IDL Reference
Guide

IDL Version 7.0

November 2007 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

1107IDL70REF

Restricted Rights Notice

The IDL®, IDL Analyst™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the
restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR). It has
been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may not be re-
transferred to any destination expressy prohibited by U.S. laws and regulations. The recipient isresponsible for ensuring compliance
to all applicable U.S. Export Control laws and regulations.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, |ON Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
FLAASH islicensed from Spectral Sciences, Inc. under a U.S. Patent Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Chapter 1

OVeErview Of IDL SYNTAX .iccuuiiuiiiiiiiiianiee e eeee ettt e e e e e e 35
DS | = G SR 36
Running the EXampPle COUEocviiiriiecee ettt 42

Part I: IDL Command Reference

Chapter 2

Do) S 0] 0] 1 =T [K= 45
CCOMPILE ettt et e e et e e e e b e e e et e e e e ar e e e e eareeeeeneas 46
CCONTINUE et e e et e e s e e e e e nbee e e nbe e e snreeeeeareeeeannes 47
]I SRR 48
JFULL RESET _SESSION ..ottt e e s e s s e e s enre e e e 49
€O LSOO 50
L 1O N SR 51
S IS S 52

IDL Reference Guide 3

RETURN ottt r e e e e et e e e e e e s st re e e e e e e saababeeeeessaababaeeeessesnsrenes 55
LN 1 56
RUN e e e et e e e e e e saa b e e e e e e e e s easbbbeeeeeesaabbseeeeessaanbabeeeeessaasrneess 58
S 1 60
Y I =1 = OO OPPRR 62
Y I = @ VA = 63
T RACE e a e e e r e e s baraeaaes 64
Chapter 3

0LV L= A 65
N O = I 1 OSSR 66
F N = 1 T SOOI 68
AN O 1 T 70
ADAPT_HIST _EQUAL ottt sttt bbb nne s s baeennee e 72
A 0 L T 75
ALOGIO et e e e e ——— e e e e e a e e e e e e brrr e et e e aaabrraeaaes 77
F N YO =t A 79
ANNOT ATE it e et e e e e e bbb e e e e s s s b be e e e e e e saababeeeeessaarareeeenns 83
APP _USER DIR ..ottt eeee s eesee s es e s e s s enes s e ees s sn s snesnesean 85
APP_USER _DIR_QUERY ..ot seeestese e eesee e s eess s s e seees s s ese s s s 95
N T = N N S 100
ARRAY _EQUAL oottt sttt st st sttt bbb bbb e e s 102
ARRAY INDICES ...ttt st e sttt e et e e nne e e nne e e snte e snneennne s 104
ARROW ...ttt e e e e e e e s e e e e e e e e b b r e e e e e e e b arrree e e e e narrees 108
S O I = N I S 110
F N OO 119
S L 121
F N I) OO PR 124
A 1 T 128
Chapter 4

ROUTINES: B e e e e et eea e e sa e e ebeees 136
[G 1 137
]]\ B = AN | I SRRt 141
] o ! 143
] s = I U RRT 146
] ! I 151

Contents IDL Reference Guide

] ! I OO RRR 154
] = I SO 157
L N LA o OO 159
BIN DATE e bbb s e e e s bae e e e sree e e e 162
BINARY _TEMPLATE ..ottt sttt b b nnes e e 164
L2 AN L =t R 173
L AN L@ 1Y, A OO 175
o I o S 177
BIT_POPULATION .ottt sttt st st s na e b s s e 179
I R A e 181
I S O N PR 185
10) G 10 3 | = 187
] = A USROS 189
Lo N S e © 1\ N I 190
2] (@ A] = N RO 193
BUTTERWORTH ..ottt ettt s e s e s s saba s e e e s e s s abane e e e s e aans 196
A A A OO RPT 198
L 0 1 =SOSR 200
BYTEORDER ...ttt e et e e e e s br e e e e e e e saabbaeeeeeesenbabeeeasenans 202
[A 1S R 207
Chapter 5

ROULINES: € oot e e e e et e eeeaas 210
C _CORRELATE ittt sttt st ba e st nbae e st s st s sneeesarea s 211
L0 AN T 1D 7 AN 214
CALENDAR oottt ettt e e e e s e e e e e e e e s bbb e e e e e e s e nnbabe e e e e e sesbabaeeeees 218
(O I I = G =] 1 ISR 219
CALL_FUNCTION ittt ettt sttt s sree e b s saae s sasesssae s sbessanessnsessaseens 230
(O I 1 N = [5 SRS 232
CALL_PROCEDURE ...ttt sttt st nare e 234
L0 AN N | 236
O N RPN 239
L7 AN I I ERROPP 241
LI 244
CDF ROULINES ...oocuvieiectiecteeiee st ettt st st e e st e st e s beebe e be e sbesabesbessseenbesseesasesbeesbessaeesbeesaes 247
O =!I 248

IDL Reference Guide Contents

CHEBY SHEV oo eeeeseeeeeeeeesesseeses s s s ssseseessessesesesssseeessssseessessseesseseseenns 250
CHECK_IMATH oovveoeeteee e ssesseseesssessseessssesesessssesessssssesesesesssssesesssseessssssesesessenens 251
(0 R[S 0] I 1Y/ =TT 257
CHISQR_PDF .oroeveeeeeeeeeeessessoeeessssesesssssesessssssesesssssseseesssssessssssssesssssssssesssesssessesssseenns 259
CHOLDC oo eeeee e sseeeeee e sesse s esse e sese e ssees e sseeesesseeeeeessseeseses s 261
CHOLSOL. vveeeeeeeeeoseeseeeeseeseeeessessesesssssssesesssssssssesssesesessssesssesessesssesessssesseesssneesssssnens 263
(o 1] 1= N ORI 265
CIR_BPNT ovvoeeeeeeeeeeeeseseeseessesessessssesssssssssesssssssssesesesesesessesesessssssssesessseeesessesesesessseens 267
(o 101 =IO 269
CLUST _WTS ooteeeeeeeeeeeeeoesesseeeessssesssssseesesssssssessssssessesssssssessssssessessssssesssesssesesessseenns 271
(O I UL = = SR 273
O ULS == == =TT 276
CMY K _CONVERT .ooveeeeeeeeeeseeeeeeeeseeeeeeesesesseeessesseesesesseseeesssseeeseesseessessseesseseseenns 282
(o0 o =300 NAVA = =3 O 285
COLOR_EXCHANGE ..ooooooeveeeeeeeeeesseeeeeesseeseeeseesesesssesseeesessseeesessseeesssseneseseesenens 290
COLOR_QUAN eveeeeeteeee e seeeesseseeeeesssssseessesssseesssseseesessesesssssssssesesssseesesssneesesssnens 293
COLOR _RANGE_MAPooeveeeeeeeeeeeeeseeeeeeessseesesessssesesessssseeessssseessessseesseessesesesesseeens 300
COLORIZE_SAMPLE ..ovvvoeeeveeeeeeeeeeeseseeseessssesesssssesessessesesssesssssesssssseseesssnssesesssnens 303
COLORMAP APPLICABLEoomvveeeeeeeeeeeseeeeeeeessesesessseeseeeesessseesssessseesseessenessseeseeens 305
COLORMAP_GRADIENT .cvoeoeeeeeeeseeeeeeeessssesesssssesessessesesesssssssssessssessesssnessssssnens 307
(oo o =1V V=3 10 1 7 A Lo) N 309
(010 1= 1t E OO 312
COMMAND._LINE_ARGS ..oooooeeeeeeeeseeeeeeessseeseessssesesseesseeesesseeesssessseessesssesesesessenens 317
COMMON oot seeeee e eeeeessessess e sseseeeesssseeeseseseeeesseseseeessseeesessseeeeesseneeeessenenn 319
(101 1= TH =0)= SRR 323
(010 Y 1= = OO 328
o0 Y L= 0 == ST 331
COMPLEXROUND .ooovvveeeeseeeesseeeeeessssssseesssssssesssssesesesessesssessssssssssessssesesesssseesssssnens 333
COMPUTE_MESH_NORMALSocooeeeeeeeeeeeeeseseeeesseeseeeesesseeesesessseessesssssesesessenens 335
(010) | o XTSI 336
(10 N [c1 =1 RO 338
(010 N OO 341
CONSTRAINED_MIN <.ooveoeoeeeeeeeeeeeesesseeeeeseseeseesssseseessesseeessesseeesessseeesesseseseseeseeens 343
CONTINUE «vvoeeeeeeeeeeeseeeeseeseesessessesessessssssessssssesessssesesesessessssssssssssesessssessesseneesssssnens 350
(010 L0 U] = SR 352
(00]NAV/ = 23 /010 |= o N 382

Contents IDL Reference Guide

(070 N1 Y/ o [ER OO ROTIO 386
(010101215 7.2 10 < JN OO 396
COPY _LUN oo eeeeeeeeseeeeeeeeseeeeeee s seeee e ssea s seeeseseseeeseseseasese s ssessseeesenssees 398
CORRELATE .ooooevveeeeeeeeeeeeeseeeeesesssessseessesssssessesassssssssesesssesssesssssssssssesesessseessesssees 401
(010 TSSOSO 403
(01015 = TSSOSO 405
o= U TSRO 407
01T Y= = OSSO 412
CREATE_CURSOR ...ooivvoeereeeeeeeseeeeeeesseeseesssesseeesssssseessssseesssssseaessssseessessseeesesssee 414
CREATE_STRUCT ooorivveeeeeseeeeeeseseeeessesseessssessessssssssesssssssessssssssssssssssesssssssssssssees 417
CREATE_VIEW oo seeeeeeeseeeseee e seee s seeesessseeeseseseeeessssseesessseeesesseee 420
CROSSP ...oooevveeeeeeeeeeeeeeseseeeseesseese e seseseseesseseseeeeseee e e ees s e e seseseeesseeeeesssseeseessees 424
[= YA = N[1 5 IO 425
CT_LUMINANCE ...ocooeeveeeeeseeee e eeeessesseeessesseesssessseesesssessssssseeseasssesesessseeesssssees 427
o L =1 SO 429
CURSOR ..oovvveeeeeseeeeeesssesesessssssesssssessesasssesssseessesassassseeassessseeseesssesssasssseesessseeesenssees 432
(o181 =1Y4= = SR 437
oAV 000! = o NN 442
(oA 1 0= Y TSRO 445
CW_ANIMATE ooovoeeeeeeeeeeeseeeeeseeeseee e seeseseesseeasesssesesesssesesesssessesssseeesessseensesssees 447
CW_ANIMATE_GETP ..ooooooeeeeeeeeeeeeeseeeseeeeeeeseeeesseseeessssseeeesssesesessesseessessseeesesssees 454
CW_ANIMATE_LOAD ovooooeeeeeseeeeeeeeseeeseeessesseeessssssessesssesssssssessssssseessssssesssasssees 456
CW_ANIMATE_RUN oo sseeseeessseseeessssseeesssseseseesssseesseseseeesenssee 459
CW_ARCBALL oo seee e seese e seeesess e sessseeseessseessssssesesessseeesesssees 461
oY= 1= o U= RSO 467
CW_CLR _INDEX ovocoreeeeeeeeseeeeessesseeessessesssssesseesssssssessesssesssssssessssssssssssssssessesssees 475
CW_COLORSEL .cvveooeeveeeeeeeeeeseeeeeeesseeseessseeseeesseesseeseseseeeseseseseessssseeeesessseoesssssees 479
1T A 5] = = =Y OO 483
oV = 1= RO 488
oY = T =25 = OO 494
CW_FORM oo eeeeee e eee e seea e s s s e e s e s sese s sens s 500
CW_FSLIDER ..oooveeeeeeeeeeeeeeeeeessesssessssessesssssessesassssssssssesssesssesssesssssssesesesssesssesssees 509
CW_LIGHT _EDITOR .oeooeeoeeeeeoseeeeeeeeseeeseeeeseeseeessseseeesessseeessssesesessssseeesessseeesenssees 515
CW_LIGHT_EDITOR_GET vvoeoeeeeeeseeeseeesseeseeessssseeesessssesessssssesssssssesessessssessssssoes 521
CW_LIGHT _EDITOR_SET .coooooeeeeeeseeeseeesseeseeessseseeessssseeessssesesessssseosssssseeesenssees 524
CW_ORIENT oooooeeveeeeeeeeeeeeeseeeesesesseseeseessesssseessesessesssesesesssesesesssesssesssesesessseeesesssees 527

IDL Reference Guide Contents

CW_PALETTE_EDITOR ..ttt st s nre s s nee s b 531
CW_PALETTE_EDITOR _GET .oeeieeeeeeeeeeeeeee e eeeeeseesees s en s ees s se e e 539
CW_PALETTE _EDITOR _SET ..ottt s 540
(O Y o I 1 = L R 541
CW _RGBSLIDER ...ttt sttt s nbe s s b e 550
O Y 1 1Y/ = R 555
CW _ZOOM ..ottt e et et b e sbe e st e e s abe e e bee e sbe e e beeennes 558
Chapter 6

ROUTINES: D e e e e e e e ea e e ea e e ebeees 564
DataMINEr ROULINESoeeeveeeteecee ettt ettt e e e ete e et e et e et e enbeeesbaesbeeesaneeeneeenseas 565
DBLARR oot e e e r e e e e e s b rra e e e e e s e aareeeaaeaearan 566
DCINDGEN ...ttt e e et e e e e s ee s ba s e e e s s s saabeeeesssssabaraeeesssssbabeesesssesrens 568
DCOMPLEX ... ettt ettt e e e e e e e e s be e e e e e e e sababaeeeessensabeeeeassessnns 570
DCOMPLEXARR oottt et e s s s s be e e e s e s s sabara e e e s s s e ssbabeeeesesesrens 573
DEFINE_KEY ottt ettt s nv e bbb s bt st nane e e s 575
[N | Y1 = I SR 584
DEFINE_MSGBLK _FROM _FILE ..ottt e 587
D (| 592
D]) Y ROt 595
D Y AN R 597
DENDRO _PLOT ittt sttt sb e b st nsae s ss e nnae s sabe s saneesnee s 508
DENDROGRAM oottt ettt e e s et ee e s s s s be e e e s s s s sabaraeeesssessbabeesesssesrens 603
D] Y SRRt 606
DT YA T 608
D] = Y SRRt 610
DAY T 612
DT o AV SRRt 616
[Y N I 4 620
DIALOG _MESSAGE ..ottt st s 623
[I L O 1 I 627
DIALOG _PRINTERSETUR ..ottt sttt s 635
DIALOG _PRINTUIOB ..ottt ettt sree e b st ssa s s e snae s st saneesnee s 637
DIALOG _READ IMAGE ...ttt eee e eee s s en e s s enennens 639
DIALOG _WRITE_IMAGE ..ottt sttt s e 644
[1 I I 1 R I 648

Contents IDL Reference Guide

0 N I SRR 650
DINDGEN ...ttt e e e bt e e e e be e e e e ba e e e e abe e e e e ateeeeesreeeeennns 656
DISSOLVE ... e e e e e et e e e e e e e e e e e e e b e e e e s b ae e e e nreeeeeane 658
D] Y ISP 660
DISTANCE_MEASURE ...ttt s 662
) I L 7 I 667
DLM_REGISTER ...oiitiie ettt sttt sttt s be st nne s sn e e 668
L@ O 1= T o 2 669
DL 181 = SRR 672
D] Y o 674
Chapter 7

ROULINES: E oo 677
EDGE_DOG ...ttt sttt st sttt b e b e beesan e e 678
[l O N USSP 681
L USRI 683
EIGENVEC ...ttt ettt e e e et e e e et e e e e et e e e e s abee e e e ebeeeeennns 686
ELMHES ..o et e e e s et e e e e e e e e s b e e e e s ree e e e nreeeeenee 689
EMBOSS ...t et e e et r e e e e be e e e e e e e e e b e e e e e be e e e e areeeeenne 691
I I SRR 697
e N A o) 20 1 N 698
USRI 700
EOS ™ ROULINES ...ocviiiecirctie e seeses s ee et ete e te e saeste e besnee st e sressaeesaeesseesaeestessreensennsens 702
B R A S .. e a e e e arae e e e nraee e eane 703
ot SRR 705
o SRR 707
[9 G OSSO 709
(| 1 SRR 711
ERRPL OT et e e s ete e e e e e be e e e ebe e e e et e e e e eareeeeesreeeeennns 716
= O U I I SRR 718
= SRR 720
E X P e e e e e e —e e e e aat e e e e aahre e e eabreeeaarreeeearreeaean 722
EXPAND oo e e e e e aree e e e nraeeeeane 724
EXPAND PATH ettt s nree e e e 726
L I N SRR 732
EXTRAC oottt e et e e e e bt e e e e e be e e e e be e e e e be e e e e bee e e e areeaeennns 735

