Princeton Plasma Physics Laboratory NSTX Experimental Proposal

Title: Core impurity density and radiated power reduction using variations in divertor conditions

OP-XP-1002	Revision:	Effective Date: (Approval date unless otherwise stipulated) Expiration Date: (2 yrs. unless otherwise stipulated)	
PROPOSAL APPROVALS			
Responsible Author: V. A. Soukhanovskii		Date 15 June 2010	
ATI – ET Group Leader: C. H. Skinner		Date	
RLM - Run Coordinator: E. Fredrickson		Date	

Responsible Division: Experimental Research Operations

RESTRICTIONS or MINOR MODIFICATIONS

(Approved by Experimental Research Operations)

NSTX EXPERIMENTAL PROPOSAL

TITLE: Core impurity density and radiated power reduction using	No. OP-XP-1002		
variations in LLD divertor conditions			
AUTHORS: V. A. Soukhanovskii et al.	DATE:		

1. Overview of planned experiment

This experiment aims at reducing carbon and metal impurity accumulation typically observed in lithiumenabled ELM-free H-mode discharges, by means of divertor D_2 injection. An operational objective is to develop a long ELM-free H-mode discharge scenario with optimized rate and timing of the divertor gas puff. The physics objective is to clarify the mechanism of the core impurity reduction by diverotr gas injection. This would be accomplished by detailed spectroscopic measurements of impurity (Li, C, O, Fe, Mo) sources at several poloidal locations (CS, outer midplane, lower and upper divertors), as well as impurity density profile measurements in the core, and impurity transport modeling.

2. Theoretical/ empirical justification

Previous NSTX divertor experiments that demonstrated divertor peak heat flux reduction by means of either the radiative divertor with D_2 injection [1,2] or the divertor geometry in the "snowflake" divertor configuration [3,4] showed significant core impurity density and radiated power reductions. The experiments were conducted in ELMy H-modes without any lithium conditioning. The reduction of core impurities was attributed to a reduction of the divertor impurity source at very low T_e attained in the detached divertor. However, no systematic studies were performed, and a number of other effects, e.g., neoclassical convection at the edge of confined plasmas due to increased neutral pressure, changes in the SOL transport and flows, improved impurity compression, and other effects, could play a role. This experiment will attempt to clarify the physics of the observed effect.

3. Experimental run plan

- 1 Obtain a reference discharge, 3-5 MW NBI, high triangularity shape w/ PF1A, LITER rate 10-20 mg/min (100-200 mg), *R_{osp}*=0.40-0.55 m, nearly ELM-free H-mode, long pulse (~ 1s), HFS fueling
 - 1 MA, similar to discharges 138178, 138180
 - Optional, time permitting 0.8 MA, similar to discharges 138239-1380241
 - If available, use PCS strike point control
 - Use LITER rate 100-200 mg per shot to obtain ELM-free H-mode
- 2 Use Bay E divertor gas injector at 5000 Torr (up to 200 Torr 1/s) for divertor gas injections. Gas delay in respect to the valve opening time is about 100 ms.

• Injection in the flattop phase of discharge

		Injection	Gas pulse
	Plenum	time wrt t0	duration
Number	pressure	in PCS (s)	(ms)
1	500	0.300	100
2	5000	0.300	50-100
3	1000	0.300	100
4	4000	0.300	100
5	1500	0.300	100

- Injection in the initial phase of discharge use best injector rate and start at t=0.100-0.150 ms
- 3. Optional, time permitting obtain data for lower-end NBI power (2-3 MW) and higher-end NBI power (4-5 MW)
- 4. Optional, time permitting, pending administrative approval use a medium- δ discharge target with OSP at *R*=063-0.70 m to take advantage of the Langmuir probe array. Example discharge 137622 (5-2 MW NBI, small ELMs, P_{rad} up to 0.8 MW)
- 5. Optional, time-permitting use CD_4 injection instead of D_2 (not on the same day).

4. Required machine, NBI, RF, CHI and diagnostic capabilities

5. Planned analysis

EFIT, LRDFIT, TRANSP, MIST, UEDGE

6. Planned publication of results

Results will be presented in upcoming fusion meetings and major refereed publications.

