Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Modifications to early discharge evolution to reduce impurity content					
PROPOSAL APPROVALS					
Responsible Author: J. M	enard, S. Gerhardt, J. Canik, R	. Maingi	Date 3/22/2010		
ATI – ET Group Leader: S. Gerhardt		Date			
RLM - Run Coordinator:	E. Fredrickson		Date		
Responsible Division: Experimental Research Operations					
RESTRICTIONS or MINOR MODIFICATIONS (Approved by Experimental Research Operations)					

NSTX EXPERIMENTAL PROPOSAL

TITLE:Modifications to early discharge evolution toNo.OP-XP-1005reduce impurity contentAUTHORS:J. Menard, S. Gerhardt, J. Canik, R. MaingiDATE:3/22/1010

1. Overview of planned experiment

The goal of the proposed experiment is to reduce the accumulation of low-Z and high-Z impurities in LITER/LLD ELM-free H-mode plasmas by reducing the impurity influx and confinement during the early H-mode and current ramp-up phase of the discharge. Variations in magnetic balance and early ELM triggering with 3D fields will be utilized to modify the early and late impurity content.

2. Theoretical/ empirical justification

Previous operation with LITER led to favorable ELM-free H-mode operation with very high confinement. However, unfavorable confinement of C and metallic impurities has also been observed often leading to high radiation and/or $H \rightarrow L$ back-transitions after t=0.7-1s. In 2009, shifting the plasma vertically in the unfavorable ∇B drift direction during the current ramp-up phase (t=80-200ms) was observed to reduce the early and late carbon accumulation. Carbon density profile evolution data indicates that C is confined near the plasma edge until approximately t=0.4s, after which it is transported inward. Thus, reduction of the edge C density in the first 200-300ms using 3D fields for ELM triggering could also be effective for reducing the late C accumulation.

3. Experimental run plan

- A. Reproduce long-pulse scenario with LITER/LLD which is ELM-free and with strong C impurity accumulation in edge reference shot is 136027 (3 shots)
- B. Scan magnetic balance direction (DRSEP) before, during, after early H-mode, assess impact on early impurity accumulation to determine discharge phase most responsible for C accumulation:
 - a. During t=0.05-0.4s, scan DRSEP = -2, -1, 0, 1, 2 cm (constant in time) (8 shots)
 - i. Add early NBI power as needed to trigger/retain early H-mode during ramp-up
- C. In conditions w/ minimized C content, add n=3 RMP pulses during ramp-up + early flat-top, i.e. t= 100-300ms (i.e. attempt to "clip" the density ears) (9 to18 shots)
 - a. Optimize amplitude, duty-factor, start-time to reduce C during ramp
 - i. Use 50Hz (20ms period), start 50ms before, during, after early H-mode, off at 0.3s
 - ii. 1, 1.5, 2kA and $\Delta t = 8$ ms to 4ms
 - b. Modify amplitude/duration to minimize early rotation damping and MHD instability
- D. After above scans, for case with lowest C content, scan late DRSEP to assess changes in late C accumulation (DRSEP ramp between 0.3-0.5s)
 (6 shots)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

See Physics Operations Request

5. Planned analysis

MSE LRDFIT + TRANSP + NCLASS to model neoclassical impurity transport.

6. Planned publication of results

Results will be published in Nuclear Fusion, Phys. Plasmas, or possibly Phys. Rev. Lett. within 1 year.

