Princeton Plasma Physics Laboratory NSTX Experimental Proposal						
Title: LLD Characteriz	ation					
OP-XP-1000	Date: 3/22/2010 ate unless otherwise stipulated) n Date: 3/22/2012 s otherwise stipulated)					
	PROPOSAL APPROVA	ALS				
Responsible Author: H. W.	Kugel		Date			
ATI – ET Group Leader: C	2. H. Skinner		Date			
RLM - Run Coordinator: H	C. D. Fredrickson (S. A. Sabbag	h)	Date			
Responsible Division: Expe	erimental Research Operations					
RESTRI (App	CTIONS or MINOR MOI roved by Experimental Research	DIFICAT Operations	IONS			

NSTX EXPERIMENTAL PROPOSAL

TITLE: LLD Characterization AUTHORS: H. Kugel, R. Maingi, V. Soukhanovskii No. **OP-XP-1000** DATE: **3/4/2010**

1. Overview of planned experiment

1. 1 The first purpose of this experiment is characterization of the Liquid Lithium Divertor (LLD) pumping capability and its effects on plasma performance as compared with solid lithium coatings.

1.2 The second purpose of this experiment is to qualify LLD-1 for use as an operational tool to support XPs for the duration of the 2010 Run.

1.3 The third purpose of this experiment is to achieve the LLD Milestone as follows:

- Install LLD-1.
- Determine the relationship between lithiated surface conditions and edge and core plasma conditions.
- Understand LLD-1 pumping, by a study of D retention as function of surface conditions such as Li coverage and LLD surface temperature, and plasma exhaust parameters such as: scrape-off layer density, temperature, strike-point location, and flux expansion.

2. Theoretical/ empirical justification

Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD) and its characterization during the 2010 Experimental Campaign.

3. Experimental run plan

3.1 Prerequisites.

3.1.1 Perform OP-XMP-64, "NSTX Start-up Commissioning and Evaluation Using Lithiumization" until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, $\tau_e \ge 50$ ms, Se=200kJ.

3.1.2 Depending on the results of OP-XMP-64, do or do not use strike point controls.

3.2 Guidelines, Decision Points, Contingency.

3.2.1 During the NBI power scans, stacking of the early beams shall be applied if necessary to ensure constant front-end evolution, and reproducible H-mode transitions.

3.2.2 During the NBI power scans, the pulse length and power shall be adjusted slowly to keep the LLD front-face temperature during discharges below 380-400°C to minimize evaporation.

3.2.3 The R=0.35m case shall not be tested unless the R=0.63m case exhibits pumping.

3.3 Perform the discharges (cold, R=0.5m, 0.63m) listed in Part 1A.

DECISION POINT: If administratively approved, proceed to Part 2A (cold R=0.75m). If not approved, proceed to Part 1B (warm, R=0.5m, 0.63m).

3.4 If Parts 1A and 1B completed (cold and warm R = 0.5m, 0.63m) and if administratively approved, proceed to complete Part 2A and 2B (cold and warm R = 0.75m).

Day	State of	Outer	LLD	LITER	Li g	Fueling	Pnbi	No.
	LLD	Strike Pt	°C	20 mg/min	Deposited		MW	of
		R (m)		_	_		/msec	Sho
								ts

Part 1A. Do Reference Shots Using <u>Cold LLD</u> (To = 30-50°C).

1	cold	0.50m	Rm temp	20mg/min		HFS	3	2
							5	2
						SGI	3	2
							5	2
		0.63m				HFS	2 /100	2
							2/TBD	
						SGI	2/100	2
							2/TBD	
Select	best of HFS	and SGI, an	d Test persis	stence of pump	oing effect			
		0.63m		OFF				5

If administratively approved proceed to Part 2A. If not proceed to Part 1B.

R = 0.35m, 0.5m: Candidate Reference shots: 129061, 132582.

R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration.

Candidate Reference shots from 2008-09 database, 129015-19, 129038.

R=0.63m Kallman Shots 134986 - HFS, 134991 - SGI

PF2L current ~ 3.5 kA (the value that strike point control approaches)

Part 1B. Do Reference Shots Using <u>Warm LLD</u> (To = 210-230°C).

1) Repeat Reference shots of Day-1.

2) Match n_e(t) by fueling with both HFS & SGI as required.

3) Proceed to lower fueling for lower ne(t) using both HFS & SGI.

4) Power variation as needed to stay below beta limit.

2	warm	0.50m	210°C	20mg/min		HFS	3	2
							5	2
						SGI	3	2
							5	2
		0.63m				HFS	2 /100	2
							2/TBD	
						SGI	2/100	2
							2/TBD	
Select	best of HFS	and SGI, an	d Test persi	stence of pump	ing effect			
		0.63m		OFF		TBD		5

- R = 0.35m, 0.5m: Candidate Reference shots: 129061, 132582.
- R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration.
- Candidate Reference shots from 2008-09 database, 129015-19, 129038.
- R=0.63m Kallman Shots 134986 HFS, 134991 SGI PF2L current ~ 3.5 kA (the value that strike point control approaches)

If administratively approved, proceed to Part 2A. If not, wait until scheduled.

Part 2A. Do Reference Shots Using <u>Cold LLD</u> (To = 30-50°C).

1) Repeat Reference shots of Day-1.

2) Match $n_e(t)$ by fueling with both HFS & SGI as required.

3) Proceed to lower fueling for lower ne(t) using both HFS & SGI.

4) Power variation as needed to stay below beta limit.

3		0.75m		20mg/min		HFS	2/100	2
							2/TBD	2
						SGI	2/100	2
							2/TBD	2
Select	best of HFS	and SGI, an	d Test persis	stence of pump	ing effect			
		0.75m		OFF		TBD		5

Part 2B. Do Reference Shots Using <u>Warm LLD</u> (To = 210-230°C).

