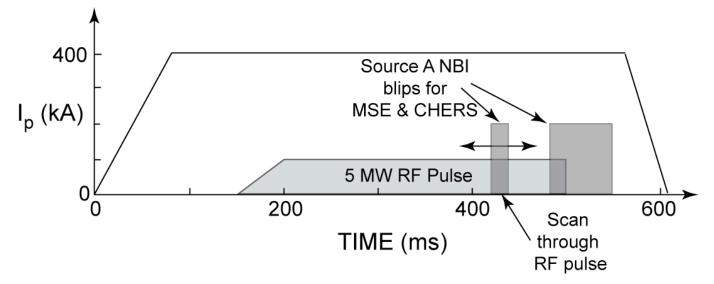
Princeton Plasma Physics Laboratory NSTX Experimental Proposal

Title: Sustainment of HHFW-Driven 100% Non-Inductive H-Mode Plasma Effective Date: (Approval date unless otherwise stipulated) **OP-XP-1010** Revision: 1 Expiration Date: (2 yrs. unless otherwise stipulated) **PROPOSAL APPROVALS Responsible Author: G. Taylor** Date ATI - ET Group Leader: G. Taylor Date **RLM - Run Coordinator: E. Fredrickson** Date **Responsible Division: Experimental Research Operations RESTRICTIONS or MINOR MODIFICATIONS** (Approved by Experimental Research Operations)

NSTX EXPERIMENTAL PROPOSAL

TITLE:Sustainment of HHFW-Driven 100% Non-Inductive
H-Mode PlasmaNo.OP-XP-1010AUTHORS:G. Taylor, D. Mueller, J.C. Hosea, S. Gerhardt, C. Kessel,
B.P. LeBlanc, C.K. Phillips, S. Zweben, R. Maingi,
P.M. Ryan, R. MaingiDATE:
February 17, 2010


1. Overview of planned experiment

Use solenoid to ramp I_p to 300-400 kA, and then couple ~ 5 MW of HHFW heating to drive plasma into H-mode, generating ~ 100% of I_p via boostrap current. This experiment should be run after XP-1009, and only when ~ 5 MW of HHFW has been successfully coupled into deuterium plasma. This experiment contributes to the NSTX research milestone R10-2.

2. Theoretical/ empirical justification

A goal of the NSTX program is to demonstrate 100% non-inductive H-mode plasmas. 85% bootstrap current fraction was achieved in XP-521 by coupling 2.5 MW of $-14 + -18 \text{ m}^{-1}$ (180°) HHFW power into an $I_p = 250 \text{ kA}$ deuterium plasma. It should be possible to achieve 100% bootstrap current fraction with ~ 5 MW of RF coupled into an $I_p \sim 400 \text{ kA}$ discharge.

3. Experimental run plan

This experiment should take 1 day to complete.

1. Setup 600 ms I_p flattop plasma, similar to 123712 ($B_T = 5.5$ kG, deuterium), but with $I_p = 300-400$ kA. (5 shots)

2. Add $k_{\phi} = 14 + 18 \text{ m}^{-1} - 8 \text{ m}^{-1} (180^{\circ})$ HHFW power, coupled from 150 – 500 ms, with a 50 ms ramp-up in power at the start of the RF pulse. Increase RF power to 5 MW, while adjusting lithium evaporation rate, gas injection rate and outer gap to optimize HHFW heating efficiency. (10 shots) **OP-XP-1010**

3. Repeat with $k_{\phi} = (-90^{\circ})$ heating (10 shots)

4. Required machine, NBI, RF, CHI and diagnostic capabilities

This experiment should start with target I_p with best result from XP-1009. The experiment requires $P_{RF} \sim 5$ MW at -14 + -18 m⁻¹ and -8 m⁻¹. This experiment needs rtEFIT isoflux control for the outer gap. LITERs are required, but the LLD can be maintained in "cold", solid lithium state. An NBI blip from source A at 90 keV should be added for MSE and CHERS data acquisition from 480 to 550 ms. In addition a 20 ms NBI blip from source A at 90 keV will be scanned through the RF pulse once good, reproducible, ~ 5 MW RF heating has been established. Thomson scattering data are required for core and edge electron heating data. For analysis of edge power loss and coupling efficiency the experiment also requires SOL reflectometry and edge ion heating data from edge rotation diagnostic.

5. Planned analysis

Planned analysis includes analysis of heating efficiency at $k_{\phi} = -8 \text{ m}^{-1}$ and $-14 + -18 \text{ m}^{-1}$, TRANSP and GENRAY/CQL3D modeling.

