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Abstract

Thermal analysis was performed on the Center Stack[CS] and Divertor tiles assuming that the CS
tiles would be thermally isolated from the stack and the heat transfer would be by radiation only,
while the divertor would be cooled by conduction into the stainless $teel mounting plates.

A one dimensional, transient heat transfer program [TILE. TEMP.1] was written in QUICKBASIC
to derive the temperature vs time, in four layers of graphite tiles in the NSTX center stack. The
temperatures in both the CS and the divertor were analyzed by P-THERMAL 2.5.[1]

The BASIC program was designed to give a rough approximation of the thermal profile of a 1-D
tile. It allowed quick turnaround and served as a guideline during conceptual design of the tiles
and, later, as a litmus test to validate thermal analyses done with commercial finite element (FEA)
codes. The BASIC code was in fairly good agreement with the commercial codes and peak
temperatures calculated for the two varied by only 10%.

nter k _Thermal Analvsi

Overview

The BASIC code was derived using the solution for transient heat transfer in a 1-D, semi-infinite

plate, exposed to a constant flux, as the starting point. This solution is relatively accurate for 1.25

cm thick tiles for the first 2-3 seconds of a five second pulse,. This corresponds to the time period

during which the temperature effects are small and the rear of the plate is relatively unchanged.

Time periods exceeding this result in increasing inaccuracies.

The solution for an infinite plate assumes that the material properties, i.e. specific heat, thermal

conductivity, and diffusivity remain unchanged with temperature. Of course, these constants
change very dramatically in graphite materials so temperature compensation was required. An

iterative approach was used, calculating the mean temperatures and corresponding material
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material properties over that time period. A second compensation method was also employed
whereby the energy balance was checked and the temperature profile was shifted by an exponential
function until balance matched within 10%. The layers were weighted by an algorithm according
to distance back and time into the pulse ( penetration into the tile). This procedure does not give
exact solutions for the boundary conditions, but it is less time consuming, much less complex then
a true numeric solution, and it is more accurate than simply assuming an overall average bulk
material property. As will be seen, it gives adequate results for first cut designs.

Description

Analysis was done assuming temperature dependent material properties of a known graphite and
using tile thickness, flux, heating time, cooling time, center stack temperature and torus
temperature as input variables. The early runs were done assuming POCO, FMI-4D, and ATJ
graphites. Later, analyses were added to include Allied Signal’s composite graphite' product 865-
19-4 C-C (AS) when its advantages became evident. Output of the, code was temperature of each
layer at each iterative time period, mean value material properties of the layers, total heat in,
calculated heat balance, radiative heat to center column, and a graph of temperature vs time for each
layer. The specific heat, thermal conductivity, and diffusivity were graphed and then curve fit with
higher order polynomials, which were used by the code to solve for the material constants at each
time iteration (typically 0.1 seconds). The same procedure was used to obtain the Gaussian error
function for arguments from O to 2. The code was run until the peak temperature and cool down
temperature reached steady state. During the cool down period the tile was assumed to have a
constant(bulk) temperature through its thickness. This can be shown to be an acceptable
assumption for slow radiative heat loss using the criteria for "lumped analysis".[2]

Tiles were assumed to have no thermal contact with the center stack, that is, all loses were
radiative. One layer of heat shielding was assumed on the center stack side of the tile. During cool
down the material properties were recalculated for each time iteration (typically 4 seconds)

A typical run for a 1.25 cm tile is shown in Fig. 2.

* FMI-4D refers to the coarse weave carbon-carbon graphite manufactured by Fiber Materials Inc.

Typical Runs

Material POCO POCO POCO EMI-4D* ATJ
Thickness 1.25 2.54 5.08 1.25 1.25
Heat flux (w/cm”2) 320 320 320 320 320
Pulse length (sec) 5 5 5 5 5
Cooling Time (sec) 300 300 300 300 300
Center stack and 300 300 300 300 300

torus temp. (K)



Figure 2. Tile Temperature as a Function of Repetitive Cycling
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Results- steady state values
Material POCO POCO POCO FMI-4D AT
Thickness 1.25 2.54 5.08 1.25 1.25
Peak face temp (C) 1210 1283 1330 1124 1176
Peak rear temp 638 636 685 682 657
during pulse (C)
Peak bulk temp. ‘ 865 - 818 794 865 861
after shot (C)
Bulk temperature 523 624 684 540 514
at cool down C)
Time to steady 6 8 12 6 6
state (cycles)

Peak radiative heat to center column 0.5 w/cm/2

A run performed with a 1.25 cm tile (POCO) and the torus and center stack temperature held at 473
K results in the following:

Peak face temperature 1220

Peak rear temperature 693



Peak bulk temp. after shot 901
Bulk temp. at cool down 544
Time to steady state 6 cycles

As might be expected here is very little change in the peak parameters when the environment is
operated at 200 C instead of 27 C, this being due to the fact that radiation is considered as the only
heat loss and there is little difference in the fourth powers of the temperature differences.

