Princeton Plasma Physics Laboratory NSTX Experimental Proposal						
Title: Lithium effects on transport in the edge/SOL						
OP-XP-1072	Revision:	Effective Date: (Approval date unless otherwise stipulated) Expiration Date: (2 yrs. unless otherwise stipulated)				
PROPOSAL APPROVALS						
Responsible Author: Jose Boedo		Date				
ATI – ET Group Leader: V. Soukhanovskii		Date				
RLM - Run Coordinator:		Date				
Responsible Division: Exp	erimental Research Operations					
RESTRICTIONS or MINOR MODIFICATIONS (Approved by Experimental Research Operations)						

NSTX EXPERIMENTAL PROPOSAL

TITLE:Lithium effects on transport in the edge/SOLNo.OP-XP-1072AUTHORS:J. Boedo, V. Soukhanovskii, R. Maingi, et al.DATE: 10/11/2010

1. Overview of planned experiment

The experiment will obtain high spatial resolution profiles of N_e , T_e and potentials in the midplane edge and SOL and also radial turbulent transport measurements as the content of lithium in the boundary is varied with all other plasma and shape parameters constant. The objective will be to observe profile and transport changes as the amount of lithium changes and to get basic information as to what affects plasma performance, for example, a particle pinch. We will starve the plasma of lithium for a few shots until ELMS start coming back while measuring the aforementioned profiles. If possible, a large amount of lithium will then be evaporated for a few more shots while measurements are performed.

2. Theoretical/ empirical justification

NSTX is pioneering the use of lithium surfaces that increase plasma performance and help control density. There are many features of these discharges that are unknown, why ELMs are eliminated, how impurities accumulate, etc. A first attempt to this experiment was done during shots 140148-140152 by keeping the plasma conditions constant as lithium quantity was varied and edge measurements were made. The first results were encouraging but the outer gap kept increasing, preventing the measurements form reaching the core. We will repeat but with an eye on outer gap control and probe penetration into the core. The first results showed that the SOL is essentially unmodified as the lithium quantity is varied but that the pedestal location moves inward as the lithium amount is increased.

3. Experimental run plan

We will repeat shot series 140148-140152 although with a smaller (2 cm smaller) outer gap and better gap control. We will measure with the fast reciprocating probe T_e and N_e profiles and fluctuations and transport to see changes, in particular, to search for an inward particle pinch. Since this experiment will be run while between-shots lithium deposition is not possible, it will rely on lithium deposition of 1 - 2 g at the start of the run day to produce the initial ELM-free discharges then allow the depletion of the lithium coating to produce a return to ELMing H-mode discharges.

Experimental sequence:

- 1) At end of previous day: take reference shot with inactive lithium to verify plasma and probe operations;
- 2) Start of main day: deposit ~ 1g lithium then cool down LITER;
- 3) When LITER has cooled enough to allow MPTS shutter to open, run shots with fast reciprocating probe and full diagnostics;
- 4) Repeat until lithium becomes inactive and ELMs return, possibly waiting until the end of the day, after another experiment has been run, to complete the measurements in ELMing conditions.

4. Required machine, NBI, RF, CHI and diagnostic capabilities

We will require a LSN discharge at 0.8 MA and -0.44 T with a flat top from 0.2 s to 0.77 s while injecting low power NBI at 1 MW. The NBI programming should be reproduced from the reference shots 140148-152. The outer gap MUST be reduced by 2 cm.

5. Planned analysis

 T_e , N_e profile analysis will be done with a double probe code.

Fluctuations analysis will be done with various statistical and metric codes to calculate skewness, kurtosis, rms levels, etc.

Radial turbulent transport will be done with a specialized code that filters the data properly to eliminate low-f and MHD contamination.

Conditional averaging will also be done to quantify the behaviour of blobs.

We will seek to do edge simulations by using OEDGE and also the Lodestar turbulence code.

6. Planned publication of results

We will aim to publish the experimental results first, possibly in PoP and the more complete work with simulations later on, possibly PoP or NF

PHYSICS OPERATIONS REQUEST

TITLE:Lithium effects on transport in the edge/SOLNo.OP-XP-1072AUTHORS:J. Boedo, V. Soukhanovskii, R. Maingi, et alDATE: 10/11/2010

Brief description of the most important operational plasma conditions required:

Reproduce any of the shots 140148-140152. This is a LSN, low power (1 MW) H-mode discharge with a current of 0.8 MA and B_T of -0.44, an elongation of 2.30 and Z-centered.

