Princeton Plasma Physics Laboratory NSTX Experimental Proposal Title: Edge Impurity Transport Measurements with the New MESXR Diagnostic			
	PROPOSAL AP	PROVALS	
Responsible Author: D	. Clayton		Date 10/20/2010
ATI – ET Group Leade	er: H. Yuh		Date 10/20/2010
RLM - Run Coordinator: E. Fredrickson		Date 10/20/2010	
Responsible Division:	Experimental Research Op	oerations	
RESTRICTIONS or MINOR MODIFICATIONS (Approved by Experimental Research Operations)			

NSTX EXPERIMENTAL PROPOSAL

TITLE: Edge Impurity Transport Measurements with the New MESXR Diagnostic AUTHORS: D. Clayton, K. Tritz

No. **OP-XP-1073**

DATE: 10/15/10

1. Overview of planned experiment

The goal of this experiment is to measure impurity particle transport in the NSTX pedestal/edge region using small neon gas puffs and the new multi-energy soft-x-ray (MESXR) diagnostic. This will essentially be a repeat of XP 613 (Delgado-Aparicio), which measured impurity transport in the plasma core, but with a new diagnostic optimized for measurements in the edge.

2. Theoretical/ empirical justification

Previous measurements (L. Delgado-Aparicio *et. al.*, Nucl. Fusion, 2009) have shown impurity particle transport to be neoclassical in the NSTX core. X-ray emission from small neon gas puffs was measured with the optical soft-x-ray (OSXR) detectors, a three-color x-ray diagnostic with a full tangential view with a radial resolution of about 5 cm. The MIST impurity transport code was used to find the diffusion coefficients and convective velocities that best fit the measured data. The NCLASS neoclassical transport code predicted similar values for these quantities, indicating that anomalous transport was suppressed in the core. Uncertainty in the edge (r/a > 0.8) measurements, due to poor spatial resolution and a low signal-to-noise ratio from this colder region, was too large to draw any further conclusions.

Fig. 1: A sample OSXR measurement of neon x-ray emission and the emission predicted by MIST for transport quantities consistent with neoclassical transport (Delgado-Aparicio).

The newly commissioned MESXR diagnostic consists of five 20-channel photodiode arrays with a tangential view of the plasma edge. Each array has a different filter (and one has no filter), providing a four-color + bolometer radial profile with a spatial resolution of about 1 cm and radial coverage from roughly 130 cm to 150 cm. The high-efficiency photodiodes and thinner filters should provide a much-improved signal-to-noise ratio when measuring the plasma edge compared to the OSXR diagnostic.

Impurity transport in the edge pedestal region is of interest for a variety of reasons. Questions include: How do impurities (particularly carbon) build up in the plasma during ELM-free discharges? How does particle transport vary in space and time throughout the pedestal region? Does the particle transport barrier broaden with lithium deposition?

3. Experimental run plan

The run will begin with tests of the neon gas puffs to determine the appropriate duration and pressure. It will then proceed to a series of parameter scans. Reference shots without neon puffs will also be required at each step.

Neon puff tests (at 0.45 s, 4.5 kG)	2 shots + 2 contingency	
B scan (at 0.45 s)		
0.9 MA, 4.5 kG (Ne puff + reference)	2 shots + 1 contingency	
1.1 MA, 5.5 kG (Ne puff + reference)	2 shots + 1 contingency	
Time Scan (at 4.5 kG)		
0.30 s (Ne puff + reference)	2 shots + 1 contingency	
0.60 s (Ne puff + reference)	2 shots + 1 contingency	
Total	10 shots + 6 contingency	

4. Required machine, NBI, RF, CHI and diagnostic capabilities

This experiment will require neon gas puffing into quiescent H-mode plasmas (low/no low-frequency MHD, ELMs). LITER evaporation at the beginning of the day and/or the lithium dropper may be needed. 6 MW NBI power will be required, stepped down to 4 MW once H-mode is established (see discharge 141400). Refer to the checklist for diagnostic needs.

5. Planned analysis

EFIT/LRDFIT will be used for equilibrium reconstruction, MIST or an equivalent impurity transport code will be used to find the diffusion coefficient and convective velocities, and NCLASS will be used to calculate the expected neoclassical values for comparison.

6. Planned publication of results

Results will be presented at conferences and published in an appropriate journal (PoP, NF...)