6. Planned publication of results

The results will be submitted for publication in *Nuclear Fusion* or *Physics of Plasmas*, and may contribute to an HHFW IAEA paper.

PHYSICS OPERATIONS REQUEST

TITLE: Sustainment of HHFW-Driven 100% Non-Inductive No. OP-XP-1010 H-Mode Plasma

AUTHORS: G. Taylor, D. Mueller, J.C. Hosea, S. Gerhardt, C. Kessel, DATE: B.P. LeBlanc, C.K. Phillips, S. Zweben, R. Maingi, February 17, 2010 P.M. Ryan, R. Maingi

Brief description of the most important operational plasma conditions required:

Stable, reproducible $I_p = 300-400$ kA deuterium plasma with outer gap = 0.05 - 0.1 m. This experiment should start with target I_p with best result from XP-1009.

Request D. Mueller as operator.

Previous shot(s) which can be repeated:

Previous shot(s) which can be modified: 123712

Machine conditions (specify ranges as appropriate, strike out inapplicable cases)

I _{tf} (kA): 66	Flattop start/stop (s):	0/0.7
		0,011

I_P (MA): **0.4** Flattop start/stop (s): **0.08/0.6**

Configuration: LSN

Equilibrium Control: Outer gap / Isoflux (rtEFIT) / Strike-point control (rtEFIT)

Outer gap (m): 0.05-0.1	Inner gap (m):	Z position (m): 0.0			
Elongation:	Triangularity (U/L):	OSP radius (m):			
Gas Species: D	Injector(s):				
NBI Species: D Voltage (kV) A: 90 B: C: Duration (s): 480-550 ms, and					
20 ms blip stepped between 250 to 450 ms from shot to shot					

ICRF Power (MW): 5 Phase between straps (°): ±90, 180 Duration (s): 0.35

CHI: Off Bank capacitance (mF):

LITERs: On Total deposition rate (mg/min): 20 mg/min to start, adjust as needed

LLD: Cold Temperature (°C):

EFC coils: Off Configuration: **Odd / Even / Other**

OP-XP-1010

DIAGNOSTIC CHECKLIST

TITLE: Sustainment of HHFW-Driven 100% Non-Inductive No. OP-XP-1010 H-Mode Plasma

AUTHORS: G. Taylor, D. Mueller, J.C. Hosea, S. Gerhardt, C. Kessel, DATE: B.P. LeBlanc, C.K. Phillips, S. Zweben, R. Maingi, February 17, 2010 P.M. Ryan, R. Maingi

Diagnostic	Need	
Beam Emission Spectroscopy		
Bolometer – divertor		
Bolometer – midplane array		
CHERS – poloidal	\checkmark	
CHERS – toroidal	\checkmark	
Dust detector		
Edge deposition monitors		
Edge neutral density diag.		\checkmark
Edge pressure gauges		\checkmark
Edge rotation diagnostic	\checkmark	
Fast cameras – divertor/LLD		
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes	\checkmark	
FIReTIP		\checkmark
Gas puff imaging – divertor		
Gas puff imaging – midplane		\checkmark
Hα camera - 1D		\checkmark
High-k scattering		
Infrared cameras	\checkmark	
Interferometer - 1 mm		\checkmark
Langmuir probes – divertor		\checkmark
Langmuir probes – LLD		
Langmuir probes – bias tile		
Langmuir probes – RF ant.		\checkmark
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism	\checkmark	
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes	\checkmark	
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents	\checkmark	
Magnetics – RWM sensors	\checkmark	
Mirnov coils – high f.	\checkmark	
Mirnov coils – poloidal array	\checkmark	
Mirnov coils – toroidal array	\checkmark	
Mirnov coils – 3-axis proto.	\checkmark	

Note special diagnostic requirements in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
MSE	\checkmark	
NPA – EllB scanning		\checkmark
NPA – solid state		\checkmark
Neutron detectors		\checkmark
Plasma TV	\checkmark	
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL	\checkmark	
RF edge probes	\checkmark	
Spectrometer – divertor	\checkmark	
Spectrometer – SPRED	\checkmark	
Spectrometer – VIPS	\checkmark	
Spectrometer – LOWEUS		
Spectrometer – XEUS		\checkmark
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray – pol. arrays	\checkmark	
Ultrasoft X-rays – bicolor	\checkmark	
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		\checkmark
X-ray crystal spectrom V		\checkmark
X-ray tang. pinhole camera		