Title: L-H threshold and edge transport and turbulence in NSTX reversed <i>I</i> discharges OP-XP-956 Revision: Effective Date: 8/5/09 (Approved date unless otherwate stipulated) PROPOSAL APPROVALS Expiration Date: 8/5/09 (Approved date unless otherwate stipulated) PROPOSAL APPROVALS Date 8/5/09 Responsible Author: S. Kaye, R. Maingi, V. Soukhanovskii, K. Tritz Date 8/5/09 ATI - ET Group Leader: V. Soukhanovskii / K. Tritz Date 8/5/09 RLM - Run Coordinator: R. Raman Date 8/5/09 Responsible Division: Experimental Research Operations Date 8/5/09 Chit Review Board (designated by Run Coordinator) MINOR MODIFICATIONS (Approved by Experimental Research Operations)	Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: L-H threshold and edge transport and turbulence in NSTX reversed B _t discharges				
OP-XP-956 Revision: (Approval date unless otherwise stipulated) Expiration Date: 8/5/09 (2 yrs. unless otherwise stipulated) PROPOSAL APPROVALS Date 8/5/09 Responsible Author: S. Kaye, R. Maingi, V. Soukhanovskii, K. Tritz Date 8/5/09 ATI – ET Group Leader: V. Soukhanovskii / K. Tritz Date 8/5/09 RLM - Run Coordinator: R. Raman Date 8/9/09 Responsible Division: Experimental Research Operations Date 8/9/09 Chit Review Board (designated by Run Coordinator) Vertice Second					
PROPOSAL APPROVALS Responsible Author: S. Kaye, R. Maingi, V. Soukhanovskii, K. Tritz Date 8/5/09 ATI – ET Group Leader: V. Soukhanovskii / K. Tritz Date 8/5/09 RLM - Run Coordinator: R. Raman Date 8/9/09 Responsible Division: Experimental Research Operations Chit Review Board (designated by Run Coordinator)	OP-XP-956	Revision:	(Approval dat Expiration	(Approval date unless otherwise stipulated) Expiration Date: 8/5/09	
ATI – ET Group Leader: V. Soukhanovskii / K. Tritz Date 8/5/09 RLM - Run Coordinator: R. Raman Date 8/9/09 Responsible Division: Experimental Research Operations Chit Review Board (designated by Run Coordinator)	PROPOSAL APPR	OVALS		• /	
RLM - Run Coordinator: R. Raman Date 8/9/09 Responsible Division: Experimental Research Operations Chit Review Board (designated by Run Coordinator)	Responsible Author: S	. Kaye, R. Maingi, V. Soukhano	vskii, K. Tritz	Date 8/5/09	
Responsible Division: Experimental Research Operations Chit Review Board (designated by Run Coordinator)	ATI – ET Group Lead	er: V. Soukhanovskii / K. Tritz		Date 8/5/09	
Chit Review Board (designated by Run Coordinator)	RLM - Run Coordinat	or: R. Raman		Date 8/9/09	
	Responsible Division:	Experimental Research Operat	ions	l	
MINOR MODIFICATIONS (Approved by Experimental Research Operations)					
	MINOR MODIFIC	ATIONS (Approved by Experimental ATIONS)	mental Research	Operations)	

NSTX EXPERIMENTAL PROPOSAL

TITLE: L-H threshold and edge transport and turbulence	No. OP-XP-956
in NSTX reversed <i>B_t</i> discharges	
AUTHORS: S. Kaye, R. Maingi, V. Soukhanovskii, K. Tritz	DATE: 8/5/09

1. Overview of planned experiment

The goals of the experiment is to conduct initial physics scoping studies of the reversed B_t effects on edge, scrape-off layer and divertor heat and particle transport and turbulence: 1) L-H power thresholds in NBI-heated discharges, 2) divertor and SOL transport and turbulence in L- and H-mode discharges in low and high triangularity configurations.

2. Theoretical/ empirical justification

This experiment will provide first spherical tokamak data on L-H threshold and edge physics with reversed B_t for comparison with forward B_t and with large aspect ratio tokamaks.