IDL Reference Guide Contents

10

EXTRACT _SLICE ..ottt ettt sttt rb e st ssa et nnte s s sare e e s 738
Chapter 8

ROUTINES . F oo e e b e e e e e ees 743
e YA 744
L e LRSS 746
N O [O =17 748
[TR 750
I I R S o N R 755
FILE _CHMOD ...ttt sttt s nb e sbe e st nba e sa e nnt e s sane e nnne s 758
I I 0 | 2 763
FILE DELETE ..ottt st st sbe st s 767
FILE DIRNAME ..ottt s e e e nbee e s e nes 769
FILE EXPAND _PATH oottt sttt s e e 772
I 1 N 774
I I I N S TSR 779
L I I I N PSPPI 782
FILE _MKDIR oottt sttt et st sne e sae e nbe e nneas 785
I I Y 1 786
FILE POLL _INPUT oottt sttt svte e b st ss e nnae s st snee s 789
FILE READLINK oottt e s s e s e nnan e s e nes 792
FILE _SAME .o et b e st nb e sa e e bt e e sabe e sabe e naee s 794
I I S A {5 797
I I I TSRS 814
I I Y o | R 819
L I AN I o RSPt 821
Lo AN L 823
L N L SRRt 825
o 1) 829
o I X ROt 832
o AN 833
L OO] PRSPt 835
L I VYA SRRSOt 837
L I I o R 839
L I 1S RSPt 841
O | 842

Contents IDL Reference Guide

FORMAT _AXIS VALUES ...ttt 843
FORWARD _FUNGCTION ..iciieiie e ciee st steesse e sste et e e ste e st sense s snneesnesssnessnseeenns 845
L o e I U PR 847
[1N R 849
[O Y [SO 853
L 855
[1N (O I L N ORI 857
PV TEST oot e e e e e ee e e esee s ee e e e ees e se e eesseseeseessenesneeneseeeens 858
) G (O [I LR 860
FZ ROOTS oeeteeeeeeeeeeteeeteeeeeeseeet et eeeesees s esse st ssees e s sessees et esesessees e s eessesenesseese 863
Chapter 9

ROULINES: G oot e e e e et e eeeaas 866
L7 N Y 1\ A RPN 867
GAMMA._CT oottt eeeeeeeeeteees e s e s et ses s et seseseeesesesssesenesseesesesesesesesenesesesesesenesenens 869
GAUSS CVF e e bbb a e b e e s be s st e steesaree 871
GAUSS PDF ..ot eeee e eee e e e ee e e eeeeeeeeees s eee s eeseessesenennesnenees 873
L7 U S S 2d B I RO PR 875
(7N S o T 879
GAUSSINT i e e e e e e e e et e br e e e e e e e s abbbeeeeessanababeeeeeesesbabeneees 884
GET _DRIVE_LIST ettt ee e eeeeees e seeeee e eeaese s s s eeseesssnsennesnenees 886
GET_KBRD ..ottt sttt s b st nb e s sa e e ba e st sabe e sne e narea 888
GET _LOGIN_INFO oot ee e seeeee e eeeeee s s e s eesees s senennesnenees 893
L] I L N OSSPSR PRSP 895
GET _SCREEN_SIZE .ot eeeeeeeeeeeeeeeseeseeese e esessees s eee s eeseessesnnennesnenees 897
L I = A O ETRRPP 899
{1 1 1 902
GRID _INPUT ittt st nb e sa e e bae e sbe s sabe e seeesaree s 904
GRID_TPS oottt eeeeeteeeseeeseeeseseseeetsee s eseseseseseeesesesssesenessesseeesesesesesenesaeeseneseresenens 909
L D 1 RSO PP 913
(D] N AN 916
LT =1 = SRS PRSP 41
Chapter 10

ROULINES: H oo eeaas 944
o T =10 O PRSPPI 945
H UEQ INT oo eee e e e e eeeeeeeee e e eee s e eeeeseee e eeseeeseseesessesneeeennesnenees 951

IDL Reference Guide Contents

12

[F T = (o 1111 RS 953
[FT = O AT S 954
HANNING ettt ettt bbbt b e e b bt nns 959
[|l (01U] 1= 961
HDF_BROWSER ..ottt 962
HDF _READ oo eeeeee e ees e e s es et seeneeeeseeseeeneeneseeeseneeseeeenneean 968
HEAP_FREE ...ttt sttt st 971
HEAP GC .o ee e eseee e es e e s es e s s eneeee e eeeeneeneseeseneeeseenneean 974
HEAP _NOSAVE ...ttt sttt 976
HEAP _SAVE ..ottt e ra e st e e st e e ae e e saeeennee e snte e snneeenne s 977
HELP et ettt b bbbt e et ns 979
L 1 PSSR 988
HIST 2D ettt bbbt bbb bt nenas 990
HIST EQUAL oo ees e e s s ee s seeene e e seeeneeseseeeeen e seeneneean 992
HISTOGRAM ..ottt bbbttt bbb neens 995
| TS 1001
HOUGH ...ttt bbb ettt b e et 1003
HOR e e e ee e e eseeeeee s eee s ees e eeeeese e eeeneseeeeeeseeeeeeeeeeeneeeeeeseeer e 1012
[15V SO 1014
Chapter 11

ROULINES: | oo e e 1016
] 1 PSPPSR 1017
[CONTOUR ..ottt sttt b ettt b et e et e b 1021
10 N T PRSP 1050
IDL_Container OBJECE ClaSSccveviiriiiiieieie ettt sae e 1052
IDL_VALIDNADME ..ottt re e e 1053
IDLAN* OBJECE ClASSviveieeiiriiieieirie sttt sttt st se e 1056
IDLCOM* ODJECE CIASScuviiieeee e cie e ee e e e e e et e st e e et et eseeeneestesnreenrens 1057
IDLEXBR_ASSISTANT ..ottt 1058
T I @] o= B O =R 1060
IDLGr* ODJECE CIASSESueeveiviiiieeesieie sttt st sre st ae e st e b saesre e e e seenbeeneens 1061
IDLIt* ODJECE CIASSES ...c.veueiuiriiieieiiriesie sttt sttt e 1062
IDLITSYS CREATETOOLooiiiee et stee st stee et e e svee ettt 1063
IF..THEN.LELSE ..ot e s 1069
E N Y 1071

Contents IDL Reference Guide

IIIMLAGE .ot e e e e s s e bar e e e e e e ebb b e e e e e e e e saabreeeeaees 1074
Y N 1 O N N RS 1093
IMAGE_STATISTICS ...ttt e st sae s 1095
IM A GIN A RY e e e e e e s s s e e e e s e s s s s bbb e ae s e s s e sssbaneesees 1099
LAY SRRSO 1101
N1 =t 1129
AN 24 B TSRS 1132
INT 3D oot eee e eeeee e ee e eee e eee e e ee e e e e e e e se e e esneesneesneeeeeeneeseeseeenese e 1136
INT_TABULATED ..ottt sttt sttt s ee s st nnaennee e 1139
A I 1142
INTERPOL ...ttt e e e et e e e s s e saar e e e e e e e ebsb e e e e e e e e sanbreeesaens 1144
A I O I N N 1147
INTERVAL_VOLUME ...oiiiiee ettt st e e snee e 1151
A Y = 1156
1@ O 1 SRS 1158
1 L 1161
L I SRRSO 1184
1S 1 1186
[SOCONTOUR .ottt e e e e s s e saabe e e e e e s e saabeeeeessessabaneeeseenn 1188
[SOSURFACE ...ttt e e et e e s s s e be e e e e e s s eabbb e e e s e s e s ssabaneeseeas 1193
ISURFACE ...ttt r et e e e e s s s e sbar e e e e e e e eaabeaeeeesesnabreeesenns 1197
O8] = N 1222
ITDELETE oottt s ettt ee e e e aar e e e e e e e enabb e e e e e e e e s nabreeesenes 1224
T IO = N N 1226
ITREGISTER ...ttt e e e s e eana b a e e e e e e e s aabreeeeee s 1228
I = 1232
ITRESOLVE ...ttt ettt e e s s e sbar e e e e e e e eababr e e e e e s e snnnbreeeseens 1234
IV = O 1] 1236
IV OLUME oottt et e e s s e sabar e e e e e e ebab e e e e e e e e sannbbeeesanns 1261
Chapter 12

ROUTINES: J et e e e e e e eaas 1287
JOURNALL oottt s e e e et e e s e e s bbr e e e e e e s eanabaeeeeeeesnnabaneesenns 1288
JU L D A Y e e e et e e e e e e e et e et e e e e e i e ieiesea e b babababbrrrbrbrrrrrrrrrrraeaareres 1290

IDL Reference Guide Contents

14

Chapter 13

ROULINES: K et e e e e e e e ees 1293
KEYWORD _SET ..ottt st st b e s nnte e sraeesnneans 1294
SR L 724 5 L 1296
KURTOSIS .ttt ettt e ettt e e e s e sabe e e e e e e e eaabeeeeeesesnabaeeeeaneanns 1301
[N AT I S I 1303
Chapter 14

ROULINES: L e e b eeeaa e ees 1306
LOBAINDGEN ...ttt et e e e s e e e e e e ean b e e e e ee s e snabaeeeeaneaans 1307
LA _CHOLDC oeoeeeeeeeeeeeeeeeeeeeeeeeese s sene s s s s s sesese s se s ss e se s es e es e ss s es e esan 1309
LA _CHOLMPROVE ...ttt sttt st s sra e nnne e 1312
I N O o [0 SR 1316
LA _DETERM oottt sttt sttt s be e sae e s nate e sbaeennneans 1319
LA _EIGENPROBLEM ...ttt e st nnaeennne e 1321
LA _EIGENQL oottt sttt st st st s be s sae e e nateesbaeennneans 1327
I N = T A SR 1333
LA _ELMHES .ottt e sttt st b e e s sat e sbae e nneans 1337
LA_GM_LINEAR MODEL ...oooieeeeeeeeeeeeeeeeeeeeseeeeeeseese s eeees s e ees e seeen s e 1340
N [o SR STRRPRRIN 1343
LA INVERT ettt sttt e e e e e e b e e e e enbe e e e ennes 1346
LA _LEAST SQUARE_EQUALITY ittt 1348
LA _LEAST _SQUARESoooeeeeeeeeeeeeeeeeeeeeeeeeeeeee s eeees s eeeseseeseeesseseesne s seesnnnesees 1351
LA _LINEAR_EQUATION ..ottt sttt sttt srae e 1355
I 1 5 SR 1358
LA _LUMPROVE ..ttt sttt st b sae e s nat e sraeenneeans 1361
LA LUSOL oot eeee e e e es e e s s ees e s eneeneseeenannenee 1364
LA SV D i et nrae e areans 1367
I I {5 SR 1371
LA _TRIMPROVE ...ttt sttt s e sae et sbae e nnneens 1375
LA TRIQL oo seeeeeee e eeeeeee s ee s eee e s esese s eeseseseeeneenesneenesneseas 1379
LA _TRIRED ettt ettt s sttt st s b e snt e e sbaeenneeens 1382
LA _TRISOL ittt et st st et st e s be e sae e e sabeesbaeennneans 1384
LABEL DATE ittt sttt st st e s e e e e b e e e e sare e e e ennes 1387
LABEL_REGION ..ottt ettt st st st sae e s snteesraeesnneens 1397
I I ! IR 1400

Contents IDL Reference Guide

LAGUERRE ...ttt ettt e e e s ree e s e e s b e e e e e e e e aabaaeeee e e s abreeesenes 1403
A I O 7o 1405
It = R SRS 1411
I I T] d 1413
LINBCG .ottt e bt e e e e st ree e e e et ar e e e e e e e s sababeeeeessnnnbrneeeeens 1416
[N5 11 =\ 1419
I 1 N1 SRS 1421
LINKIMAGE ...ttt ettt e et e e s s e e s e e e e e s s s sabbaa e e e s s s ssabaeeesees 1424
LL_ARC DISTANCE ..ottt st s nba e st st s aeesane s 1428
1Y O TP 1430
Y SRS 1435
LINGAMMA et e e et e e e s e s ee e s e s s e e e e e e s s s sbbaaereesssassbaeeesees 1439
I N) SRR 1441
[72 I 1444
LOCALE _GET oottt sttt b e st e s ne e 1447
[0 €1 1@ A I N | S 1448
LOGICAL _OR ..ottt sttt st sa e sba e sat e e be e e sabe s st sbeesane s 1450
@ €1 @7 A I N = | 1452
(IO N[¥ I = RS 1454
[0 N7 1456
[N[O 1458
[N[77 1460
[0 I SRS 1462
I O O 1 I S 1467
[5 1 SRS 1469
[V O LV = 1471
[| SRS 1474
Chapter 15

ROUTINES: M e aas 1477
O o = I N N 1478
Y O 1 AN = SRS 1481
MAKE_ARRAY ettt st s b e sttt sae e nane s 1484
YN S = I S 1488
N S = = ST 1494
A A @ L\ I T 1500

IDL Reference Guide Contents

16

MAP_ CONTINENTS c.oooveeoeeeeeeeeeeeeeeeeeeeeeeesesseeeessesseeeseeesssesssesssseseseseeesssssesesesseees 1504
IMAP_GRID ovveoeeeeeeeoeeeeseeeeeesseeeeesessessessesssessesssssssssessssesesssssesesessssssssssesesssssesesssssens 1510
IMAP IMAGE ...oorovveeeeeeeeeeeeeeeeeeseseeeeeessesesesesesssesssssseesesesssessaeesseeessessseesseessseeseseees 1516
Y =T =N (o IO 1521
MAP_PROJ FORWARD ...ovvveeeeeeeeesseeeeeessseesseesssssseesssesssesssessssessssssseesssssssesseseee 1525
MAP_PROJ_IMAGE .oeovveeoeeeeeeeeeeeseeeeesseseessssssssssesssesesssssssesssessssesssssesssssssssesssssens 1531
Y= = =T o N | VL= o NSO 1537
MAP_ PROJ_INIT wovvveoeereeeeeeeseeeseesseeesessssssessesssssssssessssssssssesssssessssssssssessssssssesesssssens 1540
MAP_PROJ INVERSEocorevvveeeeeeeeesseeeeeesseseeeesssessesesssessssesssesssesssesssesssssssesssssees 1562
IMAP_SET oooeeveeeeeeeeeeeeeeseeeesessesseeessesesessssssessesssssssesessssesssssssesesessssssasesesasssssesesasssees 1564
MATRIX_MULTIPLY ovveeoeeeeeseeeeeeeeeeeeeeeseeeeeeessessesesseeesssesssesseesssesseesssssseesssseees 1583
MATRIX_POWERcooerveereeeeeeeeeeseeesessssssessssssssssssesssssssessssessssssssssssssessesssssssesasssens 1586
IMAX oo eeeeee e e e e e e ee e es s ee et ee e eese e esess e e e se e eenese e eeeeee 1588
IMD_TEST oooeeeeeeeeeeeeeseeeseeeseeessesseesssseessesssssessessssssseeesssseeesssesesessssssesssssesssesssesesaessens 1592
IMEAN oo e e eeeeee e eeeee e ee s ee e s seee e eesese e s eseseeeseeasenes e eenssees 1594
MEANABSDEY ..ovvveoeeeveeeeeesseeeeesesseesessssssessssssesssssesssssseessessssssssssssssssesssssssesesssssees 1596
Y T= 0]V NSO 1598
IMEMORY oooosvveoeeseeeeeeeeseseeeessesseessssessessssssessesesessseeesssseeesssesssesessessssesseeessssseseessssens 1601
IMESH_ CLIP «eeeoeeeeeeeeeeeeeeeeeeeeeeseeeeeeeesseeeeeseeeeeseesesssee e e sesesesesssseseseseeessssseeeseasssees 1605
MESH_ DECIMATE ooorevveereeeeeeeeeeseeesssssessessssssssssssesssssssssssssssssssssssssssessesssssssesssssees 1611
IMESH_ISSOLID .eveeoeeeeeereeeeeeeseeeeeeeeseeeeeessseeeseesessseesseeesesesssessseesessssessssesssesasseees 1619
IMESH_ MERGE ..cvvveoeeeeeeeoeeseeeeeeeesseessssssssessssssssesssessssssesssssssssessssssssssessssssssesesssssees 1621
MESH_ NUMTRIANGLES ...ovveeoeeeeeeeeeeeeeseeeeeeeeseesseeeesesssssesesesssesssesseesssesesesssseees 1626
IMESH_ OB .vvveoeeeeeeoeeeeseeeseeesseeeeesssseesessssesessesssesssssessesesesssesesssesssssssssseessssssesesssssees 1627
IMESH_ SMOOTH .vveeoeeeeeeeeeeeeeeseeeeeeeeseeeeseseeeeeeesssessseesssessesesesessesesesessessssssesessasseees 1634
MESH_SURFACEAREAorvvveeeeveeeeesseeeeeesssssssessessssessssssseessessssssssssssessssssssesssssees 1640
MESH_ VALIDATE oooreeveeeeeeeeeseeeeeeeesseeeeeesssseeeessesseeessssesssesssessssesssesssesssssesesasssees 1642
MESH_VOLUME .ovveooeveeeoeeseeeeeeeeseeesessesssesesssesssssesssssssesssssessssssssesssssessssssssesesasssens 1644
IMESSAGE ..o eeeeeeeeeeeeeeeeeeseees e eeeeseeessseeeessseeeseesesesesessesseeeseeeseseseeeeesssees 1646
VN oo eeeeee e eeeeeeeeseseseeee s e eeese e eeeee s e seesseeeese e e e s e s eeese e e s s eensss e eessees 1652
MIN_CURVE_SURF ..cooveoeeeeeeeeeeeeeeeeseeeeeeossseeesesssesseeessesssssesesesssesssesseesssssssessssseees 1656
MK HTIML_HELP ovveoeeeveeoeeeeeeeeeeseeeeeseseseesesssesssseessssesesssesesssssssssssssseesesssssesesasssees 1662
(YT) = TR 1665
IMOMENT oooevveeeeeeeeoeeeeseeeseeesseseeeesseeeseeseseseseeesseseseeesseseeesssesesesessessseesseessssssesesesssees 1668
MORPH_CLOSE ..oovooooeeveceeeeeeeseseeeeeeseeeeeessssessessessseesssessssesesesssssseeseeesssssseessssssees 1671
MORPH_DISTANCE ..oovveeoeeeeeeeeeseeeesseeeeeesssseseesesssssseessssessssssessssssssssssssssssesssssens 1674

