steps 10) and 11).			
Prior to TF reversal, run the following:	Shots		
1) LSN from 117747, but increase Ip to better confine fast ions (aim for 900 kA)	4		
2) Perform a power scan to find the H-Mode power threshold to about 0.5 MW	6		
3) Perform an USN shot from 117750 at Ip in 1) at moderate power (2 or 4 MW).	2		
4) Use Li dropper before and during shot at 30 mg/min and assess performance improvement with			
the Li powder.	6		

Note: The plasma current and plasma control scheme from above will be used whenever the shots 117745-50 are called for in the main XP.

5. Planned analysis

EFIT and TRANSP

6. Planned publication of results

These results will intrinsically contribute to NSTX publications and inform other experiments.

18

Total

PHYSICS OPERATIONS REQUEST

TITLE: Basic Operation with Reversed TF AUTHORS: D. Mueller, M. Bell, R. Maingi

Г

No. **OP-XP-955** DATE: 7/29/2009

٦

(use additional sheets and attach waveform diagrams if necessary)

Describe briefly the most important plasma conditions required for the experiment:				
Reversed TF				
Previous shot(s) which ca	n he repeated	117745 (DN). 117747	7 (LSN), 117750 (USN)
Previous shot(s) which can be repeated. Previous shot(s) which can be modified:		117745 (DN), 117747 (LSN), 117750 (USN) 133808 for DRSEP scan		
Machine conditions (sp	ecify ranges as ap	propriate,	strike out ind	applicable cases)
I _{TF} (kA): 53 Flattop start/stop (s): -0.02/1.4				
I _P (MA): 0.6–0.8 Flattop start/stop (s):				
Configuration: USN, LSN	and DN			
Equilibrium Control: Out	er gap / Isoflux ((rtEFIT)		
Outer gap (m): 0.1	Inner gap (m	n): 0.01	Z pos	ition (m): variable
Elongation κ: 2.0-2.4	Upper/lower	triangulari	ty δ: 0.4	
Gas Species: D	Injector(s): a	ıll		
NBI Species: D Voltage	(kV) A: 90	B: 90	C: 90	Duration (s): 1.4
ICRF Power (MW): 0	Phase betw	veen straps	(°):	Duration (s):
CHI: Off Bar	nk capacitance (m	IF):		
LITERs: On Total c	leposition rate (m	g/min): 10		
EFC coils: On	Configuration: O	dd		

DIAGNOSTIC CHECKLIST TITLE: Basic Operation with Reversed TF AUTHORS: D. Mueller, M. Bell, R. Maingi

No. **OP-XP-955** DATE: **7/29/2009**

Note special diagnostic requirements in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Bolometer – tangential array		
Bolometer – divertor		
CHERS – toroidal		
CHERS – poloidal		
Divertor fast camera		
Dust detector		
EBW radiometers		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		
Edge rotation diagnostic		
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		
FIReTIP		
Gas puff imaging		
$H\alpha$ camera - 1D		
High-k scattering		
Infrared cameras		
Interferometer - 1 mm		
Langmuir probes – divertor		
Langmuir probes – BEaP		
Langmuir probes – RF ant.		
Magnetics – Diamagnetism		
Magnetics – Flux loops		
Magnetics – Locked modes		
Magnetics – Pickup coils		
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		
Magnetics – RWM sensors		
Mirnov coils – high f.		
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.		

Diagnostic	Need	Want
MSE	1	
NPA – E B scanning		
NPA – solid state		
Neutron measurements		
Plasma TV	\checkmark	
Reciprocating probe		
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		
RF edge probes		
Spectrometer – SPRED		
Spectrometer – VIPS		
SWIFT $-2D$ flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray arrays		
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.		
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray fast pinhole camera		
X-ray spectrometer - XEUS		