3. Experimental run plan

- 1. SOL, divertor, and pedestal characterization in low- δ discharges (approx. 1 day)
 - Setup: Use discharge 135169 (or long pulse version of 132721 with a larger drsep ~ -2-3 cm) as template (0.8 MA, 5 MW, δ_L =0.4, drsep =-1 cm, GAPOUT=10 cm). Use LITER at 10-20 mg/min (exact rate TBD).
 - 1. Scan P_{NBI} between 1 MW and 6 MW in steps of 1 MW to map out L- and H-mode operational space boundaries. Choose a suitable outer gap that reduces beam ion losses while allowing edge profiles to be measured (use results from XP955).
 - 2. In an H-mode discharge (at high P_{NBI}), scan I_p between 0.6 and 1.0 MA, 0.2 MA increments. [Add data points at 0.6 and 1MA – 2 shots]
 - 3. In an 0.8 MA H-mode discharge, attempt to obtain radiative divertor
 - Use Bay E divertor gas injector at pressures 2000-5000 Torr, pulse duration 100-200 ms [Start with conditions similar to that used in the radiative divertor XP]

2. L-H threshold studies (aprox. 4 hrs)

- Reproduce low δ_L discharge with ohmic ramp-up (132721, 800kA case), with 50-100mg Lithium between discharges, i.e. just enough to avoid HeGDC
- 1. Measure P_{LH} through NBI voltage scans, using src C at lowest voltage, and B at intermediate (start with a discharge developed as part of step 1, but use 50mg Li deposition)
- 2. Repeat with heavy Lithium (250mg Li-deposition)
- 3. SOL, divertor, and pedestal characterization in high- δ discharges (approx. 1 day)
 - Use most recent fiducial discharge as template (0.8 MA, 4-6 MW, δ_L =0.8, drsep =-1 cm, GAPOUT=10 cm). Use LITER at 10-20 mg/min (exact rate TBD).
 - 1. Scan P_{NBI} between 1 MW and 6 MW in steps of 1 MW.
 - 2. In an H-mode discharge (at high P_{NBI}), scan I_p between 0.8 and 1.2 MA [Add data points at 0.8MA and if possible at 1.2MA]

- 3. In an 1.0 MA H-mode discharge, attempt to obtain radiative divertor
 - Use Bay E divertor gas inj. at pressures 2000-5000 Torr, pulse duration 100-200 ms. [Start with conditions similar to that used in the radiative divertor XP]
- **4.** Test Impact of reversed TF on Impurity particle/confinement with XP950 results (4hrs) [About 15-18 shots]
 - Use same LITER rate as XP950 (increase as needed to eliminate ELMs).
 - Modify early gas fueling and NBI power and timing to achieve early H-mode at similar time as forward BT target. (3 shots)
 - Avoid period of small outer gap (0-5cm) from 100-150ms. (2 shots)
 - a. Run 134259 (15cm outer gap, 700kA) and reproduce (2 shots)
 - b. Run 134258 (10cm outer gap, 700kA) and reproduce (2 shots)
 - c. Run 134272 (20cm outer gap, 1.2MA, if P_{threshold} is adequate) and reproduce (2 shots)

Use results above to maximize pulse-length in reversed TF configuration by minimizing impurity accumulation and associated density rise at 700-800kA.

d. Starting from 700kA target above with density closest to saturation and lowest impurity concentration, increase plasma current:

i.	Increase current to 750kA	(2 shots)
ii.	Increase current to 800kA	(2 shots)

- e. At reduced TF = 4kG, repeat above current scan:
 - i. Use plasma current = 750kA, 700kA, 800kA
 - [due to time limitations run at one value if Ip] (2 shots)

5. Optional, time permitting studies. Priority and scope TBD after the completion of parts 1 through 3.

- Scan LITER rate between 10 and 80 mg/min to study pumping characteristics in low and/or high triangularity discharges
- Use SGI to study ion τ_p^* at several LITER rates in high triangularity discharges
- Perform P_{NBI} and I_P scans in high- δ and low- δ double-null configuration.
- Use RMP in several discharges to study pumping / ELM behavior
- Obtain "snowflake" divertor, use discharge template from XP 924

4. Required machine, NBI, RF, CHI and diagnostic capabilities

The experiment assumes that 1) plasma facing component conditioning has been performed to enable plasma operations, and 2) reliable reversed B_t plasma operations have been established.

Both LITERs, SGI, and Bay E divertor gas injector will be required.