Contents IDL Reference Guide

MORPH_GRADIENT oottt s e st s sane s 1677
MORPH_HITORMISS ..ottt ste e st e e s ne e 1680
MORPH _OPEN ...ttt sttt st et ee s st st steenaneas 1683
Y@ T I 1 1686
MORPH _TOPHAT oottt sttt sttt sba e st e nbe e s st sneesaneas 1688
1 o = X 1 1691
Y = T O | o o U 1693
1 = O 1697
MPEG_SAVE .ottt bttt st b e b b nane s 1699
1 R I R 1701
Chapter 16

o LU 81 1= N 1703
N_ELEMENTS ottt sttt re e nanes 1704
T AN AN 1Y T 1706
N TAGS L e bt sa g b e e s a b e b e e s b b s ae e anes 1707
NCDF _* ROULINES ...vieitieciecieciteesteerte st te et s esestesreeste e e s seeetesaaesntesreesneesressneesnnessnnas 1709
NEWTON ot e e e e e e st e e e eat e e e e ete e e e eanteeeenreeeennrees 1710
I L@ 1S i 10] 1713
N O S = L O PR 1716
I OIS S O AN I I 1719
N O S S I U o PP 1721
NORM e e e et e e et e e e e te e e e s tseeeeaseeeessaeessasaeeesanseeesnnaeeannnreeas 1724
Chapter 17

ROULINES: O i e e e e e e aaaas 1727
OBJ CLASS ..ot e e ee e e e eee e s eeeeee st e s e e ene e eneeneseeeeeeneeene 1728
OBJ DESTROY oottt sttt st b et b s sae e e naae e snaeennes 1730
OBJ HASMETHODcoiiiie ettt et e e s tae s e sne e e nnae e nnee e e 1732
OB IS A bbb e ae e sraeenes 1733
L0 1N N S 1734
OBJ VALID ettt ettt sttt s b e s b e naae e snaeennes 1737
OBUIARR ..t e e e — e e e r e e e e b e e e e aabe e e e anareaeanreeeanres 1740
ON_ERROR ..ottt sttt st st b e s b sae e e naa e saaeenes 1742
L0V 1O (@ | S 1744
ONLINE _HELP .ottt st b e s s sna e 1747
OPENR/OPENU/OPENW ...ttt ettt s e etee et e e eteeetee e steeesateenaee e e 1754

IDL Reference Guide Contents

18

(@] = I [OOSR SRR 1763
(@] IO =1 1768
Chapter 18

ROULINES: P oot ea e 1770
P _CORRELATE ..ottt sttt st sttt st st sae e s sat e sbaeennneens 1771
AN S e U SR 1773
PARTICLE _TRAGCE ..ottt sttt s st nae e srae e ens 1776
AN I N O | ST 1779
PATH_SEP et e bbb s nre e 1786
PCOMP et e e e s e et e s s s e s e e e e e e s s ebb b e e e e e s sesssbansaeeseaans 1788
O RSP URRRRO 1793
[O B B I T) SR 1813
L IO B =!I I TSR 1817
IO B I =t O 1819
O B I TSRO 1821
o VN T 1 L TP 1824
POINT _LUN ittt sttt st et st e s be e sae e e nateesbaeennneans 1826
POLAR _CONTOUR ..ottt ee s tee st e st s sate e st e st e e s tae st e e sne e e nnneennaeesnneens 1828
POLAR_SURFACE ...ttt st s bt sbae e ens 1836
(| I 2 1839
POLY 2D ittt sttt et ettt b e b et e e nrae e nnreans 1840
POLY AREA .ottt s e se e sse e e s esesneseeeseneeneeseeeeenesn e 1844
[O] I I SRS RRPRRIN 1846
[I8 I O 1850
POLY FILLYV ettt ettt e s e s e saba e e e e e e eaabeeeees s e snabaeeeeaseanns 1857
[O IS N B L 1859
POLYWARP ...ttt et s e e e aba e e e e e e eaab e e e e e e s e snabaeeeeaeeaans 1863
(O 15 T 1866
POWELL et e ettt e et e s e e e sabe e e e e e e e eaabseeeeesesaabaeeeeaneanns 1867
PREF _COMMIT .ottt e sttt s et e e e te e s te e e sne e e snneesnaeesnneens 1870
L]] i SRS TRRPRRIN 1873
PREF _MIGRATE ..ottt sttt st s be e s s sate e sraeennneans 1878
L e N SR 1880
L =AY I OO 1883
L YL = 1885

Contents IDL Reference Guide

PRINT/PRINTE L. oottt sttt s b re e e tetesne e e enne s 1886
I AV I 5 1889
PRO b r et n g e s b e b be e nanes 1890
PRODUCT ettt ettt e ettt e e et e e s aa e e e e eab e e e e s baeeessteeesansseesnneeeannnrneas 1892
PROFILE ..ttt sttt et sttt s ba e s st e e nbe e e sabe s sabe e steenane s 1896
PROFILER ...ttt ettt e st e e et e e e e s ae e e e e eate e e s nneeesnneeeannreeas 1899
PROFILES ...ttt sttt sbe e s st e b e s e st s be e st s 1902
(O =l O IV | 1004
PS SHOW _FONTS ...ttt sttt bbb st s ae e e 1908
YA 1909
L 1 5 L SRR 1910
L I o o S 1912
PTRUNEW ettt bt sa e s be e s st e b e e e sabe e sabe e sbeenaneas 1913
Ll I V27 A I 1 S 1915
e I o SRR 1918
PUSHD ..ttt e e e et e e e ab e e e e s eae e e e eease e e e nseeesnnaeeannnreeas 1920
Chapter 19

ROULINES: Q ootiiiiiiiiiiiii et e e e e et e e e e e e et e e e e e earaaans 1921
QGRIDS ... e b e b e b naae e nraeennee 1922
QHULL et ee e ee e s s e en e s s eneeeeneeeeneeneseeeeeeneeene. 1927
QROMB .. bbb nre e aee 1932
QROMO oottt ettt ese et e s e es s s ses e s sesene s s s e s serne s nes e nesesene 1937
QSIMP e e bbb e e nraeenes 1940
QUERY _* ROULINESuveiiiiieeiiesteeseeseesteeseesteesseeteesteesseesseestesntesnsesssssnssssessnsssnsessenas 1943
QUERY _ASCI ittt st st s st st st e e sbe e s sabeenneeenn 1948
QUERY _BMP ..ot e e e ene s en s e e s en s seeeeen e s 1951
QUERY _DICOM ...ttt ettt st sb e s sae e snaeennes 1953
QUERY _GIF oot ee e eee e e s e s eee et s eneseeeneeseneesseeeeeeneeeenens 1955
QUERY _IMAGE ...ttt sttt sttt s b e s sae e nnae e srae e nes 1957
QUERY _JPEG .ooeoeeeeeeeeeeeeeeeeeeeee e ee e e ee s eee e s s ese e s enesesneeeeneeneseeeeeenneene 1964
QUERY _JPEGZ2000eeiiiiieiieieiereiiieesieeesieesieessee s ssbessstessseesssesssessseessnesssssesssessnses 1966
QUERY _IMRSID ..ottt ettt sna e e 1968
QUERY _PICT oot eeee e e eeee e es e s ees e s ene e s enesesneeseneeseseeeeeeneeenes 1971
10 18] A = N [RSP RRRP 1973
QUERY _PPM ..ot ee e ee e e e s ene et s eneeesne s eneeneseeseeneeeene 1975

IDL Reference Guide Contents

20

QUERY _SREF ...ttt et sttt s sa et e e bt e s be e e saee s sabe e saaeesnneans 1977
QUERY _TIFF <ottt ees s s es e seeenss s s enenean 1979
QUERY WAV ettt et st sa et s b e s be e se e s sabe e saaeesnreans 1982
Chapter 20

ROUTINES: R e e e s e e e 1984
L O o = I I SR 1985
L 1 =S OO OP 1988
AN 15 1] 1990
RANDOIMN ..ttt r et e e e e e e e e e e e sabe e e e e e s eebsbeeeeessesassbaeeesanssnns 1999
RANDOIMU ...ttt ettt e e e et e s s s e s abe e e e e s s s sbbbeseeessessabansasessaans 2004
YA AN S TSRO 2009
{10 =) P 2011
LA == 2 I L R 2013
L I N O ST 2016
READ _BINARY ittt st sttt b b sae e ab e sraeenneeens 2020
READ _BIMP ettt sttt et 2027
READ _DICOM ...ttt ettt sttt s e et sbee s be e s sae e s sate e sbaeennneans 2030
READ . GIF oot ee e ee s eee s eeeeses e s s s een e s e eneenesnennennesee 2032
READ _IMAGE ...ttt st bbb sbae e sneeans 2036
READ _INTERFILE ..ottt 2038
READ _JPEG ...ttt ettt st sttt et e s b e b e sae e s ate e nraeennreans 2040
READ_JPEG2000eeeieeeeuieeeieeesieeesieeesteeesteeeseeesseesssseesseasssessnsessnsesssnnssssseessenssseens 2044
READ _MRSID ittt sttt st b sae e s saae e sbaeennaeans 2048
L A 10 8 SR 2051
READ _PNG ..ttt sttt sttt st e s be e sae e s nabeesbaeennneans 2053
READ _PPIM ..ttt sttt st e e 2056
READ _SPR ettt sttt et sttt s b s b e nae e abe e nraeenneeens 2058
READ _SRF ...ttt ees s s s sn s en e s s enesneseeneeseneeseeenenennes 2059
READ _SY LK ittt sttt sttt sab e st e e s sbe e sbe e sbe e e nbeesreeen 2061
Ly B N 1 PRSP 2065
READ WAV ettt e st st sttt et e s b e e b e sae e e sabe e sbaeenneeans 2075
READ _WAVE ..ttt et b e e st sbae e nnee e 2076
READ_X11 BITIMARP ettt ettt sttt s e s e eabe e s 2078
READ _XWWD ittt sttt s sttt s b b e e sae e abe e sbaeennneans 2080
Ly AN 15 1 2082

Contents IDL Reference Guide

[AN 15 1 SRS 2084
Ly I o o S 2086
[= N SRS 2088
RECALL_COMMANDS ...ttt e st st e et st e e nnne s 2091
[0]\ 1 SRS 2092
REDUCE_COLORS ...ttt etes ettt s stee st e e et e e s e enae e snteesnteesneennnes 2098
REFORM ..ottt ettt s b ee e e e e s s e e e e e e s s aabeaeeee e s s nabrneeeenes 2100
=] L@ R €1 2102
REGISTER _CURSOR ..ottt sttt sbe et bae s st st saeesaneas 2105
L 2107
L =N I O 1\ N N RSP 2111
L I A I 2113
REPLICATE _INPLAGCE ..ottt st st 2115
T | Y AN I 2117
RESOLVE _ROUTINE ..ottt s e s s 2120
LY 1 L = 2122
L 1A I SRS 2125
RETURN e e s e e e e et e s e e e e e e e s et et esesesssasssssssasasasasbareres 2126
REVERSE ...ttt ee e e e s e e e e e e s e b e b e e e e e e s abrer e e e e s 2128
S TP 2130
(@] =] =1 = RS TSRS 2133
(1 I 2135
[(@ B 1N =S RRO 2138
[(@ 1101 N | 2141
ROUTINE_INFO ..ottt sttt st b e s st et 2143
ROUTINE _FILEPATH ...ttt ettt e et 2146
[ST I = | [P O 2148
Chapter 21

ROUTINES . S oo e aas 2151
ST =5 2152
SANV E et e e e —— e e e e e ea b — b e ee e e e e arr e et e e e aabrraees 2154
SN Y €O | RO 2158
RO 2 I T 2163
07 Y I = I L RRRRP 2167
O Y S 2168

IDL Reference Guide Contents

22

SCOPE_TRACEBACK ..o.coreveeeseeeeeereeseeeeeseeeeeesssesssessesssssesssesseessseseeesssssssessssseees 2169
S0)= V7 == = (! = Y 2172
SCOPE_ VARNAME ..ceveeeeeeeeeee e eeeeeeeeessseeeesseesssesseessssssseseeessseseeesssssesesesseees 2179
SEARCHZD ..ovooooevveeeeeeeeeeeeeeeeeeeeseesseeesssssesessessesssesesssssesessesssssssesasesssesesessseseseessees 2185
SEARCHSD ..oooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeseseeesesessesseeseseeseessessesesseeseneseeasesssesessesssees 2188
SEM_CREATE oooovveeoeeseeeeeeeseeeeeseessesessssseesesssssesssssssssssssssssssssssssessssasssesssssssesesnsssees 2192
= Y I =T = =TT 2195
SEM_LOCK covveoreeeeeerseeseeeeseessesesseessseesssssessessessessssssssssesssssssssessssssssssssssesssssssesesssssees 2197
S ST =X =Y 2200
SET PLOT ovvveeeeeeeeeerseeseseeeseessessseessssesessssssesssssessssssesesesssssssssesssssesssssssesssesssesesasssens 2201
SET _SHADING ..eeeeoeeeeeeeeeeeeeeseeeeeeeeeeeseeeeeesseseesseeseeeesesssesseseseesseseseeesssssesessenseees 2204
SETENV coorevveeeeeseeeesseeseseeeseesseseasessssesssssessessessesssessssesessesssssesssssesssesssesesesssesesaessens 2206
S = o SO 2208
SHADE_SURF .oovveeoeeteveeeeeeeeeeeseeseseesssessesesssssesssssssssssesessssssssssssssssssesssesssesesssssens 2211
SHADE_SURF_IRR .oovvveeeeeeeeeseeeeeeseseeeeeessssesssssesssessessssssssesseesssesseesssssesessssssees 2218
SHADE_VOLUME .orovvooeeeeeeeeeseseeeeseseeeesesesseesesesssesessesssesssesssesssssssesssssssssssesseaens 2221
S |1 = E TSRO 2228
S 1= i) 1= =TT 2230
S|V 101 =10 IO 2236
SHIMMAP oot eeeseeeeeeeeeeeeeeseesseses s seese e sesseeses s sessees s sesssees e sessseseseessees 2238
SHIMUNMARP .o ssee s e seeesseesseeeeeeee s seesseessessesesessseeesesseeons 2253
SHIMVAR vveeoeeteeeeseeseeeeseeeeeeesseessseesssssessessessesssesesseseseessssssssssesasesssesesesssesesasssees 2255
SHOWS .coooeeeeeeeeeee e eeeeeeeeeeeeees e seee s seese s eeee e eee s ssesseseseeeseneseeesesssesesseessees 2259
SHOWRFONT ooooorevveereeseeeeeeeseeeeseessesessssssesessessessssssssesesssesssssesssssessssasssesssssssesesesssees 2264
LY L= = RN 2266
SIN cooreeeeeeeeeeeeeeeeeeesseeeseeeesses e seeeeeeese e e e s e e e s e e et e ee e s e e 2271
SN D)1= N RO 2273
SINH tvveeoeeeeeeeeeeseeeesseesesesseeesseessessseseessess s sessss s seesss s sessssseesesseseeeessseesesssseeeeseees 2275
S =T 2277
SKEWNESS ...oooeeveeereeseeeeseesseeessessesesssssessessessessssssesesessssssssssssssssssssssssesssssssesesssssees 2284
S L= S | TR 2286
SLICERS ..oooevveeoeeseeeeeeesessessesssesessesssssesssssessessessessssssssesesssesssssssssssssesssssesssssssesesssssees 2289
SLIDE_IMAGE ..ovveeoeeeeeeeeeeeeeeeseeseeessseseeeessesseseesessseessesssessesessesssseseeeesssssesessssssees 2308
SMOOTH orevveeeeeeeeeseeseeeeeeeesseeesseessesesesssesseesessessseseesesesseeseeseseseseeesesesesaeeess e eeeseees 2313
5101=1 = IS 2317
101014 =1 IO 2319