Note: the outer gap MUST be reduced from 0.09 to 0.07 m and kept constant so the probe can have a steady target.

Reproduce NBI programming exactly, which involves a source stack to about 5MW, reducing to 3MW at 0.161 s and then to 1 MW at 0.202 s, then staying constant for the duration of the plateau to 0.77 s

Since this experiment will be run while between-shots lithium deposition is not possible, it will rely on lithium deposition of 1 - 2 g at the start of the run day to produce the initial ELM-free discharges.

Previous shot(s) which can be repeated: Previous shot(s) which can be modified: 140148, 140149, 140150, 140151 **Machine conditions** (specify ranges as appropriate, strike out inapplicable cases) I_{TF} (kA): **-0.44 T** Flattop start/stop (s): 0.20 $I_{p}(MA): 0.820$ Flattop start/stop (s): 0.77 Configuration: LSN Equilibrium Control: rtEFIT (with outer gap programmed to meet needs) Z position (m): -0.02 Outer gap (m): **0.07** Inner gap (m): **0.08** Elongation: 2.3 Triangularity (U/L): 0.373/0.711 OSP radius (m): 0.66 Gas Species: **D** Injector(s): C: 67 **NBI** Species: **D** Voltage (kV) **A: 90 B: 90** Duration (s): **0.8 ICRF** Power (MW): **Off** Phase between straps (°): Duration (s): Bank capacitance (mF): CHI: Off Total deposition rate (mg/min): 1 – 2 g evaporated at outset LITERs: On Temperature (°C): 20 LLD: Configuration: Odd / Even / Other EFC coils: Off

DIAGNOSTIC CHECKLIST

TITLE:Lithium effects on transport in the edge/SOLNo.OP-XP-1072AUTHORS:J. Boedo, V, Soukhanovskii, R. Maingi, et al.DATE: 10/11/2010

Note special diagnostic requirements in Sec. 4

Note special diagnostic requirements in Sec. 4

Diagnostic	Need	Want
Beam Emission Spectroscopy		\checkmark
Bolometer – divertor		\checkmark
Bolometer – midplane array	\checkmark	
CHERS – poloidal		\checkmark
CHERS – toroidal	\checkmark	
Dust detector		
Edge deposition monitors		
Edge neutral density diag.		
Edge pressure gauges		\checkmark
Edge rotation diagnostic		\checkmark
Fast cameras – divertor/LLD	\checkmark	
Fast ion D_alpha - FIDA		
Fast lost ion probes - IFLIP		
Fast lost ion probes - SFLIP		
Filterscopes		
FIReTIP	\checkmark	
Gas puff imaging – divertor		
Gas puff imaging – midplane		\checkmark
Hα camera - 1D	\checkmark	
High-k scattering		
Infrared cameras		\checkmark
Interferometer - 1 mm		
Langmuir probes – divertor		\checkmark
Langmuir probes – LLD		
Langmuir probes – bias tile		
Langmuir probes – RF ant.		
Magnetics – B coils	\checkmark	
Magnetics – Diamagnetism		
Magnetics – Flux loops	\checkmark	
Magnetics – Locked modes		\checkmark
Magnetics – Rogowski coils	\checkmark	
Magnetics – Halo currents		\checkmark
Magnetics – RWM sensors		
Mirnov coils – high f.		\checkmark
Mirnov coils – poloidal array		\checkmark
Mirnov coils – toroidal array		\checkmark
Mirnov coils – 3-axis proto.		

Diagnostic	Need	Want
MSE		\checkmark
NPA – EllB scanning		
NPA – solid state		
Neutron detectors		
Plasma TV		\checkmark
Reflectometer – 65GHz		
Reflectometer – correlation		
Reflectometer – FM/CW		
Reflectometer – fixed f		
Reflectometer – SOL		\checkmark
RF edge probes		
Spectrometer – divertor		\checkmark
Spectrometer – SPRED	\checkmark	\checkmark
Spectrometer – VIPS	\checkmark	
Spectrometer – LOWEUS		
Spectrometer – XEUS		
SWIFT – 2D flow		
Thomson scattering	\checkmark	
Ultrasoft X-ray – pol. arrays	\checkmark	
Ultrasoft X-rays – bicolor		\checkmark
Ultrasoft X-rays – TG spectr.		
Visible bremsstrahlung det.	\checkmark	
X-ray crystal spectrom H		
X-ray crystal spectrom V		
X-ray tang. pinhole camera		\checkmark