PHYSICS OPERATIONS REQUEST

TITLE:	Edge Impurity Transport Measurements with	No. OP-XP-1073
	the New MESXR Diagnostic	
AUTHO	RS: D. Clayton, K. Tritz	DATE: 10/15/10

Brief description of the most important operational plasma conditions required: Discharge 141400 will be used as a reference shot for the 0.9MA/0.45T case, 141391 for the 1.1MA/0.55T case. Neon will be puffed into the edge of quiescent plasmas (low/no low-freq MHD, ELMs). **Previous shot(s) which can be repeated:** 141400 **Previous shot(s) which can be modified: Machine conditions** (specify ranges as appropriate, strike out inapplicable cases) I_{TF} (kA): **4.5 – 5.5 kG** Flattop start/stop (s): 0.22 I_P (MA): **0.9 – 1.1 MA** Flattop start/stop (s): **1.0 (0.9MA) – 0.6 (1.1MA)** Configuration: LSN Equilibrium Control: **Isoflux** (rtEFIT) Outer gap (m): Z position (m): Inner gap (m): Elongation: Triangularity (U/L): OSP radius (m): Gas Species: D, Ne Injector(s): CS Midplane, Outer Midplane **NBI** Species: **D** Voltage (kV) **A: 90 B: 90 C: 90** Duration (s): 1.2s **ICRF** Power (MW): Phase between straps (°): Duration (s): CHI: Off / OnBank capacitance (mF): Total deposition rate (mg/min): ~2g morning deposition only LITERs: Off / On LLD: Temperature (°C): 20 EFC coils: Off/On Configuration: Odd / Even / Other

DIAGNOSTIC CHECKLIST

TITLE: Edge Impurity Transport Measurements with the New MESXR Diagnostic AUTHORS: D. Clayton, K. Tritz

No. **OP-XP-1073**

DATE: 10/15/10

Note special diagnostic requirements in Sec. 4			
Diagnostic	Need	Want	
Beam Emission Spectroscopy		\checkmark	
Bolometer – divertor		\checkmark	
Bolometer – midplane array	\checkmark		
CHERS – poloidal		\checkmark	
CHERS – toroidal	\checkmark		
Dust detector			
Edge deposition monitors			
Edge neutral density diag.			
Edge pressure gauges		\checkmark	
Edge rotation diagnostic		\checkmark	
Fast cameras – divertor/LLD			
Fast ion D_alpha - FIDA			
Fast lost ion probes - IFLIP			
Fast lost ion probes - SFLIP			
Filterscopes			
FIReTIP		\checkmark	
Gas puff imaging – divertor			
Gas puff imaging – midplane			
Hα camera - 1D	\checkmark		
High-k scattering		\checkmark	
Infrared cameras		\checkmark	
Interferometer - 1 mm			
Langmuir probes – divertor			
Langmuir probes – LLD			
Langmuir probes – bias tile			
Langmuir probes – RF ant.			
Magnetics – B coils	\checkmark		
Magnetics – Diamagnetism			
Magnetics – Flux loops	\checkmark		
Magnetics – Locked modes		\checkmark	
Magnetics – Rogowski coils	\checkmark		
Magnetics – Halo currents			
Magnetics – RWM sensors			
Mirnov coils – high f.	1	\checkmark	
Mirnov coils – poloidal array	1	\checkmark	
Mirnov coils – toroidal array		\checkmark	
Mirnov coils – 3-axis proto.		\checkmark	
-			

Note special	diagnostic	requirements	in Sec. 4
none speciai	ulugnosile	requirements	m Set. τ

Note special diagnostic requirements in Sec. 4			
Diagnostic	Need	Want	
MSE	\checkmark		
NPA – EllB scanning			
NPA – solid state			
Neutron detectors	\checkmark		
Plasma TV	\checkmark		
Reflectometer – 65GHz			
Reflectometer – correlation			
Reflectometer – FM/CW			
Reflectometer – fixed f			
Reflectometer – SOL			
RF edge probes			
Spectrometer – divertor	\checkmark		
Spectrometer – SPRED	\checkmark		
Spectrometer – VIPS	\checkmark		
Spectrometer – LOWEUS		\checkmark	
Spectrometer – XEUS		\checkmark	
SWIFT – 2D flow			
Thomson scattering	\checkmark		
Ultrasoft X-ray – pol. arrays	\checkmark		
Ultrasoft X-rays – bicolor	\checkmark		
Ultrasoft X-rays – TG spectr.		\checkmark	
Visible bremsstrahlung det.		\checkmark	
X-ray crystal spectrom H			
X-ray crystal spectrom V			
X-ray tang. pinhole camera		\checkmark	