Contents IDL Reference Guide

0] =8 E OO 2324
SPAWN <. eeeeeseesseessseess e sessesess e e sseseseeesseses e s sssses e eeesesesesesesessseere e 2326
S R 1= N SO 2334
SPH_SCAT covvooereeseeeeeesesseessssessesssessssessessesssssesesssessesessessessssseseseesesssesessssssssesessees 2336
SPHER _HARM ..o eeveee e seeeeeesseeseseeesesseesseeesssessesseessessseesesseaessssesssee e 2339
SPL_INIT covvvveeereeeeeeeeesseseesesssssssssssssessessssssssesessesssssessesssessssessosssssssesssssssessssseesssesees 2342
SPL_INTERP .oooootveeeeeoeeseesseeeesesseesseeeesesssesessessesesssseeesssessessseseessssesesseaessssesssee s 2344
SPLINE eoevvveeeeeeeseeeeessesseessssessesssessesessseseessessessessesssesessessesssssssessssesesesesssesssseseessees 2346
SPLINE_ P vveeoooeeeeeeeeeoesseessseeesessesseeeseesseeseseeeesesessseessssssessseseesesseseseeeessssessseesessees 2348
i LYY = SO 2351
SPRSAX e vveeeeeeeeseeeeeeeeeseessseee e sesseeees s sesseeeseeee e ee s e eee e s e s s e 2354
SPRSIN oo vvveeeeeeeseeesessesseessssessssssessesesssessessessessesseessesesesssessssseseseesesesesesssesssseseeseees 2356
S 1 = SO 2359
S0 =2 HT OO 2360
STANDARDIZE ..ovvvoeeeeeeeeeveeeeeseeeseeeeesesseeseseesesseeeseeesseessessseseesessesesseaessssesssee s 2362
1)) =2V 2364
STOP oo eeeeee e s e e se s s e s et se e s e s e 2366
STRARR e vvveoeeeeeseeeeeesesseessssesssssessssessessessesseseseeessesessessessssseseseesesesesesssesssseseessees 2367
STRCMP oot eeeee e seee s eee e es e se s seee s e s s s s e eseeseseeeeeseses s e 2368
STRCOMPRESSovvoecoeeesseeeeesssessesessessesssssesesssessssesssssesssssesssssesssssesssssesssseseeseees 2370
STREAMLINE .o vveeeeeeeeeseeeeeesseeseeeeesessesseseeeesseesseeesssessessseeeeseseeseseeaessssessseesessees 2372
STREGEX ovvvvoereeeseeeeeesesseessssessesssessssesssessessessessessssssesesssssesssssesessssesssesssssesssseseessees 2374
STRETCH ovvveooeeeeeeeeeeeseeeseseeeseseeesseesesesssessseesesssesseesssssssessseseeseseeseseeaeesssessseeseesees 2378
STRING oo vvveoeeeeseeeeeeesseessssessseesessssessessessessesesseesseseseessessssseseseesesesesesssessssereeeeees 2380
STRIDIN oo eeeeeeeseeeeseeeeeeeeeeseeeeseseeeseseeeeseeees e seessessseeeeeseeseseeeeesseessseeseeeees 2383
STRLEN e vvveeeeeeeseeeeeesssesessssessssssessesesssessessessessesssessesessessesssssesessssesssesssssesssseseessees 2385
STRLOWGASE ..eeeeeeeoeeeeeeeeee e seeeeeesseeseseeeseseessseeesssessessseseesesseseseseessssesssee s 2386
STRMATCH cooooreeeeeeeeoeseeesssseeessseesssessessessessesesseessesessessesssssesessesesssesssssesssseseeesees 2338
STRMESSAGE ... vveeeeeeeeeeeeeeseeeseeeeesesseseseeeeeeessesesseesesseessseesessessseeesssesessseeseessesees 2391
STRMID e vvveoeeseeseeeeeeesseessssesssssessssesseseesssssesesseesseseseessessssseseseesesesesesssessssereeneees 2393
STRPOS vt eeeeeeeseessseees e s se e es e seseeeseee s e essesseeeeseseesesseeeesesesssee e 2395
STRPUT eevveeoeeeeeseeeseeeesseessssessssssessssesssessessessesesssessesesssssessssseseseesesesesesssesssseseeesees 2398
STRSPLIT ovveeoeeeeeeeeeeesseeessseeesessessseeeesessesssseeeesesesseeessssssesseeseseseesesseeeesssessseesessees 2400
STRTRIM vvvveoeeeeeeeeeeeseesesssssesssssssssesessssssssesessesssssesesssessssesssssssssssseasesessssssesssesees 2405
STRUCT _ASSIGN .oveeeoeeeeeeeeeeseeeseeeeesessesseseesesssesseeesssessessseseessssesessseessssessseeeseesees 2407
STRUCT _HIDE oevvveeeeeeeeseveeesssseessseseessesssssesesssessesessssssesssssessssesssesessssessssseseessees 2409

IDL Reference Guide Contents

24

STRUPGCASE ...t s e e st e e e e s ste e e s sbae e s sbeeeesrreeeans 2411
SURFACE ...ttt e e et ee e e et e e e et e e e ebae e e e sbeeessabaeessbeeeessreeanns 2413
B PRI 2424
SV D e e e e e — e e e e bae e e e aateaaeaabaeeeabreeeatreeaans 2425
1SV L L R 2428
SV SO i e e e e et e e e et e e e e e t— e e e ebaeeeeareeaeaabaeaeaabreeeanrreeaans 2434
SWAP_ENDIAN ettt ettt sttt be e st e e se e s sabe e sraeesnneans 2437
SWAP_ENDIAN_INPLAGCE ...ttt estee ettt s nte s s snee e s 2439
SWITCH e r e e e s e e et e e e e be e e e s ste e e s sbae e s sbeeeesnsrneaens 2441
SYSTIME ettt e e e e e e e e e te e e e ebee e e e sreeessbaeeesbeeeeatrneaans 2443
Chapter 22

o LU A1 1= 2446
0V S 2447
8 e S 2449
120 0 S 2451
TAG NAMES ..o e s te e st e s te e s te e ente e e neeeneeenneas 2459
I S 2461
172 11 S 2463
TEK _COLOR .ttt sttt ettt et e sate e st e e sabe e e nnaesbeeenaes 2465
TEMPORARY oottt ettt ettt e e st e e e ettt e e e e ba e e e s bae e e e araeessseeeesnteeeeennaeas 2466
TETRA_CLIP ettt st st sate e s b e b e e neeebeeeas 2468
TETRA_SURFACE ..ottt tee sttt et 2470
TETRA_VOLUME ..ottt st st st et na e b s 2471
8 I8 1 S 2473
I =I5 S 2475
TIME _TESTZ ettt ettt e ettt e s e e et e e et e e saae e snseesnte e e nnaeenneeennes 2477
I Y L = S 2478
TIM TEST oot eeee e e ee e e eee e ee s e s e e eee e s seesaeneseeeaeneenenees 2484
I I S 2486
TRACE ...ttt et e e e e bt e e e et —e e e e abe e e e eaae e e e araeeeeareeeeaaareeeeannaeas 2491
TrackBall ODJECEvocvieeee et sreern s 2493
TRANSPOSE ... e e s r e e e e srnae e e e nanaes 2494
TRI_SURF et e e s te e st este e s be e e te e e neeeneeenneas 2497
TRIANGULATE ettt s e e st s b e e e s e e e e sre e e e snreeesnnnaeas 2501
TRIGRID .ottt et e e e et e e e e tb e e e e aaeeeeeaseeeesseeeesanneeesnnnneas 2505

Contents IDL Reference Guide

I 3L RSP 2515
LR UL =!I 2518
TRISOL ettt ettt e e et e e e e et saba e e e e e s se st abereeeesasssbeeeeeessessbeseeensesnnns 2520
TRUNGCATE _LUN sttt e ete e st s e et e s ae e st eenre e enneennnneens 2523
TS COEF .ttt st st e b e s e e e nbee e sbee e sabeenareenn 2525
LIRS T 1 SRS 2527
TS O A ST e e bbbt s be b b e e sae e b e e b e e nreenree e 2529
TS SMOOTH oottt e et e et e seese e ee e ess st ee st ee s eeee e eseeeeeeseseeeenaes 2531
B 1L 2RO OO RN 2534
B IR O R 2549
B 1LY/ S TR ORI 2551
LIV 2 O L 2560
B IRV 2SO RO OPP PSR 2565
Chapter 23

ROUTINES: U oo aas 2570
LA L] = 2571
L1\ N SRR P 2573
UINT ARR e e e e e e s e e e e e e e s e e e e e e e aesesesesesaassssssssasasasasberares 2575
ULBAINDGEN ...ttt ettt e st aree e s e e sar e e e e e e s eanbaaeeee s e s nabreeesanns 2577
LI AN T = 2579
ULONGBAARR ...ttt ettt e ettt e e e e st ree e s e e s s e e e e e s e s sabaaeeeesesannbreeesenns 2581
L N o 2583
L0 I L SRS 2585
L N 7 2587
L 1\ S 2589
UNSHARP _MASK ettt tee sttt et e s naeene e e snreesnne e s neennne s 2591
USERSY M ittt ettt r b e e e e e s b e e e e e e e e aabaae e e e e e s nbreeeeaees 2595
Chapter 24

ROULINES: Ve aaa s 2599
VALUE _LOCATE .ottt be st s s nnaesneeen 2600
R 7N) L 2602
VECTOR _FIELD oottt s st s nnaesnee e 2604
R = 2606
VELOVECT ittt e e e et e e e e e bar e e e e e e s enabaeeeeeeesnabaeeeeeens 2608
VERT _T3D oottt ettt e et s et e e st e st e s ae e enseeeteesnseeenteeenneeenneens 2611

IDL Reference Guide Contents

26

AV L OO PP 2613
AV (O L] 2616
VOXEL_PROUJ ...ttt sttt st s be e b st st be e nnr e e 2618
Chapter 25

ROUTINES: W et e e e e e e ra e e e raaes 2624
AT AN N PSR 2625
WARP _TRI ettt ettt b e et st e e sab e s be e nare e s 2626
WATERSHED ..ottt ettt e s s e e s s s e sabbe e e e e s s s sbabee e e e s e e sannrens 2629
AT =YL L= A I o (X A 2633
RV VI I I U 2634
WE _DRAW ettt sttt e be e sb e e be e b e st sab e s be e nnre e e 2635
WHERE ...ttt bbb e s e s e a e b e e e e eeeeeeseeenas 2639
WHILE...DO .ottt ettt e e e e e e e s e saabr e e e e e e s enbabeeeeeesesnnnrees 2643
WIDGET _ACTIVEX ettt et ee sttt s e e nnre e s 2644
WIDGET _BASE ..ottt sttt ettt s be e nnre e e 2651
WIDGET _BUTTON ..ottt et e e se e e s e e ese e st sneeesneennree e 2679
WIDGET_COMBOBOX ..ottt ittt sttt s sies e stee e sbee s st snsesssessssessnes 2695
WIDGET_CONTROL ...ooiiiiiccee ettt et e e e e et e e e e e st snseesaeennree e 2706
WIDGET_DISPLAY CONTEXTMENU ..ottt e 2758
WIDGET _DRAW ..ottt s et e st e e et e e st e e ae e et e e st e snte e enneennreeenes 2760
WIDGET_DROPLIST .ottt sttt sttt et st sbe e e 2782
WIDGET _EVENT .ottt e ettt e e et snte e s ae e nnre e s 2792
WIDGET _INFO ettt sttt sttt s be e b s 2796
WIDGET _LABEL ...ttt et e e e 2827
WIDGET _LIST ittt st s sb e ettt sab e s be e nnre e e 2834
WIDGET_PROPERTY SHEEToviiiiieiecste et rtes st etee st stee e ste e s ssneesnee e 2844
WIDGET_SLIDER ..ottt sttt st st sttt s ae e st 2863
WIDGET _TAB ettt st e e sae e et e e te e e snteesnteeeneennreeenes 2873
WIDGET _TABLE ...ttt e e b 2883
WIDGET _TEXT eoioii e see e see st e sttt e st e st st e st e s e e ae e e ste e e seeensae e snteesneeeenneennreeenns 2905
WIDGET _TREE ..ottt s e b 2918
WIDGET_TREE MOVE ..ottt s 2934
LVAT 1 L 2937
WRITE _BMP ettt sttt sttt sttt te e sbeeen 2941
L AT I = 1 2944

Contents IDL Reference Guide

WRITE _IMAGE ..ottt e s st st nba e ree e 2948
WRITE _JPEG ...ttt ee ettt e st te et s e st e s ae e snseeeteesnseeenseeenneennneens 2950
WRITE_JPEGZ2000ooiiiiiiiiiiiesiiesieeeieeesiieesiee s st esiee s stesssbessssessssessnsesssessnsesssssssnsenens 2953
WRITE _NRIF ettt e s e st e e e sbae e e s sreeeeans 2955
WIRITE _PICT ettt be e st e s te e s be e sab e e e nbaesbeeens 2957
WRITE _PNG ..ottt ettt st e e st s e e st e e s teesbeeenteeenneennneens 2959
WRITE _PPM ettt bbb st b e eb e e nbaesreeen 2962
WRITE_SPR ...ttt s ae e s ae e e rte e s beeenreeesneeeneeens 2964
WRITE_SREF ...ttt s e b st s te e s b e b e e e nbaesbeeen 2966
WRITE _SYLK ettt e et st e e e rte e s teeenr e e e nneeenaeens 2968
WRITE _TIFF ettt e be e st s te e b e e b e e e nbeeebeeen 2970
WRITE WAV ettt st ee e st e e s s be e e e ebae e e s sreeenans 2981
WRITE _WANVE ..ttt s st st b b e e nbeesree e 2982
KA I = S 2984
LA USRI 2986
WSHOW ettt e et e e e e et e e e s ebee e e ebeeeesnbeeeeebeeeassreeanans 2988
LA I N RSN 2990
R AT A 2 = 01U] 7= 2995
Chapter 26

ROUTINES: X oottt e e e e e e e e e e e e e et as 2996
D=1 =] U SRTOPRPPIN 2997
XDISPLAYFILE oottt ettt e s e ate e e s e ear e e s et ee e e nees 2999
D D) USSP 3002
D O\ IR P 3006
XINTERANIMATE .ottt ettt e e et e e et e e e e rane e s e nntee e enees 3008
D I AN B G USSP 3016
XMANAGER ..ot e e e e e e et ee e e nees 3028
XIMING TMPL ettt e sa e st e e s te e s ate e steesnteeenteeenneeaneeens 3036
D21 1 PSR 3038
KOBIVIEW ..ttt ettt et e e e et ee e et e e e e et e e e s eabe e e e eeaneeeesnteeeenees 3040
XOBIVIEW _ROTATE oottt st ne e 3050
XOBIVIEW_WRITE _IMAGE ..ottt st st nree e 3052
D N I I I OSSR 3054
D o O | I USRS 3062
D o IO B I I USSP 3063

IDL Reference Guide Contents

28

XREGISTERED ...ttt ettt ettt ban e e e e s e eababeeeee s 3071
D 5 (] 3073
DS O T I = PP RTRPRTR 3091
DS U N X 3094
D QY7 (= 1 RO 3096
DV I 1Y 3098
XVOLUME _ROTATE oottt sttt st sttt na e sne e e nneas 3108
XVOLUME WRITE IMAGE ..ottt tee st stee st 3111
D O | I 1 TSRO 3113
Chapter 27

ROUTINES: Z et e e e e e raaas 3119
4@ Y 3120
ZOOM 24 ...ttt et b e e ra e nnes 3124

Part II: Object Class and Method Reference

Chapter 28
IDL ODbject ClasS OVEIVIEWuuvuuuiiiiiiiieeeeeeeeeeeeeeeieiiiians e eee e 3129
USING the ClasS REFEIENCEooeiieieierieeeee ettt e eneas 3130
(@ o L= ot (0] 0= i =S RS 3133
REGISLEred PrOPEITIESocvieeeeieieeie ettt ettt sttt et ste s e eeneeseeeneas 3137
Undocumented ODJECt CIASSEScivvvuiieerierieiiei ettt s 3141
Chapter 29
ANalysis ObJect ClaSSEeScccciviiiiiiiiiiiiie e 3143
0= 1 | 3144
IDLANROIGIOUP ..vviiiiiiiiieeiitesee e siiee st e sttt sbee e e st s s ssee s sbe e s sbaeebee s sabessasessseesnsessaes 3173
Chapter 30
File Format Object ClasSSeScccciciiiiiiiiiiciciceeeeeeerer e 3191
I T S 3192
IDLffDICOM Object DICOM Conformance SUMMENYcccceevveereerreesesnveeneens 3194
IDLFEDXE ettt ettt sttt ettt n e e enas 3228
IDLFFIPEG2000ocvieeieisieresieeseesesieseessasessesessesesessessssessssesessesessssessssensssessssessnsesesseses 3258
Overview of IDL and JPEG2000ccccereerirereenereenieeresiesesseessesessesessesesesseseesens 3260
I = o TS 3296
IDLFFMIPEG2000c.coviireeierieeseeiesieeeesiesesseesesesessesesssessesessssesessesessensssesessesensesessnss 3311