References

- [1] V. A. Soukhanovskii et al., Phys. Plasmas 16 (2009) 022501
- [2] V. A. Soukhanovskii et al., Nucl. Fusion 49 (2009) 095025
- [3] V. A. Soukhanovskii et al., Taming the Plasma Material Interface with the "Snowflake" divertor in NSTX, U.S. Burning Plasma Organization eNews, March 17, 2010 (Issue 42), <u>http://burningplasma.org/enews031710.html</u>
- [4] V. A. Soukhanovskii et al., "Snowflake" divertor in NSTX, submitted to J. Nucl. Mater., May 2010

PHYSICS OPERATIONS REQUEST

No. OP-XP-1002
DATE:

Brief description of the most important operational plasma conditions required:			
Previous shot(s) which 138241	can be repeated: 1 MA:	138178, 1381	80; 0.8 MA: 138235-
Previous shot(s) which	can be modified:		
Machine conditions (specify ranges as appropriate, strike out inapplicable cases)			
$I_{TF}(kA)$:	Flattop start/stop (s):		
I_{P} (MA):	Flattop start/stop (s):		
Configuration: LSN			
Equilibrium Control: O	uter gap / Isoflux (rtEFIT) /	Strike-point	control (rtEFIT)
Outer gap (m):	Inner gap (m):	Z position (m): 0.00	
Elongation:	Triangularity (U/L):	OSP radius (m): 0.4-0.55	
Gas Species: D2	Gas Species: D2 Injector(s): HFS, 2, 3, Bay E divertor		
NBI Species: D Voltag	ge (kV) A: B:	C:	Duration (s):
ICRF Power (MW):	Phase between straps	s (°):	Duration (s):
CHI: Off/On B	ank capacitance (mF):		
LITERs: Off / On	Total deposition rate (mg/n	nin):	
LLD: Temperature (°C):			
EFC coils: Off/On	Configuration: Odd / Even	n / Other	

OP-XP-1002

DIAGNOSTIC CHECKLIST

TITLE: Core impurity density and radiated power reduction using variations in LLD divertor conditions

AUTHORS: V. A. Soukhanovskii et al.

No. **OP-XP-1002**

DATE:

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Beam Emission Spectroscopy		
Bolometer – divertor		\checkmark
Bolometer – midplane array	\checkmark	
CHERS – poloidal		
CHERS – toroidal	\checkmark	
Dust detector		
Edge deposition monitors		
Edge neutral density diag.		\checkmark
Edge pressure gauges	\checkmark	
Edge rotation diagnostic		\checkmark
Fast cameras – divertor/LLD		\checkmark
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging – divertor		\checkmark
Gas puff imaging – midplane		\checkmark
Hα camera - 1D		\checkmark
High-k scattering		
Infrared cameras		\checkmark
Interferometer - 1 mm		
Langmuir probes – divertor		\checkmark
Langmuir probes – LLD		\checkmark
Langmuir probes – bias tile		\checkmark
Langmuir probes – RF ant.		
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism		
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes		
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		
Magnetics – RWM sensors		
Mirnov coils – high f.		
Mirnov coils – poloidal array		
Mirnov coils – toroidal array		
Mirnov coils – 3-axis proto.		

Note	special	diagnosti	c requirements	in Sec. 4
11010	speciai	uugnosii	c requirements	m bee. I

Diagnostic	Need	Want
MSE		
NPA – EllB scanning		
NPA – solid state		
Neutron detectors		
Plasma TV	\checkmark	
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		\checkmark
RF edge probes		
Spectrometer – divertor		\checkmark
Spectrometer – SPRED		\checkmark
Spectrometer – VIPS		\checkmark
Spectrometer – LOWEUS		\checkmark
Spectrometer – XEUS		\checkmark
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray – pol. arrays		\checkmark
Ultrasoft X-rays – bicolor		
Ultrasoft X-rays – TG spectr.		\checkmark
Visible bremsstrahlung det.		\checkmark
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray tang. pinhole camera		