PHYSICS OPERATIONS REQUEST

TITLE:Modifications to early discharge evolution to
reduce impurity contentNo.OP-XP-1005AUTHORS:J. Menard, S. Gerhardt, J. Canik, R. MaingiDATE:3/22/1010

Brief description of the most important operational plasma conditions required: • DRSEP scans will be performed, so some discharge and/or control development/optimization will be required for this XP. Reproducible 800kA NBI discharge (or best available fiducial) with early H-mode. ٠ Implementation of early EF correction could be beneficial if early RMP is observed to reduce the early rotation leading to increased mode locking. **Previous shot(s) which can be repeated:** 136027 or 135999 or fiducial **Previous shot(s) which can be modified:** (see above) **Machine conditions** (specify ranges as appropriate, strike out inapplicable cases) I_{TF} (kA): **53kA** Flattop start/stop (s): -0.040/1.4s I_P (MA): **0.8MA** Flattop start/stop (s): 0.15-1.2s Configuration: LSN, balanced DND, and USN will be utilized (DRSEP = -2 to 2cm) Equilibrium Control: **Isoflux** (rtEFIT) Outer gap (m): **see reference** Inner gap (m): Z position (m): Elongation: Triangularity (U/L): OSP radius (m): Gas Species: **D** Injector(s): see reference shot NBI Species: D Voltage (kV) A: 90 **C:** 70 **B: 90** Duration (s): 1.2s **ICRF** Power (MW): 0 Phase between straps (°): Duration (s): CHI: Off Bank capacitance (mF): LITERs: On Total deposition rate (mg/min): **20mg/min** Temperature (°C): warm (if warm LLD provides reproducible pumping) LLD: EFC coils: On Configuration: Odd

DIAGNOSTIC CHECKLIST

TITLE:Modifications to early discharge evolution to
reduce impurity contentNo.OP-XP-1005

AUTHORS: J. Menard, S. Gerhardt, J. Canik, R. Maingi DATE: 3/22/2010

Note special diagnostic requir Diagnostic	Need	Want
Beam Emission Spectroscopy		X
Bolometer – divertor	X	
Bolometer – midplane array		X
CHERS – poloidal		X
CHERS – toroidal	X	
Dust detector		X
Edge deposition monitors		X
Edge neutral density diag.		X
Edge pressure gauges		X
Edge rotation diagnostic		X
Fast cameras – divertor/LLD	X	
Fast ion D_alpha - FIDA		X
Fast lost ion probes - IFLIP		X
Fast lost ion probes - SFLIP		X
Filterscopes	X	
FIReTIP		X
Gas puff imaging – divertor		X
Gas puff imaging – midplane		X
H α camera - 1D		X
High-k scattering		X
Infrared cameras		X
Interferometer - 1 mm		X
Langmuir probes – divertor		X
Langmuir probes – LLD		X
Langmuir probes – bias tile		X
Langmuir probes – RF ant.		X
Magnetics – B coils	X	
Magnetics – Diamagnetism		X
Magnetics – Flux loops	X	
Magnetics – Locked modes	X	
Magnetics – Rogowski coils	X	
Magnetics – Halo currents		X
Magnetics – RWM sensors	X	
Mirnov coils – high f.		X
Mirnov coils – poloidal array		X
Mirnov coils – toroidal array	X	
Mirnov coils – 3-axis proto.		X

Note special diagnostic requir	ements in	n Sec. 4
Diagnostic	Need	Want
MSE		X
NPA – E B scanning		X
NPA – solid state		X
Neutron detectors	X	
Plasma TV	X	
Reflectometer – 65GHz		Χ
Reflectometer – correlation		Χ
Reflectometer - FM/CW		Χ
Reflectometer – fixed f		Χ
Reflectometer – SOL		Χ
RF edge probes		Χ
Spectrometer – divertor	X	
Spectrometer – SPRED	X	
Spectrometer – VIPS	X	
Spectrometer – LOWEUS	X	
Spectrometer – XEUS	X	
SWIFT – 2D flow		X
Thomson scattering	X	
Ultrasoft X-ray – pol. arrays	X	
Ultrasoft X-rays – bicolor		X
Ultrasoft X-rays – TG spectr.		X
Visible bremsstrahlung det.		X
X-ray crystal spectrom H		X
X-ray crystal spectrom V		X
X-ray tang. pinhole camera		Χ