Contents IDL Reference Guide

IDLFTIMIESID ottt st 3367
T S == S 3380
Overview of ESRI Shapefil€Socoviieiiiiceece e 3382
IDLFEXMLDOM ClIBSSES ...viiiieiieiiecieseeeteeeesee e s stessaesaessaaestesssesstessseesnesnsesssasssenes 3420
IDLFEXMLDOMAL ..ottt sttt st 3421
IDLIfXMLDOMOCDATASECHONcoiieiiecieesieeseesteestee e e sessaeesteesreestessreesreessessneessenss 3430
IDLfEXMLDOMCHhAraCterDalaccceeveuereriiriirieieriesieseesee et 3434
IDLFEXMLDOMCOMMENEc.eiiiiieieieieesieeeeeee e siesiee e sie e eese e ee e eseeneesseseesneeseeseesees 3447
IDLFEXMLDOMDOCUMENLcveienieiieiisiesieissesiesseeeesiestesee s ssesse st ssessesseseesesneses 3451
IDLFfXMLDOMDOCUMENTFIAgMENTcocevecieiie ettt e e s e 3489
IDLFFXMLDOMDOCUMENTTYPE .uveeieeiieeieeieesieeseseeeesiessesstesseeeseesesssesseesssnensnsnnesns 3494
IDLIEXMLDOMEIEMENTcoieececeeer ettt ee e sttt e e ne e 3501
IDLFFXMLDOMERNLLY ..ocviiviieieiesiesiesieeeesiesie ettt 3514
IDLIfXMLDOMENLIYREFEIENCE ...ocvieieciecie ettt see e e see s e s 3521
IDLFEXMLDOMNAMEANOGEMEDovneiiriirieriiieicriesiesee e 3525
IDLIFXMLDOMNOUEooeieieieiiecieeceree ettt saae et e e s reesae e reesraene e e 3536
IDLFFXMLDOMNOGEIErGONcviiviienieieicrie sttt 3564
IDLFFXMLDOMNOUELISEveeieiiecieeie e etee st e e stee e steesae e e s re e ste s s reesae e reesreeee e 3571
IDLFFXMLDOMNOLEIION ..ottt s 3577
IDLFfXMLDOMProcessingINStIUCLIONcccveveeieenienseeseeseeseeseesieesee e esseesneenseens 3583
IDLFFXMLDOMTEXL .oouviiiiiiiisierieee sttt st 3590
IDLIFXMLDOMTIEEWEAIKES ..ottt te et as st e sn e s sneeens 3596
IDLFEXIMLSAX ittt st bbbttt sttt se s 3618
Chapter 31
ITOOIS ODJECt ClaSSES ...cciiiiiiiiiiiiiiiree e 3663
]I (g2 7= o 3664
[IDLItCOMMANASELeveiviiiiieieeste sttt s st 3677
1] Y (O] ag] 7] 1= o | S 3683
[DLITCONTAINET ...eviiiuieieeiiriesie ettt st sttt b st se e 3714
T I - 3728
IDLItD@ACONTAINEScueivireiieieesiesie sttt be sttt se et b s sb e b e ens 3750
T IR (B T (@] o == (o] o [S 3763
IDLItDIFECEWINAOW ..ottt ettt et ese e snesne e seeseeens 3778
TR =SS o] oo S 3802
T I 1)Y= T o1 = o 3821

IDL Reference Guide Contents

30

IDLitMani pulatorCONtAINEScccevieiiiieeieie ettt s e e e b 3854
IDLitMani pUlaLOrMaNA0ELcceeerieieieeeneee e e e seeeeesteeee e te e sseeseesaesne e e e seesseeneens 3875
IDLItManipUlatorViSUalccveeeviieieiieieie sttt sn e 3884
T (@] 61 [o) o R 3893
[DLITPArAMELEroiieiiieieieeiiriee ettt ettt nb e se e 3915
T == (= R 3938
[IDLITREAOEN ...ttt ettt se b 3954
1 e R 3967
[IDLITTOOIDESE ..ottt e 4032
0 L RS SR 4034
IDLITVISUAITZBIION ..o.viviieiieiieieieee ettt st s 4055
IDLITWINAOW ..eveeiieic ettt ettt e s et e st ste s s beenteeteesneenteeneesnnennrens 4124
T) = TSSOSO 4173
Chapter 32

Graphics ODJECt ClASSES ...uuciiiiiiiiiieieieeieeeeeeiite e 4187
T T I | =SSR 4189
T T I = U = R SPRR 4225
10 o (O 7' = o R 4261
10 o [@l o= TR 4295
10 o (@01 L 4317
T I 1 (= =T R 4359
IDLGIFONE e eee e eee e s e e eseseeseeeeeeseseseseeeeeees e sesseeeseseesnesenneenennes 4367
T o g =TT R 4377
T T I I =o =g T SRS 4428
0 o o | R 4450
171 1Y, oo = SR 4469
IDLOIMPEG ...ttt bbbttt eb e b 4494
T T = = 1 = SRS 4511
T o o= <o SRR 4533
10T I o SRS 4544
T o o Yoo o PSSP 4575
IDLGIPOIYIING oottt st sa e s resreereetenreas 4618
IDLGIPHINLEN oo eee e eee e e e s eeeeseesseeseseseseeeeee e eeeeses e esesnesneseesnesnennes 4652
IDLGIRON ..ottt st sb e 4683
T e [@] €01 o 4704

Contents IDL Reference Guide

IDLQISCENE ..ottt ettt st sb e e st s e e e be e sabe s s te e st e e enbe e e saennbeeens 4723
T T I 2 = o L= 4736
T e [=0 L= =Y £ ot S 4755
T I| £S =0 L= (@] 011 7o 1 4766
T T 20U oL S 4777
T I| 2Y] 1 4] 4825
T e T =S | (o S 4837
10 I [= ST 4848
IDLGIVIBIW ettt sttt sttt st b et 4874
T I| V AT =YY | {0 U o 4893
T Ie Yo 11 0 1= S 4905
IDLGIVRML ettt sttt st e e st e e st e e s st e e e sbae e e snbeeeessneeeeans 4938
0 I YT 0T [0SR 4960
Chapter 33
Network ODJeCt ClaSSEScciiiiiiiiiiiiiiiiiir e 5031
ADOUL NEIWOIK ODJECLSeveeiieiieiee et neenes 5032
IDLNEIOGCWECS ...ttt st sttt st ne s 5033
Making OGC WCS Server REQUESEScccveverierieieiesieeeenee e eee e see e eeneeseeas 5038
Using Callbacks with the IDLNetOGCWCS ObJECtccvevvevrviieie e 5041
HTTP Authentication, Security and ENCOdingccccovvievervinnieesienseeneeseeniens 5043
IDLNEIOGCWMS ...ttt sttt sttt 5112
Web Map Service (WMS) OVEIVIEWc.eeierieriee e seesiesiee e sree e e see e 5115
Using Callbacks with the IDLNetOGCWMS ObjECtccocvveveeveiiecieceeeeee 5119
HTTP Authentication, Security and ENCOdiNgcccoovvieverninsieeveeseeneeseenieens 5121
IDLNEIURL ..ottt sttt sttt 5184
Overview of the IDLNEtURL ODJECEccceevieiiciiese e esee et 5187
Using Callbacks with the IDLNetURL ObJECtccccvveeveiieieeceee e 5192
HTTP and FTP ReSPONSE COUESvviciivireiicie e esee et eie et see st s e sneesnee s 5194
Example of Using Widgets with IDLNEtURLccccovveeveveiieceee e, 5204
Chapter 34
Miscellaneous Object ClaSSEeSuuvueiiiiiiiiii e 5245
5 I o =T = ST SPRST 5246
IDL_IDLBIIOGE cereeeeeeeeeeseeeeeeeeeeeeeee e eeeee s s e e seese e ssesseeneeseeeesee e eenese e e 5258
IDL_SAVEFIE .ottt ettt 5288
IDLCOMACTIVEX ..ottt ettt sttt ee sttt e se e e saeeneeneesaesseeneeseeseeens 5311

IDL Reference Guide Contents

32

T oo g1 D TR (o TR 5314
T T V7= (@ o= R 5321
T]IS YA Y o T (o g {0 TR 5330

Overview of Multi-Monitor SUPPOITcocveiiiieeere e 5332
TRECKBAI ...t e et 5348

Part Ill: Appendices

Appendix A

IDL Direct GraphiCs DEVICESuuuuuiiiiiiiiiieeieeeeeeeeeeieii e 5363
SUPPOIE DEVICESeeeeeieeee sttt sttt e e e seeeeeeneesbeeaeeneeseeseeeneenes 5364
Devices With SCAlabl€ PIXEISccveieiiieeeee et 5366
Keywords Accepted by the IDL DEVICESovveeeierieeeesenesiee et 5367
WiINAOW SYSIEMS ...ttt st e b st s ae e e snenneeneens 5409
Printing GraphiCs OULPUL FIlESveoiiieieece ettt et e s 5412
THE CGM DEVICE ...oueeteeeee ettt sttt ettt s aa et b be e seesresrn s 5415
TREHP-GL DEVICE ...oeteeee ettt ettt ettt n e st snee st e ne e snne e 5417
The Metafile Display DEVICEcc.ccviieieeieie ettt s 5419
The NUIl DISplay DEVICEccceieeiecee et ettt se e s et se e snee e 5421
THEPCL DEVICE ..ottt sttt st e sa et eaa et st et e e e sresnn s 5422
B (N e 1 1= BTV o= 5424
The POSESCIIPE DEVICE ...ttt ettt st saesre s 5425
The RegiS TEMINGl DEVICEoovueeiieseecee et ettt st e 5438
The TEKLrONIX DEVICE ...cueeeeciece ettt ettt saesaesre s 5439
The Microsoft WIiNAOWS DEVICEcceveerieriie e see e te e ste s e tee s seesneens 5441
The X WINAOWS DEVICEccueieiieeeiiice ettt sttt snn s 5442
THE Z-BUFfEI DEVICE ..eveeee ettt sttt ettt s st ne e snee e 5452
Appendix B

GraphiCs KEYWOIASovvviiieiiiiiiieeieeeeeeee e et e s s s e e e e e e e e e e eeeeanennes 5463
Appendix C

Thread Pool KEYWOTrdScccooeiiveiiiieeeeeir e 5485
Appendix D

System Variables ... 5487
What Are System VariableS?ociiiiieieie et 5488
Constant SysteEM VariableScccvccveiieieeie et 5490
Error Handling System VariableSccooeeveeiiiicee et 5493

Contents IDL Reference Guide

IDL Environment System VariableScooeeveviiicece et 5499
Graphics System Variablesc.cooiieeee e 5510
Appendix E

IDL System PreferenCes ... 5529
About IDL System PreferenCeScovvviiiiee et 5530
General User Environment PreferencCescoocvieeeeeeene v 5539
Directory and Search Path Preferencescccovcvvivieeie e 5543
ICPU SEttingS PrEfEIENCESuviiie ettt see e ste e s e e re e s re e e 5547
General GraphiCs PrefErENCESovviiieee ettt 5549
Windows GraphiCS PrefErenCES ..ot 5550
X Window System GraphiCs PreferenCeSccvvveieeeviie et 5553
Windows RUNEIME PreferEnCESoov i 5556
Support for Obsolete Preference Mechanismsccccoceveeveveiecccceesc e, 5558
Appendix F

Special Characterso.oveeiiiiiiiciie e 5561
Appendix G

RESEIVEA WOTUS ..ot s 5567
Appendix H

F O S o 5569
Overview oOf FONSTN IDL ..o 5570
(011001 T o =1 o | A Y/ o= 5571
Fontsin IDL Direct vS. ObjeCt GraphiCsccceeieieieiererieseeeeee e e 5573
About HErshey VECLOr FONLSocveiiiicieeee ettt 5574
ADOUL TIUETYPE FONLS ...eeieeieieesie ettt e e re et esee e nes 5576
ADOUL DEVICE FONLS ...ttt sttt st 5580
Controlling Size, Position and FONt USEcccveiiciieiie et eee e e 5587
Embedded Formatting COmMmMANGScccceiiiiiieiieieseeieee st 5589
Formatting Command EXAMPIEScceceeiiriiiiiee et et see e e s 5593
TrueTYPE FONt SAMPIESveeeecieieee ettt st sre s e teaesne s 5599
Hershey Vector FONt SAMPIEScooev et 5604
Appendix |

ODbSOolete FRAUIESccceieeeeeeeee et a e e e e 5621
What Are ODSOIELE FEAIUINES?oeeiieeieeeee sttt 5622
Features Obsoleted iN IDL 7.0 ..o 5623

IDL Reference Guide Contents

34

Features ObSOIELEA IN IDL 6.4ccveeeeeereeeie ettt ettt et e e e 5629
Features ObSOIEted iN TDL 6.3oieeieieeieecee ettt et e eaeeeetee e eae e eareeereeenree e 5630
Features ODSOIELEA IN IDL 6.2cceeveieiieciecreecreete ettt ettt e 5631
Features ObSOIEted iN TDL 6.1c.eeeeueieciieciee ettt et ee e tee e eaaeeeaaeeereeenreeeas 5633
Features ObSOIEted iN IDL 6.0cceevvieeiieciecieecteete ettt ettt e 5635
Features ObSOIEted iN TDL 5.6cc.eieiieieciee ettt etee e te et eere e eas 5637
Features ObSOIEted IN IDL 5.5cciiiicecce ettt ettt 5638
Features ObSOIEted iNTDL 5.4ooeeeeeeee ettt et e as 5640
Features ObSOIEted IN IDL 5.3cciiiicieeee ettt ettt e e e 5643
SDF Routines Obsoleted iNIDL 5.3ooeiiieeee ettt e 5647
Features ObSOIELEd IN IDL 5.2occuieieieieece ettt ettt st 5648
Features ObSOIEted iN TDL 5.1ccuvieieieeeecee ettt ettt et et eee e eas 5649
Features ObSOIEted iN IDL 5.0occiiiiiieece ettt et st 5650
Features Obsoleted in IDL 4.0 Or Barli@rooveieieeeeeecee et 5652
Obsolete SystemM VariableSccvoeeceeiiiicece e 5659
Obsolete GraphiCS DEVICEScocveiiieieeiecieeccie et ee e ee s ste s s re e e s ae e saaesreesnee e 5661
T Yo 1= PR 5663

Contents IDL Reference Guide

Chapter 1
Overview of IDL Syntax

Thisreference is acomplete listing of al built-in IDL functions, procedures,
statements, executive commands, and objects, collectively referred to as
“commands.” Every IDL language element that can be used either at the command
line or in aprogram is listed alphabetically. A description of each routine followsits
name.

Note
Descriptions of Scientific Data Formats routines (CDF_*, EOS *, HDF_*, and
NCDF_* routines) can be found in the Scientific Data Formats book.

Routines written in the IDL language are noted as such, and the location of the . pro
file within the IDL distribution is specified. You may wish to inspect the IDL source
code for some of these routines to gain further insight into their inner workings.

Conventions used in this reference guide are described below.

IDL Reference Guide 35

36

IDL Syntax

The following table lists the elements used in IDL syntax listings:

IDL Syntax

Chapter 1: Overview of IDL Syntax

Element

Description

[] (Square brackets)

Indicates that the contents are optional. Do not include the
bracketsin your call.

[] (Italicized square

Indicates that the square brackets are part of the statement

brackets) (used to define an array).

Argument Arguments are shown in italics, and must be specified in
the order listed.

KEYWORD Keywords are all caps, and can be specified in any order.
For functions, al arguments and keywords must be
contained within parentheses.

/KEYWORD Indicates a boolean keyword.

Italics Indicates arguments, expressions, or statements for which
you must provide values.

{} (Braces) * Indicates that you must choose one of the values they

contain

* Enclosesalist of possible values, separated by vertical
lines(])

« Encloses useful information about a keyword

» Definesan IDL structure (thisisthe only casein which
the braces are included in the call).

| (Vertical lines) Separates multiple values or keywords.

[, Valuey, ..., Value]

Indicates that any number of values can be specified.

[, Valuey, ..., Valueg]

I ndicates the maximum number of values that can be
specified.

Table 1-1: Elements of IDL Syntax

IDL Reference Guide

Chapter 1: Overview of IDL Syntax 37

Elements of Syntax

Square Brackets ([])

Content between square bracketsis optional. Pay close attention to the
grouping of square brackets. Consider the following examples:

ROUTINE_NAME, Valuel [, Value?] [, Value3]: You must include Valuel.
You do not have to include Value2 or Value3. Value2 and Value3 can be
specified independently.

ROUTINE_NAME, Valuel [, Value2, Value3]: You must include Valuel.
You do not have to include Value2 or Value3, but you must include both
Value2 and Values, or neither.

ROUTINE_NAME [, Valuel [, Value2]]: You can specify Valuel without
specifying Value2, but if you specify Value2, you must also specify Valuel.

Do not include square brackets in your statement unless the brackets are
italicized. Consider the following syntax:

Result = KRIG2D(Z [, X, Y] [, BOUNDS=[xmin, ymin, xmax, ymax]])
An example of avalid statement is:
R=KRIG2D(Z, X, Y, BOUNDS=[0,0,1,1])

Note that when [, Valuey, ..., Value,] islisted, you can specify any number of
arguments. When an explicit number islisted, asin [, Valuey, ... , Valueg], you
can specify only as many arguments as are listed.

Braces ({})

For certain keywords, alist of the possible valuesis provided. Thislistis
enclosed in braces, and the choices are separated by avertical line (|). Do not
include the braces in your statement. For example, consider the following
syntax:

READ_JPEG [, TRUE={1|2|3}]

In this example, you must choose either 1, 2, or 3. An example of avalid
statement is:

READ_JPEG, TRUE=1

Braces are used to enclose the alowable range for a keyword value. Unless
otherwise noted, ranges provided are inclusive. Consider the following syntax:

Result = CVTTOBM(Array [, THRESHOL D=value{ 0 to 255}])

IDL Reference Guide IDL Syntax

38

Italics

Chapter 1: Overview of IDL Syntax

An example of avalid statement is:
Result = CVTTOBM(A, THRESHOLD=150)

Braces are also used to provide useful information about a keyword. For
example:

[, LABEL=n{label every nth gridline}]
Do not include the braces or their content in your statement.

Certain keywords are prefaced by X, Y, or Z. Braces are used for these
keywords to indicate that you must choose one of the values it contains. For
example, [{X | Y}RANGE=array] indicates that you can specify either
XRANGE=array or YRANGE=array.

Notethat in IDL, braces are used to define structures. When defining a
structure, you do want to include the bracesin your statement.

Italicized words are arguments, expressions, or statements for which you must
provide values. The value you provide can be anumerical value, such as 10, an
expression, such as DIST(100), or anamed variable. For keywords that expect
astring value, the syntax islisted as KEY WORD=string. The value you
provide can be a string, such as'Hello' (enclosed in single quotation marks), or
avariable that holds a string value.