A comparison was done using TILE.Temp.1 to relate pulse times, flux levels and cool down
periods which result in a given face temperature of 1200 C. The result is an operating envelope for
the NSTX device, assuming that the limiting factor is the maximum temperature of the center stack
tiles. Results are plotted in Fig.3.
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Drift pin temperature response
The center stack backet drift pin temperature response was analyzed at steady state with a 200

w/cm”2 heat load and 5 minute cooling periods. To be conservative the pin was assumed to be
isolated from the bracket. The results are shown in Figure 4.



FIGURE 4. PIN TEMPERATURE RESPONSE AFTER PULSE DURING
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Comparison to other tile thermal results
A run was performed using the parameters of the PPPL Thermal Analysis Document:[3]

MATERIAL ATJ
Thickness 1.3cm
Constant heat flux 160 w/cmA2
Pulse length 5 sec
Cooling Time 300 sec
Center stack and 323K

torus temperature
Cycling was continued until the tile peak temperature and the bulk temperatures between shots

reached equilibrium.

Results PPPL TILE.TEMP.1
Peak face temperature 837C 770

Peak rear temperature - 546

Bulk temperature 520C 445



P-THERMAL Runs
- Several 2-D runs were done on P-THERMAL, after the initial design phase was complete, to

verify the thermal performance of the tiles.

- 3-D runs of the actual tile model [ProE][4] were also performed. These analyses took into
account the detail topographical features such as holes, notches, and asymmetry.

- An additional set of 3-D runs were made of the tile models to determine the effects of changing
material to AS graphite and reducing the heat flux.

Summary of Typical Runs - steady state results

Material POCO POCO EMI-4D AS
Model 2-D 2-D 3-D 3-D
Thickness (cm) 1.15 5.08 1.15 1.15
Constant heat flux (w/cm”2) 320 320 320 200
Pulse length (s) 5 5 . 5 5
Cooling Time (s) 300 300 300 300
Center stack and 373 373 373 423

torus temperature (K)

Results- steady state values

Material POCO POCO EMI-4D AS
Model 2-D 2-D 3-D 3-D
Peak face temp during pulse (C) 1340 C 1335 1160 906
Peak corner temp during pulse(C) 1670 C 1383 1160 982
Peak temperature at holes(C) - - 1262 906
Bulk temp at cool down(C) 540 540 540 530
Discussion

There seemed to be no advantage in thicker tiles from a thermal consideration, in fact the
equilibrated face temperatures and the bulk temperature between shots actually rose, due primarily
to the inability of the large mass to radiate away heat between shots. There is some small
advantage in the thicker tiles in that they do take a longer time to reach equilibrium (12 cycles vs 6)
and the device could be operated slightly longer before maximum temperature would be reached.
After this point, however, a lengthy shutdown would be necessary to allow removal of the heat.

The results indicated that the 1.25 cm rail tiles, at a heat flux of 320 cm”2 were close to the design
limit of 1200 C at the face but there was a considerable gradient [330 C] to the edges of the tiles



with overhang. See Fig.3. This was unacceptable and various design changes were studied to find
a solution for this effect. Among these were:

- Eliminating the overhangs and using a tapered [beveled] interface. This would essentially
eliminate the offset and lower the peak temperatures. The problem is that to do this both rail and
tile would have to have hard stops against the stack, otherwise there would be no firm indexing
point to align the tile faces. This would be possible by retaining the tiles with spring fingers (Fig.
5) which would hold the tile firm against the center stack but permit thermal flexibility. This
concept proved to be very difficult and expensive. The fingers had to be separate components, the
full width of the tiles, to prevent over stressing, and even then required very tight tolerances, thin
gauges and intricate shapes.
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- Bolting all the tiles just as in the divertor and passive plate designs

This would require doubling the number of center stack studs and required composite graphite for
all tiles ( machining considerations).

The only practical design solution found was a compromise in which the inner and outer tile
overhang radii were increased. This had the effect of shortening the thermal path and also reducing
the incidence angle of the plasma flux on the tile edge.

Analysis showed that the result was marginally within the 1200 C constraint at 320 w/cm”2 and
well within if the thermal loads were reduced to 200 w/cr2.