5. Planned analysis

What analysis of the data will be required: EFIT, LRDFIT, TRANSP, UEDGE, SOLPS, DEGAS 2, SOLT, BOUT

6. Planned publication of results

Results will be presented at the upcoming PSI and ITPA meetings if appropriate.

PHYSICS OPERATIONS REQUEST

TITLE: L-H threshold and edge transport and turbulence	No. OP-XP-956
in NSTX reversed <i>B_t</i> discharges	
AUTHORS: S. Kaye, R. Maingi, V. Soukhanovskii, K. Tritz	DATE: 8/5/09
(use additional sheets and attach waveform diagrams if necessary)

Describe briefly the most important plasma conditions required for the experiment: Previous shot(s) which can be repeated: Previous shot(s) which can be modified: **Machine conditions** *(specify ranges as appropriate, strike out inapplicable cases)* I_{TF} (kA): Flattop start/stop (s): $I_P(MA)$: Flattop start/stop (s): Configuration: Limiter / DN / LSN / USN Equilibrium Control: Outer gap / Isoflux (rtEFIT) Outer gap (m): Inner gap (m): Z position (m): Elongation κ : Upper/lower triangularity δ : Gas Species: Injector(s): NBI Species: D Voltage (kV) A: Duration (s): **B**: **C**: **ICRF** Power (MW): Phase between straps (°): Duration (s): CHI: Off / On Bank capacitance (mF): LITERs: Off / On Total deposition rate (mg/min): Configuration: Odd / Even / Other (attach detailed sheet EFC coils: Off/On

DIAGNOSTIC CHECKLIST

TITLE: L-H threshold and edge transport and turbulence in No. OP-XP-956 NSTX reversed *B_t* discharges

AUTHORS: S. Kaye, R. Maingi, V. Soukhanovskii, K. Tritz

DATE: 8/5/09

Note special diagnostic requirements in Sec. 4				
Diagnostic	Need	Want		
Bolometer – tangential array	\checkmark			
Bolometer – divertor	\checkmark			
CHERS – toroidal	\checkmark			
CHERS – poloidal	\checkmark			
Divertor fast camera	\checkmark			
Dust detector				
EBW radiometers				
Edge deposition monitors				
Edge neutral density diag.				
Edge pressure gauges	\checkmark			
Edge rotation diagnostic	\checkmark			
Fast ion D alpha - FIDA				
Fast lost ion probes - IFLIP				
Fast lost ion probes - SFLIP				
Filterscopes	\checkmark			
FIReTIP	\checkmark			
Gas puff imaging	\checkmark			
$H\alpha$ camera - 1D	\checkmark			
High-k scattering				
Infrared cameras	\checkmark			
Interferometer - 1 mm				
Langmuir probes – divertor	\checkmark			
Langmuir probes – BEaP				
Langmuir probes – RF ant.				
Magnetics – Diamagnetism				
Magnetics – Flux loops				
Magnetics – Locked modes				
Magnetics – Pickup coils	\checkmark	1		
Magnetics – Rogowski coils				
Magnetics – Halo currents				
Magnetics – RWM sensors				
Mirnov coils – high f.	1			
Mirnov coils – poloidal array	1			
Mirnov coils – toroidal array	1			
Mirnov coils – 3-axis proto.		1		

Note special diagnostic requirements in Sec. 4				
Diagnostic	Need	Want		
MSE				
$NPA - E \parallel B$ scanning				
NPA – solid state				
Neutron measurements				
Plasma TV	\checkmark			
Reciprocating probe				
Reflectometer – 65GHz				
Reflectometer – correlation				
Reflectometer – FM/CW				
Reflectometer – fixed f				
Reflectometer – SOL				
RF edge probes				
Spectrometer – SPRED	\checkmark			
Spectrometer – VIPS	\checkmark			
SWIFT - 2D flow				
Thomson scattering	\checkmark			
Ultrasoft X-ray arrays	\checkmark			
Ultrasoft X-rays – bicolor	\checkmark			
Ultrasoft X-rays – TG spectr.				
Visible bremsstrahlung det.	\checkmark			
X-ray crystal spectrom H				
X-ray crystal spectrom V				
X-ray fast pinhole camera				
X-ray spectrometer - XEUS	\checkmark			