Theitalicized values that must be provided for keywords are listed in the most
helpful terms possible. For example, [, XSIZE=pixel 5] indicates that the X SIZE
keyword expects avaluein pixels, while

[, ORIENTATION=ccw_degrees from horiz] indicates that you must provide
avalue in degrees, measured counter-clockwise from horizontal.

Procedures

IDL procedures use the following general syntax:
PROCEDURE_NAME, Argument [, Optional_Argument]

where PROCEDURE_NAME is the name of the procedure, Argument is arequired
parameter, and Optional_Argument is an optional parameter to the procedure.

IDL Syntax

IDL Reference Guide

Chapter 1: Overview of IDL Syntax 39

Functions

IDL functions use the following general syntax:
Result = FUNCTION_NAME(Argument [, Optional_Argument])

where Result is the returned value of the function, FUNCTION_NAME isthe name
of the function, Argument is arequired parameter, and Optional_Argument is an
optiona parameter. Note that all arguments and keyword arguments to functions
should be supplied within the parentheses that follow the function’s name.

Functions do not always have to be used in assignment statements (i.e.,
A=SIN(10.2)), they can beused just like any other IDL expression. For example,
you could print the result of sTN(10.2) by entering the command:

PRINT, SIN(10.2)

Arguments

The“Arguments’ section describes each valid argument to the routine. Note that
these arguments are positional parameters that must be supplied in the order indicated
by the routine’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
(“output arguments”) are described as accepting “named variables’. A named
variableis simply avalid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
EXPression causes an error.

Keywords

The“Keywords’ section describes each valid keyword argument to the routine. Note
that keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL routines by including the keyword name
followed by an equal sign (“=") and the value to which the keyword should be set.
The value can be avalue, an expression, or a named variable (anamed variableis
simply avalid IDL variable name).

IDL Reference Guide IDL Syntax

40

IDL Syntax

Note

Chapter 1: Overview of IDL Syntax

If you set a keyword equal to an undefined named variable, IDL will quietly ignore
the value.

For example, to produce a plot with diamond-shaped plotting symbols, the PSYM
keyword should be set to 4 as follows:

PLOT, FINDGEN(10), PSYM=4

Note the following when specifying keywords:

Certain keywords are boolean, meaning they can be set to either 0 or 1. These
keywords are switches used to turn an option on and off. Usually, setting such
keywords equal to 1 causes the option to be turned on. Explicitly setting the
keyword to O (or not including the keyword) turns the option off. In the syntax
listingsin this reference, al keywords that are preceded by a dash can be set
by prefacing them by the slash. For example, SURFACE, DIST(10), /SKIRT is
ashortcut for SURFACE, DIST(10), SKIRT=1. To turn the option back off,
you must set the keyword equal to 0, asin SURFACE, DIST(10), SKIRT=0.

In rare cases, akeyword's default valueis 1. In these cases, the syntax islisted
as KEYWORD=0, asin SLIDE_IMAGE [, Image] [CONGRID=0]. In this
example, CONGRID is set to 1 by default. If you specify CONGRID=0, you
can turn it back on by specifying either /CONGRID or CONGRID=1.

Some keywords are used to obtain values that can be used upon return from the
function or procedure. These keywords are listed as KEY WORD=variable.
Any valid variable name can be used for these keywords, and the variable does
not need to be defined first. Note, however, that when akeyword calls for a
named variable, only a named variable can be used—sending an expression
causes an error.

For example, the WIDGET_CONTROL procedure can return the user values
of widgets in anamed variable using the GET_UVALUE keyword. To return
the user value for awidget ID (contained in the variable mywidget) in the
variable userval, you would use the command:

WIDGET_CONTROL, mywidget, GET_UVALUE = userval

Upon return from the procedure, userval contains the user value. Note that
userval did not have to be defined before the call to WIDGET_CONTROL.

IDL Reference Guide

Chapter 1: Overview of IDL Syntax 41

» Some routines have keywords that are mutually exclusive, meaning only one
of the keywords can be present in a given statement. These keywords are
grouped together, and separated by a vertical line. For example, consider the
following syntax:

PLOT, [X,] Y[, /DATA |, /DEVICE |, INORMAL]

In this example, you can choose either DATA, DEVICE, or NORMAL, but not
more than one. An example of avalid statement is:

PLOT, SIN(A), /DEVICE

» Keywords can be abbreviated to their shortest unique length. For example, the
XSTYLE keyword can be abbreviated to X ST because there are no other
keywordsin IDL that begin with XST. You cannot shorten XSTYLE to XS,
however, because there are other keywords that begin with XS, such as
XSIZE.

IDL Reference Guide IDL Syntax

42 Chapter 1: Overview of IDL Syntax

Running the Example Code

Some of the code examples used in this manual are part of the IDL distribution.
Referenced files are located in the examples/doc subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described. See “!PATH”
(Appendix D, IDL Reference Guide) for information on IDL’s path.

Running the Example Code IDL Reference Guide

Part |I: IDL Command
Reference

Chapter 2

Dot Commands

This section describes the following commands:

COMPILE ..o 46
CONTINUE . eveeeeeeea 47
=] 48
FULL_RESET SESSION 49
GO 50
OUT oo 51
RESET SESSIONoovoeiaannn.. 52

IDL Reference Guide

RETURN ..ot 55
RNEW & oo 56
RUN - 58
SKIP o 60
STEP ot 62
STEPOVER ..o ooeiieeee e, 63
TRACE oot 64

45

46

Chapter 2: Dot Commands

.COMPILE

The .COMPILE command compiles and saves procedures and programs in the same
manner as .RUN. If one or more filenames are specified, the procedures and functions
contained therein are compiled but not executed. If you enter this command at the
Command Line of the workbench and the files are not yet open, IDL opens the files
within Editor windows and compiles the procedures and functions contained therein.

See RESOLVE_ROUTINE for away to invoke the same operation from within an
IDL routine, and RESOLVE_ALL for away to automatically compile all user-written
or library functions called by al currently-compiled routines.

If the -f flag is specified, File is compiled from the source stored temporarily in
TempFile rather than on disk in File itself. This allows you to make changes to File
(inan IDL editor window, for example), store the modified source into the temporary
file (the IDL Workbench doesit automatically), compile, and test the changes without
overwriting the original code stored in File.

On UNIX systems, .COMPILE will interpret the $ (dollar sign) character asa
reference to an environment variable, and expand the variable asis normal for the
operating system. To use aliteral dollar signin afile name, escape the $ character
with a backwards slash character (\$).

Note
.COMPILE is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.COMPILE [Filey, ..., File]
.COMPILE -f File TempFile

See Also

.COMPILE

.RNEW, .RUN

IDL Reference Guide

Chapter 2: Dot Commands 47

.CONTINUE

The .CONTINUE command continues execution of a program that has stopped
because of an error, a stop statement, or a keyboard interrupt. IDL saves the location
of the beginning of the last statement executed before an error. If it is possible to
correct the error condition in the interactive mode, the offending statement can be re-
executed by entering .CONTINUE. After STOP statements, .CONTINUE continues
execution at the next statement. The .CONTINUE command can be abbreviated; for
example, .C. Execution of a program interrupted by typing Ctrl+C also can be
resumed at the point of interruption with the .CONTINUE command.

Note
.CONTINUE is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

.CONTINUE

IDL Reference Guide .CONTINUE

48 Chapter 2: Dot Commands
EDIT

The .EDIT command opens filesin IDL Editor windows when called from the

Command Line of the workbench. Note that filenames are separated by spaces, not
commas.

Note

.EDIT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

EDIT File, [File, ... File,]

.EDIT IDL Reference Guide

Chapter 2: Dot Commands 49

FULL_RESET SESSION

The.FULL_RESET_SESSION command does everything .RESET_SESSION does,
plus the following:

Note

Removes all system routinesinstalled viaLINKIMAGE or aDLM.
Removes all structure definitionsinstalled viaaDLM.

Removes all message blocks added by DLMs or by the DEFINE_MSGBLK or
DEFINE_MSGBLK_FROM_FILE routines.

Unloads dl sharable libraries loaded into IDL via CALL_EXTERNAL,
LINKIMAGE, or aDLM.

Re-initializes all DLMsto their unloaded initial state.

FULL_RESET_SESSION is an executive command. Executive commands can
only be used at the IDL command prompt, not in programs.

Syntax

FULL_RESET_SESSION

IDL Reference Guide .FULL_RESET_SESSION

50

Chapter 2: Dot Commands

.GO

.GO

The .GO command starts execution at the beginning of a previously-compiled main
program.

Note
.GO is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.GO

IDL Reference Guide

Chapter 2: Dot Commands 51

OUT

The .OUT command continues executing statements in the current program until it
returns.

Note
.OUT is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

OuUT

IDL Reference Guide .OUT

52

Chapter 2: Dot Commands

.RESET_SESSION

The .RESET_SESSION command resets much of the state of an IDL session without
requiring the user to exit and restart the IDL session. After the reset is complete, the
startup file, if one is specified, isrun.

The command performs the following actions in the reset:
e Returns current execution point to SMAINS$ (RETALL)
e Clearsthe path cache (see PATH_CACHE for details)

e Closesall files except the standard 3 units, the JOURNAL file (if any), and any
filesin use by graphics drivers

» Destroys or removes the following:

All local variablesin SMAINS$
All widgets (exit handlers are not called)

All windows and pixmaps for the current window system graphics device
are closed (including all common blocks)

All cursors created with REGISTER_CURSOR
All handles
All user-defined system variables

All pointer and object reference heap variables (object destructors are not
called)

All user-defined structure definitions
All user-defined object definitions

All compiled user functions and procedures, including the main program
(BMAINS), if any

Any memory segments created by SHMMAP

* Disables SHMDEBUG mode

.RESET_SESSION

IDL Reference Guide

Chapter 2: Dot Commands 53

* Resetsall system variables, including the graphics variables (|l ORDER, |MAP,
IMOUSE, !P, X, 1Y, 1Z). The following variables get their initial values from
IDL preferences:

Note
For more information on the preferences associated with these system
variables, see “IDL System Preferences’ on page 5529.

ICPU IDIR

ITEDIT_INPUT IERROR_STATE.MSG_PREFIX
IEXCEPT IHELP_PATH

IMORE IPATH

IPROMPT IQUIET

* Resetsthe current direct-graphics device, which returns to the startup default,
based on the IDL_DEVICE preference. Device-specific values are returned to
their defaults.

* Resetsthe status of the path cache (enabled or disabled), based on the
IDL_PATH_CACHE_DISABLE preference.

* Resetsthe state of the IDL profiler module (for more information, see
“PROFILER” on page 1899).

The command does not do the following:

e The saved commands and output log are not erased.

e Graphicsdrivers are not reset to their full uninitialized state. However, all
windows and pixmaps for the current window system device are closed.

e Thefollowing files are not closed:

IDL Reference Guide

Stdin (LUN 0)

Stdout (LUN -1)

Stderr (LUN -2)

Thejournal file ({(JOURNAL) if oneis open

Any filesin use by graphics drivers (e.g., PostScript)

.RESET_SESSION

54

Note

Chapter 2: Dot Commands

Dynamically loaded graphics drivers (LINKIMAGE) are not removed, nor are
any dynamic sharable libraries containing such drivers, even if the samelibrary
was also used for another purpose suchas CALL_EXTERNAL, LINKIMAGE
system routines, or DLMs. Seethe .FULL_RESET SESSION executive
command to unload dynamic libraries.

Message blocks are not removed. Seethe [FULL_RESET_SESSION executive

command to remove message blocks loaded by DLMs or created using the
DEFINE_MSGBLK or DEFINE_MSGBLK_ FROM _FILE routines.

.RESET_SESSION is an executive command. Executive commands can only be
used at the IDL command prompt, not in programs.

Syntax

.RESET_SESSION

Version History

7.0

Breakpoints are no longer cleared.

See Also

FULL_RESET_SESSION

.RESET_SESSION

IDL Reference Guide

Chapter 2: Dot Commands 55

.RETURN

The .RETURN command continues execution of a program until encountering a
RETURN statement. Thisis convenient for debugging programs since it allows the
whole program to run, stopping before returning to the next-higher program level so
you can examine local variables.

Also seethe RETURN command.

Note
.RETURN is an executive command. Executive commands can only be used at the

IDL command prompt, not in programs.

Syntax

.RETURN

IDL Reference Guide .RETURN

56 Chapter 2: Dot Commands

.RNEW

The .RNEW command compiles and saves procedures and functionsin the same
manner as .RUN. In addition, al variables in the main program unit, except thosein
common blocks, are erased. The -T and -L filename switches have the same effect as
with .RUN.

Note
.RNEW is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.RNEW [Filey, ..., File]

To savelisting in afile:

RNEW -L ListFilelisFile [, File,, ..., File]
To display listing on screen:

RNEW -T File, [, File,, ..., File,]

Example
Some statements using the .RUN and .RNEW commands are shown below.
Statement Description

.RUN Accept a program from the
keyboard. Retain the present
variables.

.RUN myfile Compilethefilemyfile.pro.
If it isnot found in the current
directory, try to find it in the
directory search path.

Table 2-1: Examples using .RUN and .RNEW

.RNEW IDL Reference Guide

Chapter 2: Dot Commands

57

Statement

Description

.RUN -T A, B, C

Compilethefilesa.pro,
b.proandc.pro. Listthefiles
on the terminal.

.RNEW -L myfile.lis myfile,

yourfile

Erase dl variables and compile
thefilesmyfile.pro and
yourfile.pro. Produce a
listingonmyfile.lis.

Table 2-1: Examples using .RUN and .RNEW (Continued)

See Also

.COMPILE, .RUN

IDL Reference Guide

.RNEW

58

.RUN

Chapter 2: Dot Commands

The .RUN command compiles procedures, functions, and/or main programsin
memory. Main programs are executed immediately. The command can be followed
by alist of filesto be compiled. Filenames are separated by blanks, tabs, or commas.

If afile specification isincluded in the command, IDL searchesfor thefilefirst in the
current directory, then in the directories specified by the system variable !PATH. See
“Creating SMAINS Programs’ (Chapter 2, Application Programming) for more
information on IDL's search strategy.

If amain program unit is encountered, execution of the program will begin after all
files have been read if there were no errors. The values of al of the variables are
retained. If the fileisn't found, input is accepted from the keyboard until a complete
program unit is entered.

Files containing IDL procedures, programs, and functions are assumed to have the
file extension (suffix) . pro. Files created with the SAVE procedure are assumed to
have the extension . sav. See Chapter 2, “ Creating and Running Programsin IDL”
(Application Programming) for further information.

Note
.RUN is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

.RUN

.RUN [Filey, ..., Filey]

To savelisting in afile:

.RUN -L ListFilelisFile, [, Filey, ..., File,]
To display listing on screen:

.RUN -T File [, Filey, ..., File,]

Note
Subsequent callsto .RUN compile the procedure again.

IDL Reference Guide

Chapter 2: Dot Commands 59

Using .RUN to Make Program Listings

The command arguments -T for terminal listing or -L filename for listing to a named
file can appear after the command name and before the program filenames to produce
anumbered program listing directed to the terminal or to afile.

For instance, to see alisting on the screen as aresult of compiling a procedure
contained in afile named analyze.pro, use the following command:

.RUN -T analyze

To compile the same procedure and save the listing in afile named analyze.lis,
use the following command:

.RUN -L analyze.lis analyze

In listings produced by IDL, the line number of each statement is printed at the | eft
margin. This number isthe same as that printed in IDL error statements, simplifying
location of the statement causing the error.

Note
If the compiled file contains more than one procedure or function, line numbering is
reset to “1” each time the end of a program segment is detected.

Each level of block nesting isindented four spacesto the right of the preceding block
level to improve the legibility of the program’s structure.

See Also

.COMPILE, .RNEW

IDL Reference Guide .RUN

60

SKIP

.SKIP

Chapter 2: Dot Commands

The .SKIP command skips one or more statements. It is useful for moving past a
program statement that caused an error. If the optional argument n is present, it gives
the number of statementsto skip; otherwise, asingle statement is skipped.

Note that .SKIP does not execute or evaluate the code it is skipping. Rather, it
arbitrarily alters the current program counter to the nth physical statement following
the current point. This has implications that may not be obvious on initial
consideration:

e .SKIP does not skip into a called routine.

* .SKIP movesto the nth physical statement following the current program
location. This may not be the statement that execution would have actually
have moved to if you had allowed the program to run normally.

« Arbitrarily moving the program counter in thisway may leave your programin
an unrunnabl e state, depending on resulting state of the local variables and the
statements that the newly positioned program counter attempts to execute next.

In contrast, the .STEP executive command has none of the above drawbacks and can
be used instead in many situations. The advantage of .SKIP over .STEP isthat .SKIP
can move past statements that .STEP cannot, such as:

» Statements with errors that cause execution to halt.
» Infiniteloops, and similar logic errors.

For example, consider the following program segment:

OPENR, 1, 'missing’
READF, 1, xxX,

If the OPENR statement fails because the specified file does not exist, program
execution will halt with the OPENR statement as the current statement. Execution
can not be resumed with the executive command . CONTINUE because it attemptsto
re-execute the offending OPENR statement, causing the same error. The remainder of
the program can be executed by entering .SKIP, which skips over theincorrect OPEN
statement.