Pin temperatures were shown to stay under 600 C during pulse operation and return to a
temperature of under 500 C between shots, acceptable temperatures for inconel alloys.

Conclusion

ATJ and POCO are good candidates for the standard tiles but not for rail tiles. Machining
considerations, stress concentrations [4],and excessive temperatures at the rail overhang eliminate
all but composite graphites for the application. The standard tiles do not have pins or the overhang
on the sides and consequently the stresses are lower and temperatures are more nearly constant
across the face. A set of analyses were done on P-THERMAL to determine if changing to AS with
its higher conductivity, the heat load reduced to 200 w/cm”2, and the modified radii would
alleviate the problem in the rail tile. The results are shown in the attached figures and indicate that

everything was well within 1200 C. A decision was made to utilize the Allied Signal material, to

gain the advantage of its lower price and shorter procurement time as well as its higher thermal
conductivity and subsequent lower temperature gradients. The results showed that TZM was not
required for the brackets and pins, and they were changed to inconel 600.

rd Divertor Thermal Analvsi

Overview
P-THERMAL runs were done on ATJ divertor tiles with thickness of 1 inch (2.54 cm).The flux

was applied in an exponential distribution (Fig 6) q = q,,,*¢™* with a A value of 1.5 to 3 cm.

Pérfect contact with a Dowtherm cooled backing plate ( 150 C ) was assumed. Runs were
continued until the peak temperatures and the cool down temperatures equilibrated.



Runs:

Axisymmetric 1-D and 2-D models
Start temperature 150 C

Pulse length 5 seconds
Cool down periods 300 seconds

Results
1-D analysis indicated peak temperature of ~1200 C for less than 600 w/cm/~2. 2-D analysis
showed similar limit, but gave lower temperatures than 2-D due to poloidal conduction along tile.

2-D results:

Thickness Lamda Peak Flux Peak Temperature
cm cm w/cm® C

2.54 1.5 1860 2400

2.54 3 920 1500

2.54 4.5 620 1100 -

The design point for a double null plasma is a peak flux of approximately 1700 w/cm”2, which is
not possible unless some means such as sweeping is used to reduce the apparent flux. The effect
of sweep on apparent flux with Lamda =3 is shown in figure 7 and 8. The results are plotted as
peak flux vs power flux width in figures 9 and 10, for an infinite distribution on the divertor and
also as a truncated plasma distribution where the width is assumed cut off at the e-folding distance.

Conclusions
The analyses showed that the divertor tiles could not be operated within a 1200 C maximum
temperature envelope unless the apparent peak flux was limited to approximately 600 w/cmA2.

This was shown to be possible for a sweep of 10 cmand A = 3 cm. The divertor tiles returned to a

bulk temperature of 150 C after the three minute cool down period.

3-D and, 1-D models were run to determine the effect of thicker tiles and the results of both
indicated that the major thermal penetration during a 5 second pulses was approximately 0.5
inches, independant of the tile thickness. This indicated that thermal considerations were not a
design driver for divertor tile thickness. A one inch tile envelope was adopted, purely out of
mechanical attachment considerations.
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| | | |

Thermal conductivity comparison for different graphites
Thermal Conductivity, (W/m-K)

Temperature | POCO AXF-5Q ATJ FMI-4D | Allied Signal
20 78 117 75 200
250 64 95 68
500 52 75 62
750 45 60 57
1000 40 50 54 100*
1250 37 44 51
1500 35 43 50
1750 34 47 51

* estimated datg
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MSC/PATRAN Version 7.0 04-Dec-97 12:16:27

Temperature -PATRAN 2.5

NSTX Graphite Divertor Tile

ATJ_5sec_lamda_1.5nrf

FRINGE: Tmax, ATJ, 5sec, lamda = 1.5,

Preliminary Thermal Analysis
Tile Thickness = 1 in.

applied exponentially with lamda = 1.5 cm

Peak flux = 1860 watt/cm™*2

5 sec.

Pulse duration

Tstart = 150C

149

Unit=deg C




MSC/PATRAN Version 7.0 04-Dec-97 12:10:05

| a_3nrf: Temperature -PATRAN 2.5

NSTX Graphite Divertor Tile

ATJ_5sec_lamd

3.0,

FRINGE: Tmax, ATJ, 5sec, lamda

3.0cm

920 watt/cm**2
applied exponentially with lamda

Tile Thickness = 1 in.

Preliminary Thermal Analysis
Peak flux

5 sec.