- 1) Repeat Reference shots of Day-1.
- 2) Match $n_e(t)$ by fueling with both HFS & SGI as required.
- 3) Proceed to lower fueling for lower ne(t) using both HFS & SGI.

4) Power variation as needed to stay below beta limit.

3		0.75m		20mg/min		HFS	2/100	2
							2/TBD	2
						SGI	2/100	2
							2/TBD	2
Select	best of HFS	and SGI, an	d Test persis	stence of pump	ing effect			
		0.75m		OFF		TBD		5

• R = 0.35m, 0.5m: Candidate Reference shots: 129061, 132582.

- R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration.
- Candidate Reference shots from 2008-09 database, 129015-19, 129038.
- R=0.63m Kallman Shots 134986 HFS, 134991 SGI PF2L current ~ 3.5 kA (the value that strike point control approaches)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

Perform OP-XMP-64, "NSTX Start-up Commissioning and Evaluation Using Lithiumization" until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, $\tau_e \ge 50$ ms, Se=200kJ.

5. Planned analysis

UEDGE, TRANSP, etc.

6. Planned publication of results

PSI2010, Nucl. Fusion, IAEA2010

PHYSICS OPERATIONS REQUEST

(use additional sheets and attach waveform diagrams if necessary)

Brief description of the most important operational plasma conditions required:

1.) Perform OP-XMP-64, "NSTX Start-up Commissioning and Evaluation Using Lithiumization" until the required Reference Discharges achieve research grade, defined as 4MW NBI, 600ms Ip flattop, $\tau_e \ge 50$ ms, Se=200kJ. • R = 0.35m, 0.5m: Candidate Reference shots: 129061, 132582. • R=0.65m, 0.75m: Same Candidate Reference shots: 129061, 132582 but with OSP extended to higher R for pumping demonstration. • Candidate Reference shots from 2008-09 database, 129015-19, 129038. • R=0.63m Kallman Shots 134986 - HFS, 134991 - SGI PF2L current ~ 3.5 kA (the value that strike point control approaches) **Previous shot(s) which can be repeated: Refer to Shot tables** Previous shot(s) which can be modified: Ibid. Refer to Shot tables Machine conditions: Ibid, $I_{TF}(kA)$: Flattop start/stop (s): $I_{p}(MA)$: Flattop start/stop (s): Configuration: LSN Equilibrium Control: Outer gap / Isoflux (rtEFIT) / Strike-point control (rtEFIT) Outer gap (m): Inner gap (m): Z position (m): **Elongation:** OSP radius (m): Triangularity (U/L): Gas Species: Injector(s): **NBI** Species: **D** Voltage (kV) A: **B**: **C**: Duration (s): **ICRF** Power (MW): Phase between straps (°): Duration (s): LITERs: Off / On Total deposition rate (mg/min): Temperature (°C): a) cold (30-50°C, b) warm (210-230°C) LLD:

Configuration: Odd / Even / Other EFC coils: Off/On

No. **OP-XP-1000** DATE: 3/04/10

TITLE: LLD Characterization

AUTHORS: H. Kugel, R. Maingi, V. Soukhanovskii

DIAGNOSTIC CHECKLIST

TITLE: **LLD Characterization** AUTHORS: H. Kugel, R. Maingi, V. Soukhanovskii

No. **OP-XP-1000** DATE: **3/04/10**

Note special diagnostic requirements in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Beam Emission Spectroscopy		
Bolometer – divertor		\checkmark
Bolometer – midplane array	\checkmark	
CHERS – poloidal		\checkmark
CHERS – toroidal		\checkmark
Dust detector		\checkmark
Edge deposition monitors	\checkmark	
Edge neutral density diag.		\checkmark
Edge pressure gauges	\checkmark	
Edge rotation diagnostic		\checkmark
Fast cameras – divertor/LLD	\checkmark	
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging – divertor		\checkmark
Gas puff imaging – midplane		\checkmark
Hα camera - 1D		\checkmark
High-k scattering		\checkmark
Infrared cameras	\checkmark	
Interferometer - 1 mm		\checkmark
Langmuir probes – divertor		\checkmark
Langmuir probes – LLD		\checkmark
Langmuir probes – bias tile		\checkmark
Langmuir probes – RF ant.		\checkmark
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		\checkmark
Magnetics – RWM sensors	\checkmark	
Mirnov coils – high f.		\checkmark
Mirnov coils – poloidal array		\checkmark
Mirnov coils – toroidal array		\checkmark
Mirnov coils – 3-axis proto.		\checkmark

Diagnostic	Need	Want
MSE		
NPA – EllB scanning		
NPA – solid state		
Neutron detectors		\checkmark
Plasma TV	\checkmark	
Reflectometer – 65GHz		\checkmark
Reflectometer – correlation		\checkmark
Reflectometer – FM/CW		\checkmark
Reflectometer – fixed f		\checkmark
Reflectometer – SOL		\checkmark
RF edge probes		
Spectrometer – divertor		\checkmark
Spectrometer – SPRED		\checkmark
Spectrometer – VIPS		\checkmark
Spectrometer – LOWEUS		\checkmark
Spectrometer – XEUS		\checkmark
SWIFT – 2D flow		\checkmark
Thomson scattering	\checkmark	
Ultrasoft X-ray – pol. arrays		\checkmark
Ultrasoft X-rays – bicolor		\checkmark
Ultrasoft X-rays – TG spectr.		\checkmark
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		\checkmark
X-ray crystal spectrom V		\checkmark
X-ray tang. pinhole camera		