Note
.SKIP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

IDL Reference Guide

Chapter 2: Dot Commands 61

Syntax

SKIP[n]

IDL Reference Guide .SKIP

62

STEP

Chapter 2: Dot Commands

The .STEP command executes one or more statements in the current program starting
a the current position, stops, and returns control to the interactive mode. This
command is useful in debugging programs. The optional argument n indicates the
number of statements to execute. If nisomitted, asingle statement is executed.
Note

.STEP is an executive command. Executive commands can only be used at the IDL
command prompt, not in programs.

Syntax

STEP[n] or .S[n]

.STEP IDL Reference Guide

Chapter 2: Dot Commands 63

STEPOVER

The .STEPOVER command executes one or more statementsin the current program
starting at the current position, stops, and returns control to the interactive mode.
Unlike .STEP if .STEPOVER executes a statement that calls another routine, the
called routine runs until it ends before control returns to interactive mode. That is, a
statement calling another routine is treated as a single statement.

The optional argument n indicates the number of statements to execute. If nis
omitted, a single statement (or called routine) is executed.

Note
.STEPOVER is an executive command. Executive commands can only be used at
the IDL command prompt, not in programs.

Syntax

STEPOVER [n] or .SO [n]

IDL Reference Guide .STEPOVER

64 Chapter 2: Dot Commands

.TRACE

The .TRACE command continues execution of a program that has stopped because of
an error, a stop statement, or a keyboard interrupt.

Note
.TRACE is an executive command. Executive commands can only be used at the
IDL command prompt, not in programs.

Syntax

.TRACE

.TRACE IDL Reference Guide

Chapter 3
Routines: A

IDL Reference Guide

65

66 Chapter 3: Routines: A
A CORRELATE

The A_CORRELATE function computes the autocorrelation Px(L) or autocovariance
Rx(L) of asample population X as afunction of thelag L.

N-L-1
Z (X = X)Xy 4. —X)
P, (L) = P(-L) = K=0

N-1

z (Xg —X)2

k=0

N-L-1

L-
R,(L) =R = Z (X = X) (X 4L —X)

-1
N

where X is the mean of the sample population x = (Xg, X1, X9, .. , Xn-1)-

Note
Thisroutineis primarily designed for usein 1-D time-series analysis. The mean is
subtracted before correlating. For image processing, methods based on FFT should
be used instead if more than afew tens of points exist. For example:

Function AutoCorrelate, X

Temp = FFT(X,-1)

RETURN, FFT(Temp * CONJ (Temp), 1)
END

Thisroutineiswritten in the IDL language. Its source code can be found in the file
a_correlate.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

Result = A_CORRELATE(X, Lag [, /COVARIANCE] [, /DOUBLE])

A CORRELATE IDL Reference Guide

Chapter 3: Routines: A 67

Arguments
X

An n-dement integer, single-, or double-precision floating-point vector.

Lag

An n-element integer vector in the interval [-(n-2), (n-2)], specifying the signed
distances between indexed elements of X.

Keywords
COVARIANCE

Set this keyword to compute the sample autocovariance rather than the sample
autocorrelation.

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

; Define an n-element sample population:

X = [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
; Compute the autocorrelation of X for LAG = -3, 0, 1, 3, 4, 8:
lag = [-3, 0, 1, 3, 4, 8]

result = A_CORRELATE (X, lag)

PRINT, result

IDL prints:

0.0146185 1.00000 0.810879 0.0146185 -0.325279 -0.151684

Version History

4.0 Introduced

See Also

CORRELATE, C_ CORRELATE, M_CORRELATE, P CORRELATE,
R_CORRELATE, “Correlation Analysis’ (Chapter 9, Using IDL)

IDL Reference Guide A _CORRELATE

68 Chapter 3: Routines: A

ABS

The ABS function returns the absolute val ue of its argument.
Syntax

Result = ABS(X)
Return Value

Returns the absol ute value of its argument.
Arguments

X

The value for which the absolute value is desired. If X is of complex type, ABS
returns the magnitude of the complex number:

JReal? + Imaginary?

If X isof complex type, the result isreturned asthe corresponding floating point type.
For all other types, the result has the sametype as X. If Xisan array, the result hasthe
same structure, with each element containing the absolute value of the corresponding
element of X.

ABS applied to any of the unsigned integer types results in the unaltered value of X
being returned.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords' for details.

ABS IDL Reference Guide

Chapter 3: Routines: A 69

Examples

To print the absolute value of -25, enter:
PRINT, ABS(-25)
IDL prints:

25

Version History

Origina Introduced

IDL Reference Guide ABS

70 Chapter 3: Routines: A
ACOS

The ACOS function returns the angle, expressed in radians, whose cosineis X (i.e.,
the arc-cosine). For rea input, the range of ACOS is between 0 and .

For input of acomplex number, Z = X +1iY, the complex arccosine is given by,
acos(Z) = acos(B) - i alog(A + sqrt(A2- 1)) if Y >=0
acos(Z) = acos(B) +i alog(A + sqrt(A2- 1)) if Y <0
where
A =05 sgrt((X + 1)2 + Y2) + 0.5 sgrt((X - 1)2 + Y?)
B=05sgrt((X + 1)2+Y?) - 0.5 sgrt((X -)2+ Y?)

The separation of the two formulas at Y = 0 takes into account the branch-cut
discontinuity along the real axisfrom - to -1 and +1 to +e0, and ensures that
cos(acos(2)) isequal to Z. For reference, see formulas 4.4.37-39 in Abramowitz, M.
and Stegun, |.A., 1964: Handbook of Mathematical Functions (Washington: National
Bureau of Standards).

Syntax
Result = ACOS(X)
Return Value
Returns the angle, expressed in radians, whose cosineis X (i.e., the arc-cosine).
Arguments
X

The cosine of the desired angle. For real input, X should beintherange-1to +1. If X
is double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results. If X
is an array, the result has the same structure, with each element containing the arc-
cosine of the corresponding element of X.

ACOS IDL Reference Guide

Chapter 3: Routines: A 71

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Find the angle whose cosineis 0.707 and print the result in degrees by entering:

PRINT, 180/!PI*ACOS(0.707)
IDL prints:
45.0086

Find the complex arccosine of 2 + i and print the result by entering:

PRINT, ACOS(COMPLEX(2,1))
IDL prints:
(0.507356, -1.46935)

See the ATAN function for an example of visualizing the complex arccosine.

Version History

Origina Introduced

See Also

COS, COSH, ASIN, SIN, SINH, ATAN, TAN, TANH

IDL Reference Guide ACOS

72 Chapter 3: Routines: A

ADAPT HIST EQUAL

The ADAPT_HIST_EQUAL function performs adaptive histogram equalization, a
form of automatic image contrast enhancement. The algorithm is described in Pizer
et. a., “Adaptive Histogram Equalization and its Variations.”, Computer Vision,
Graphics and Image Processing, 39:355-368. Adaptive histogram equalization
involves applying contrast enhancement based on the local region surrounding each
pixel. Each pixel is mapped to an intensity proportional to its rank within the
surrounding neighborhood. This method of automatic contrast enhancement has
proven to be broadly applicable to awide range of images and to have demonstrated
effectiveness.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
adapt_hist_equal.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

Result = ADAPT_HIST_EQUAL (Image [, CLIP=value] [, FCN=vector]
[, NREGIONS=nregions] [, TOP=valug])

Return Value

The result of the function is a byte image with the same dimensions as the input
image parameter.

Arguments

Image

A two-dimensional array representing the image for which adaptive histogram
equalization is to be performed. This parameter is interpreted as unsigned 8-bit data,
so be sure that the input values are properly scaled into the range of 0 to 255.

Keywords

CLIP

Set this keyword to a nonzero value to clip the histogram by limiting its slope to the
given CLIP value, thereby limiting contrast. For example, if CLIPis set to 3, the
slope of the histogram is limited to 3. By default, the slope and/or contrast is not

ADAPT_HIST_EQUAL IDL Reference Guide

Chapter 3: Routines: A 73

limited. Noise over-enhancement in nearly homogeneous regionsis reduced by
setting this parameter to values larger than 1.0.

FCN

Set this keyword to the desired cumulative probability distribution function in the
form of a 256 element vector. If omitted, alinear ramp, which yields equal
probability binsresults. Thisfunction islater normalized, so magnitudeis
inconsequential, though should increase monotonically.

NREGIONS

Set this keyword to the size of the overlapped tiles, as afraction of the largest
dimensions of the image size. The default is 12, which makes each tile 1/12 the size
of the largest image dimension.

TOP

Set this keyword to the maximum value of the scaled output array. The default is 255.
Examples

The following code snippet reads adatafile in the examples/data subdirectory of
the IDL distribution containing a cerebral angiogram, and then displays both the
original image and the adaptive histogram equalized image:

OPENR, 1, FILEPATH('cereb.dat',6 $
SUBDIRECTORY=['examples', 'data'])

;Image size = 512 x 512
a = BYTARR(512,512, /NOZERO)

;Read it
READU, 1, a
CLOSE, 1

; Reduce size of image for comparison
a = CONGRID(a, 256,256)

; Show original
TVSCL, a, 0

; Show processed
TV, ADAPT_HIST EQUAL(a, TOP=!D.TABLE_SIZE-1), 1

IDL Reference Guide ADAPT_HIST_EQUAL

74 Chapter 3: Routines: A

Note
Also see “Working with Histograms” (Chapter 8, Image Processing in IDL).

Version History

5.3 Introduced

See Also

H_EQ CT,H_EQ INT, HIST_2D, HIST_EQUAL, HISTOGRAM

ADAPT_HIST_EQUAL IDL Reference Guide

Chapter 3: Routines: A 75

ALOG

The ALOG function returns the natural logarithm of X.

For input of acomplex number, Z = X +iY, the complex number can be rewritten as
Z =R exp(i0), where R = abs(Z) and 6 = atan(y,x). The complex natural log isthen
given by,

adog(Z) = dog(R) +i0

In the above formula, the use of the two-argument arctangent separates the solutions
a Y = 0 and takes into account the branch-cut discontinuity along the real axisfrom -
o t0 0, and ensuresthat exp(alog(2)) isequal to Z. For reference, seeformulas 4.4.1-3
in Abramowitz, M. and Stegun, 1.A., 1964: Handbook of Mathematical Functions
(Washington: National Bureau of Standards).

Syntax

Result = ALOG(X)
Return Value

Returns the natural logarithm of X.
Arguments

X

Thevalue for which the natural log isdesired. For real input, X should be greater than
or equal to zero. If X isdouble-precision floating or complex, theresult is of the same
type. All other types are converted to single-precision floating-point and yield
floating-point results. If X isan array, the result has the same structure, with each
element containing the natural log of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,

IDL Reference Guide ALOG

76

ALOG

Chapter 3: Routines: A

TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Find the natural logarithm of 2 and print the result by entering:

PRINT, ALOG(2)
IDL prints:
0.693147

Find the complex natural log of sqrt(2) + i sqrt(2) and print the result by entering:

PRINT, ALOG(COMPLEX (sqgrt(2), sqgrt(2)))
IDL prints:
(0.693147, 0.785398)

Note
Thereal part of theresult isjust ALOG(2) and theimaginary part givestheangle (in
radians) of the complex number relative to the real axis.

See the ATAN function for an example of visualizing the complex natural log.

Version History

Origina Introduced

See Also

ALOGI10, ATAN

IDL Reference Guide

Chapter 3: Routines: A 77

ALOG10

The ALOGL10 function returns the logarithm to the base 10 of X.

For input of acomplex number, Z = X +iY, the complex number can be rewritten as
Z = Rexp(iq), where R = abs(Z) and q = atan(y,x). The complex log base 10 is then
given by,

alogl0(Z) = dogl0(R) + i g/alog(10)

In the above formula, the use of the two-argument arctangent separates the solutions
a Y = 0 and takes into account the branch-cut discontinuity along the real axisfrom -
o t0 0, and ensures that 10" (alog10(2)) is equal to Z. For reference, see formulas
4.4.1-3 in Abramowitz, M. and Stegun, |.A., 1964: Handbook of Mathematical
Functions (Washington: National Bureau of Standards).

Syntax

Result = ALOG10(X)
Return Value

Returns the logarithm to the base 10 of X.
Arguments

X

The value for which the base 10 log is desired. For real input, X should be greater
than or equal to zero. If X isdouble-precision floating or complex, the result is of the
same type. All other types are converted to single-precision floating-point and yield
floating-point results. If X isan array, the result has the same structure, with each
element containing the base 10 log of the corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,

IDL Reference Guide ALOG10

78 Chapter 3: Routines: A

TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Find the base 10 logarithm of 100 and print the result by entering:

PRINT, ALOG10(100)
IDL prints:
2.00000

See the ATAN function for an example of visualizing the complex logarithm.

Version History

Origina Introduced

See Also

ALOG, ATAN

ALOG10 IDL Reference Guide

Chapter 3: Routines: A 79

AMOEBA

The AMOEBA function performs multidimensional minimization of a function
Func(x), where x is an n-dimensional vector, using the downhill simplex method of
Nelder and Mead, 1965, Computer Journal, Vol 7, pp 308-313.

The downhill simplex method is not as efficient as Powell’s method, and usually
requires more function evaluations. However, the simplex method requires only
function evaluations—not derivatives—and may be more reliable than Powell’s
method.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
amoeba .pro inthe 1ib subdirectory of the IDL distribution. AMOEBA is based on
the routine amoeba described in section 10.4 of Numerical Recipesin C: The Art of
Scientific Computing (Second Edition), published by Cambridge University Press,
and is used by permission.

Syntax

Result = AMOEBA(Ftol [, FUNCTION_NAME=string]
[, FUNCTION_VALUE=variable] [, NCALLS=value] [, NMAX=valug]
[, PO=vector, SCALE=vector |, SIMPLEX=array])

Return Value

If the minimum isfound, AMOEBA returns an n-element vector corresponding to the
function’s minimum value. If a minimum within the given tolerance is not found
within the specified number of iterations, AMOEBA returns a scalar value of -1.
Results are returned with the same precision (single- or double-precision floating-
point) asis returned by the user-supplied function to be minimized.

Arguments

Ftol

The fractional tolerance to be achieved in the function value—that is, the fractional
decrease in the function value in the terminating step. If the function you supply
returns a single-precision result, Ftol should never be less than your machine’'s
floating-point precision—the value contained in the EPS field of the structure
returned by the MACHAR function. If the function you supply returns a double-
precision floating-point value, Ftol should not be less than your machine’ double-
precision floating-point precision. See MACHAR for details.

IDL Reference Guide AMOEBA

80

Chapter 3: Routines: A

Keywords

AMOEBA

FUNCTION_NAME

Set this keyword equal to a string containing the name of the function to be
minimized. If this keyword is omitted, AMOEBA assumes that an IDL function
named “FUNC” isto be used.

The function to be minimized must be written as an IDL function and compiled prior
to calling AMOEBA. This function must accept an n-element vector asits only
parameter and return a scalar single- or double precision floating-point value asits
result.

See the Example section below for an example function.
FUNCTION_VALUE

Set this keyword equal to a named variable that will contain an (n+1)-element vector
of the function values at the simplex points. The first element contains the function
minimum.

NCALLS

Set this keyword equal to a named variable that will contain a count of the number of
times the function was evaluated.

NMAX

Set this keyword equal to ascalar value specifying the maximum number of function
evaluations allowed before terminating. The default is 5000.

PO

Set this keyword equal to an n-element single- or double-precision floating-point
vector specifying the initia starting point. Note that if you specify PO, you must also
specify SCALE.

For example, in a 3-dimensiona problem, if the initial guessis the point [0,0,0], and
you know that the function’s minimum value occurs in the interval:

-10 < X[0] < 10, -100 < X[1] < 100, -200 < X[(2] < 200,
specify: P0=[0,0,0] and SCALE=[10, 100, 200].
Alternately, you can omit PO and SCALE and specify SIMPLEX.

IDL Reference Guide

Chapter 3: Routines: A 81

SCALE

Set this keyword equal to a scalar or n-element vector containing the problem’s
characterigtic length scale for each dimension. SCALE is used with PO to form an
initial (n+1) point simplex. If all dimensions have the same scale, set SCALE equal to
ascaar.

If SCALE is specified as a scalar, the function’s minimum lies within a distance of
SCALE from PO. If SCALE isan N-dimensional vector, the function's minimum lies
within the Ndim+1 simplex with the vertices PO, PO + [1,0,...,0] * SCALE, PO +
[0,1,0,...,0] * SCALE, ..., and PO+[0,0,...,1] * SCALE.

SIMPLEX

Set thiskeyword equal to an n by n+1 single- or double-precision floating-point array
containing the starting simplex. After AMOEBA has returned, the SIMPLEX array
contains the ssimplex enclosing the function minimum. The first point in the array,
SIMPLEX[*,0], corresponds to the function’s minimum. This keyword isignored if
the PO and SCALE keywords are set.

Examples

Use AMOEBA to find the slope and intercept of a straight line that fits a given set of
points, minimizing the maximum error. The function to be minimized (FUNC, in this
case) returns the maximum error, given p[0] = intercept, and p[1] = Slope.