Pulse duration

Tstart = 150C

149

Unit=deg C
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NSTX Inner Stack Carbon Tile
Thermal Analysis

* Transient simulation: 5 second pulse every 5 minutes.
* Plasma heat flux: 200 W/cm?
 Radiative cooling to 150°C sink, £ = 0.8

* Allied Signal carbon composite material.
* Insufficient data for orthotropic thermal conductivity;
employed isotropic thermal properties.

* Quarter symmetry model using recent ProE
geometry (Jan. 25.)

Carbon Composite Thermal Properties

? 200 - 20
2 | |~ Thermal Conductivity] 8
£ 150 | 8- Specific Heat 158
o 100 o 1.0 =
(3 4 Q
| n/ . 3
E - X

£ 50 05

0 — — —t—— loo

o 500 1000 1500 2000 2500
T erature [°C

emperature [°C] p = 1.92 gm/cm®
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e Maximum temperature at end of 5th pulse is 982°C.

* Pre-pulse temperature after 5 cycles is < 530°C.
Thermal ratcheting nearly leveled off.

g‘;:n%‘:‘;m";yet model NSTX CC Tile, Allied Signal Properties (Isotropic k)
ymmery Temperature History of Seiected Nodes
1200 (e T : +$?; -
——N1366
1000 > N1577|
— —»— N2448
O 800 | —»—N2606} |
> N
=
B 600
[
n SN
E 400 =
= 5 second puise every 5 minutes
200 X o -__}200 Wrent Plasma Heat Flux
T T F 7} |Badiative Coolir!f to 150°C, €=0.8
o .
0 200 400 600 800 1000 1200 1400 1600
Time [s]
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1st second of 1st pulse
(t=1 sec)

LIV

hat ¥

ey

34

MSCTATRAYN Vo en i S-S R T
b e P IME ) ae-uEeeall. £1NE CUNOY 3 irl, cmpanne PATEAN 2

Critins

Aot f
R L%

F

Bl P

€. New geometry
. Quarter symmetry model

xar

BWR 3 Jan. 26, 1998
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ubht

5th second of 1st pulse
(t=5 sec)
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New geometry
Quarter symmetry model
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DIVERTOR TILE MOUNTING BRACKET




xnpj yead ddnpaa [im Suidoamg

(Y



Spuodsg

Gt =epwe] ‘coZ| 8PON == ==

0'€ = BpweT ‘g9z apON

UOIJBIPEY YIM ‘WD G'| = EPWET ‘EZ| OPON + = = = =
wo G'| = epwe ‘69z | 8poN

aN3ao3a

‘osy

‘006

&)

Q

—oE

‘0081

‘0Gce

— ‘00Le

SSaWOIY} you} |
eyydeso £y

soji] JouaAId X1SN




MIN §°C —-
MANC - .
MW S| ——

MN | —o—

ol 6

(wd) WPIM xn)} Jemod

A4

(cvwo/M $001)
1d uBjsep e

3eyd JopdalQq

Inu e|Buis o)

(evwo/m 0€Ll)
id ubisep \4
Inu e|gnop -,

+ 00§

+ 0001}

+ 00S!t

1 000¢

L 00S¢

+ 000€

f 00S¢
1 ooo¥

+ 00S¥

(wo g9 = jujod 8yl 03 snjpey)
pajedsunJ] ‘papis-auo ‘yipim Xnyj JaMod SA Xnj4 Jead

000S

(Zvwd/m) xni4 yeed




wo g’y —w—
wo 'z —g—
wo ¢’ ——

| obed

(Zvwo/m) xnid 18l
009 006 oov 00¢ 002

}. | [l |

001

4 Al T T

00

0°00¢

- 0°00¢

- 0°009

- 0°008

- 0°0001

- 0°0021

2002 jo sunjesedwe) wnyqjinbe pex|4

'}J0 SpU0388 (Q0F ‘U0 SPUOIBs G ‘frLY

2183 (-1 ‘sessauyo|y) 8|} SNOMEBA 10}
‘Xn|4 189H SA aunjesadwa] adeng yead

9 ueys he sdwe) qinba+yeed

o'oovi

(D) ainjesadwa) aseuns yeod



juaseddeb —g— J

o¢c

81

e

| obed

(w) apnyjidwie deams
9l vl 21 ol 8 9

1 1 1 i i

—+

T T 1 ¥ 1

wd ¢ = epque| ‘apnijdwe doams sA xnjj yead juaseddy

g€ ueyn (uny) apis auo) we} sA somod

- 10

- 20

[s2]
o

0 <
o) o
(zvwio/m) xny yead pazijewsou

@
o

™~
o

-6°0