; First define the function FUNC:
FUNCTION FUNC, P

COMMON FUNC_XY, X, Y

RETURN, MAX(ABS(Y - (P[0] + P[1] * X)))
END

; Put the data points into a common block so they are accessible to
; the function:
COMMON FUNC_XY, X, Y

; Define the data points:

= FINDGEN (17)*5

= [12.0, 24.3, 39.6, 51.0, 66.5, 78.4, 92.7, 107.8, S
120.0, 135.5, 147.5, 161.0, 175.4, 187.4, 202.5, 215.4, 229.9]

X
Y

; Call the function. Set the fractional tolerance to 1 part in

; 107”5, the initial guess to [0,0], and specify that the minimum
; should be found within a distance of 100 of that point:

R = AMOEBA(1l.0e-5, SCALE=1.0e2, PO = [0, 0], FUNCTION_VALUE=fval)

IDL Reference Guide AMOEBA

82

Check for convergence:
EQ 1 THEN MESSAGE,

7

IF N_ELEMENTS (R)

Print results:

i

PRINT, 'Intercept, Slope:', r, $
'Function value (max error):
IDL prints:
Intercept, Slope: 11.4100
Function value: 1.33000

Version History

Chapter 3: Routines: A

'AMOEBA failed to converge'

', fvall0]

2.72800

5.0 Introduced

See Also

DFPMIN, POWELL, SIMPLEX

AMOEBA

IDL Reference Guide

Chapter 3: Routines: A 83

ANNOTATE

The ANNOTATE procedure starts an IDL widget program that allows you to
interactively annotate images and plots with text and drawings. Drawing objects
include lines, arrows, polygons, rectangles, circles, and ellipses. Annotation files can
be saved and restored, and annotated displays can be written to TIFF or PostScript
files. The Annotation widget will work on any IDL graphics window or draw widget.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
annotate.pro inthe 1ib subdirectory of the IDL distribution.

Using the Annotation Widget

Before calling the Annotation widget, plot or display your datain an IDL graphics
window or draw widget. Unless you specify otherwise (using the DRAWABLE or
WINDOW keywords), annotations will be made in the current graphics window.

For information on using the Annotation widget, click on the widget's “Help” button.
Syntax

ANNOTATE [, COLOR_INDICES=array] [, DRAWABLE=widget_id |,
WINDOW=index] [, LOAD_FILE=filename] [, /TEK_COLORS]

Arguments
None.
Keywords
COLOR_INDICES

An array of color indices from which the user can choose colors. For example, to
allow the user to choose 10 colors, spread evenly over the available indices, set the
keyword as follows:

COLOR_INDICES = INDGEN(10) * (!D.N_COLORS-1) / 9

If neither TEK_COLORS or COLOR_INDICES are specified, the default isto load
10 colors, evenly distributed over those available.

IDL Reference Guide ANNOTATE

84 Chapter 3: Routines: A

DRAWABLE

The widget ID of the draw widget for the annotations. Do not set both DRAWABLE
and WINDOW. If neither WINDOW or DRAWABLE are specified, the current
window is used.

LOAD_FILE
The name of an annotation format file to |oad after initialization.
TEK _COLORS

Set this keyword and the Tektronix color table is loaded starting at color index
TEK_COLORS(0), with TEK_COLORS(1) color indices. The Tektronix color table
contains up to 32 distinct colors suitable for graphics. If neither TEK_COLORS or
COLOR_INDICES are specified, the default is to load 10 colors, evenly distributed
over those available.

WINDOW

The window index number of the window to receive the annotations. Do not set both
DRAWABLE and WINDOW. If neither WINDOW or DRAWABLE are specified, the
current window is used.

Examples

; Output an image in the current window:
TVSCL, HANNING(300,200)

; Annotate it:

ANNOTATE

Version History

Pre4.0 Introduced

See Also

PLOTS, XYOUTS

ANNOTATE IDL Reference Guide

Chapter 3: Routines: A 85

APP_USER DIR

The APP_USER_DIR function provides accessto the IDL application user directory.
The application user directory is alocation where IDL, and applications written in
IDL, can store user-specific data that will persist between IDL sessions. For example,
the IDL iTools store user-specified preferences, styles, and macrosin the application
user directory.

The application user directory is created automatically by IDL as a subdirectory
(named . id1) of the user’s home directory. (For additional information on the
location of the user’s home directory on different platforms, see “HOME” in Chapter
1, “Introducing IDL” (Using IDL).)

To prevent unrelated applications from encountering each other’sfiles, the . id1
directory is organized into subdirectories with names specified by the application
author. For example, files used by applications distributed with IDL are stored in
subdirectories of the . id1 directory named itt and id1. Inside each author’s
subdirectory, files are organized by application and (optionally) by a combination of
attributes of the IDL version that creates the directory.

Note
The organization of the . id1 directory is opague to both users and authors of DL
applications. Application authors are expected to manage the directory exclusively
using the APP_USER_DIR function, and application users generally do not need to
manually modify the files it contains.

APP_USER_DIR simplifies cross-platform application development by providing a
well-defined location for IDL applications to store their resource files, regardless of
the platform or version of IDL. The uniform organization it enforcesis also a benefit
for IDL users, since it makesit easier for them to understand the meaning and
importance of the filesfound in their . 141 directory.

Directories created by APP_USER_DIR have the following features:

» Each author of IDL applications has a unique area underneath the . id1
directory. Different authors do not share space with each other, or with IDL
distribution files.

* By default, an application directory is shared by all instances of the
application. The application author can use RESTRICT keywords to specify
that the directory only be used by a specified version of the application, or
when running on a version of IDL with specified attributes such as release,

IDL Reference Guide APP_USER_DIR

86

APP_USER_DIR

Chapter 3: Routines: A

operating system, hardware platform, etc. See “RESTRICT Keywords’ on
page 90 for additional details.

A README fileisautomatically generated for each author and application
directory, following a standard format. The application author is required to
supply the body text for the application README file. (Text for the author
README fileis optional, but recommended.) Thetext is expected to explain
the purpose of the directory, and supply contact information for the author.
Each README file has a version associated with it, allowing
APP_USER_DIR to automatically update the file as necessary.

APP_USER_DIR performs the following operations, in order:

1
2.

If the specified author directory does not exist, it is created.

If the specified author directory does not have a standard README filg, itis
created. If thereis an existing README file with aversion number that is
lower than the specified number, the fileis replaced.

If the specified application subdirectory does not exist within the author
directory, it is created.

If the specified application directory does not have a standard README file, it
is created. If there is an existing README file with aversion number that is
lower than the specified number, the fileis replaced.

The path to the application directory is returned as the value of the
APP_USER DIR function.

Other than the README file, the contents of an application directory are entirely up
to the application author. The APP_USER_DIR function does not manage the
content, only itslocation. The FILEPATH function can be used to construct filenames
within the application directory, and IDL’s many input/output and file manipulation
routines can be used to create and manage application specific content within it.

Syntax

Result = APP_USER_DIR(Author Dirname, Author Desc, AppDirname, AppDesc,
AppReadmeText, AppReadme\Version
[, AUTHOR_README_TEXT=string array]
[, AUTHOR_README_VERSION=integer]
[, RESTRICT_APPVERSION=string] [, /RESTRICT_ARCH]
[, /RESTRICT_FAMILY |/RESTRICT_OS]
[, /RESTRICT_FILE_OFFSET BITS] [, /RESTRICT_IDL_RELEASE]
[, /IRESTRICT_MEMORY _BITS])

IDL Reference Guide

Chapter 3: Routines: A 87

Return Value

Returns a string containing the path to the directory to be used by the calling
application.

Note
The directory and all associated README files are created if they do not exist. If
the README files exit, they will be updated if the values of AppReadme\Version
and the AUTHOR_README_VERSION keyword are greater than those of the
existing README files.

Arguments

AuthorDirname

A string specifying the name of the author directory to be used by the calling
application. The author directory namesitt and id1l arereserved for use by IDL and
IDL applications included in the distribution. Other authors should be careful to pick
aunique name unlikely to conflict with others. (See “Advice for Library Authors’
(Chapter 6, Application Programming) for advice on selecting a unique prefix for a
library; the same advice applies when selecting an author directory name.)

In choosing Author Dirname, be aware of the following:

1. AuthorDirnameis case insensitive, regardless of the operating system
platform. APP_USER_DIR will convert the name to lower case before
creating the directory or returning its path string.

2. You should attempt to keep the name short, to minimize the chance that the full
directory nameislonger than the maximum supported length on the current

platform.
3. Thefollowing characters are automatically converted to underscores (_) when
creating the directory name: -) (. : > <aswell as space and tab.
AuthorDesc

A string containing a one-line description of the author in human-readable form. This
string is used for the header of the README file within the author directory. For
example, the AuthorDesc for IDL applications written by ITT Visual Information
Solutionsis“ITT Visual Information Solutions.”

IDL Reference Guide APP_USER_DIR

88 Chapter 3: Routines: A
AppDirname

A string specifying the name of the application directory to be used by the calling

application. For example, the IDL iTools application uses the application directory
name “itools’.

Note

APP_USER _DIR modifies the AppDirname string you specify in the same way it
modifies the Author Dirname string. See AuthorDirname, above.

AppDesc

A string giving a brief description of the application in human-readable form. This
string is used for the header of the README file within the application directory. For

example, the AppDesc for the IDL iTools application is“IDL Intelligent Tools
(iTools)".

AppReadmeText

A string or string array containing the text used as the body of the README file
within the application directory. The README text is for the benefit of IDL users

who are trying to understand what the directory isfor, and is expected to supply the
following information:

e Theidentity of the author, and author contact information.
* A brief description of what the application is, and what it does.

* Any special rules governing if and when the user is allowed to delete the
directory and its contents.

AppReadmeVersion

An integer specifying the version number to be associated with the README file.
AppReadme\Version must be greater than zero.

Initially, AppReadmeVersion should be set to one. Every time you modify the text
supplied as the AppReadmeText argument, you should increment the value of
AppReadmeVersion by one. APP_USER_DIR uses thisinformation to ensure that
existing README files are automatically updated to the latest version.

APP_USER_DIR IDL Reference Guide

Chapter 3: Routines: A 89

Note
The application README file version is different from, and unrelated to, the
application version (as specified viathe RESTRICT_APPVERSION keyword). The
README version applies only to the contents of the README file. You might
want to change the text in a README file without changing the version of the
application; perhapsto clarify existing information or update your contact
information.

Keywords

AUTHOR_README_TEXT

Set the AUTHOR_README_TEXT keyword equal to a string or string array to
supply README text for the author directory. Authors with multiple IDL
applications should consider providing application-independent contact information
here.

Note
APP_USER DIR requires you to supply text for the body of the application
directory README file. You are not required to supply text for the author directory
README file, but supplying such text is strongly recommended.

If you include this keyword, use the AUTHOR_README_VERSION keyword to
supply aversion number for the README file.

AUTHOR_README_VERSION

Set this keyword equal to an integer that specifies the version number for the author
README file. The specified value must be greater than zero.

Initially, AUTHOR_README_VERSION should be set equal to one. Every time
you modify the text supplied asthe AUTHOR_README_TEXT keyword, you
should increment the value of AUTHOR_README_VERSION by one.
APP_USER _DIR usesthisinformation to ensure that existing author README files
are automatically updated to the latest version. If AUTHOR_README_VERSION
is not supplied, adefault version of 1 isused. However, you should explicitly specify
this keyword whenever AUTHOR_README_TEXT is used.

IDL Reference Guide APP_USER_DIR

90 Chapter 3: Routines: A

Note
Theauthor README fileversionisdifferent from, and unrelated to, the application
version (as specified viathe RESTRICT_APPVERSION keyword). The README
version applies only to the contents of the README file. You might want to change
the text in aREADME file without changing the version of the application; perhaps
to clarify existing information or update your contact information.

RESTRICT Keywords

By default, APP_USER_DIR creates an application user directory that will be shared
by all instances of the application. You can use RESTRICT keywords to specify that
the directory only be used by a specified version of the application, or when running
on aversion of IDL with specified attributes such as release, operating system,
hardware platform, etc. The RESTRICT keywords allow you to ensure that instances
of your application running in different IDL, hardware, and operating system
environments store their user data separately, when appropriate.

In deciding whether to use the RESTRICT keywordsfor your application, you should
consider the following issues:

Network Installations

In many environments, user home directories are kept on network accessible devices,
and are mounted on many different systems. These systems may be running different
IDL versions, different operating systems, and different hardware.

The advantages of the networked home directory are easier system administration,
and the fact that no matter which computer you use, your files are always available
without the need to copy them between systems. APP_USER_DIR isdesigned to
work in such an environment. Concerning yourself with such heterogeneous network
environments may seem like overkill if you are using a system with its own dedicated
home directory, but you should remember that your users may be using a highly
networked environment, and as such your application needs to take these issues into
consideration.

Application Version Compatibility

Experience shows that many application authors do not plan adequately for cross-
version compatibility. This lack of planning may cause few problems at first, but as
new versions of the application are released, incompatibilities surface. Consider the
following when designing your application to simplify later upgrades:

1. Canyouimaginethat afuture version of your application might want to
structure its datain a different way, or that changes for a new version might

APP_USER_DIR IDL Reference Guide

Chapter 3: Routines: A 91

confuse older versions that also use the same data? If so, you should specify
the RESTRICT_APPVERSION keyword to give your application aversion. If
in doubt, specify aversion of ‘1.0'. You will never be required to change the
version number, but you will have the flexibility to do so if your application
user directories include application version information.

2. Carefully consider how platform-specific your application is, and apply any of
the other RESTRICT keywords that are necessary.

3. If versioning isimportant to your application, you will eventually face the
situation in which your users are upgrading to a new version. In such cases,
you may want to offer them the option of migrating their configuration data
from the older version. The APP_USER_DIR_QUERY function can be used
to locate the application user directories for these older versions. Note that
your application data must be designed in such away that such migrations are
possible. In particular, any versioning information needed to select the best
migration candidate must be present.

RESTRICT_APPVERSION

Set this keyword to a string specifying the application version. Different application
user directories will be created for different values of this keyword.

Note
The application version can be any arbitrary string. In choosing your version string,
be aware that the same rules and considerations described for the AppDirname
argument apply to RESTRICT_APPVERSION.

RESTRICT_ARCH

Set this keyword to specify that different application user directories be created when
your application runs on systems with different hardware architectures, as reported by
the 'VERSION.ARCH system variable field.

RESTRICT_FAMILY

Set this keyword to specify that different application user directories be created when
your application runs on systems running different operating system families, as
reported by the 'VERSION.OS FAMILY system variablefield.

Note
If RESTRICT_OS s also specified, RESTRICT_FAMILY isignored and has no
effect.

IDL Reference Guide APP_USER_DIR

92 Chapter 3: Routines: A

RESTRICT_FILE_OFFSET_BITS

Set this keyword to specify that different application user directories be created when
your application runs on versions of IDL that use adifferent number of file offset bits,
asreported by the 'VERSION.FILE_OFFSET_BITS system variable field.

RESTRICT_IDL_RELEASE

Set this keyword to specify that different application user directories be created when
your application runs under different versions of IDL, as specified by the
I'VERSION.RELEASE system variable field.

RESTRICT_MEMORY_BITS

Set this keyword to specify that different application user directories be created when
your application runs on versions of IDL that use a different number of memory
address hits, as reported by the 'VERSION.MEMORY _BITS system variable field.

RESTRICT_OS

Set this keyword to specify that different application user directories be created when
your application runs on systems running different operating systems, as reported by
the 'VERSION.OS system variable field.

Examples

The following function demonstrates how APP_USER_DIR can be used efficiently
to create an application user directory for an IDL application supporting the
“Amazing” Grill System (AGS), aproduct of the fictional Acme Widgets, Inc. We
assume that each AGS application user directory should only be shared between
instances of the same version of the application that are running under the same
operating system family. The use of the RESTRICT keywords causes the AGS
software to create a different application user directory for each unique combination
of these two attributes. The rest of the application can call thisfunction as many times
as desired. It ensures that the necessary directory exists on the first call, and then
simply returns the path string on subsequent calls:

FUNCTION acme_grill_config dir
COMMON acme_grill_common, config dir
IF (N_ELEMENTS (config_dir) NE 1) THEN BEGIN

; Increment if author_readme_text is changed
author_readme_version = 1

APP_USER_DIR IDL Reference Guide

Chapter 3: Routines: A 93

author_readme_text = $

['"This is the user configuration directory for', $
'IDL based products from Acme Widgets, Inc:', $
8

! Acme Widgets, Inc.', $

! 1234 Amazing Way', $

! Grill valley, NV, 12345', $
! usa', $

8

'Thank you for using products from Acme Widgets, Inc.']

; Increment if app_readme_text is changed
app_readme_version = 1

app_readme_text = $
['"This is the configuration directory for the', $
'Acme "Amazing" Grill System. It is used to', $
'remember grill settings in between grill', $

'invocations.', $
(] , $
'Tt is safe to remove this directory, as it', $

'will be recreated on demand. Note that all', $
'settings (e.g. smoke injection depth, juicitron', $
'angle, etc.) will revert to their default settings.', $

s
'Thank you for using the Acme "Amazing" Grill System. ']

config_dir = APP_USER_DIR('acme', 'Acme Widgets, Inc.', $
'acme_grill', 'The Acme "Amazing" Grill System',6 $
app_readme_text, app_readme_version, $
AUTHOR_README_TEXT=author_readme_text, $
AUTHOR_README_VERSION=author_readme_version, $

RESTRICT_APPVERSION='1.0', /RESTRICT_FAMILY)
ENDIF
RETURN, config dir

END

Version History

6.1 Introduced

IDL Reference Guide APP_USER_DIR

94 Chapter 3: Routines: A

See Also

APP_USER_DIR_QUERY, FILE_MKDIR, FILE_TEST, FILEPATH,
OPENR/OPENU/OPENW, !VERSION system variable

APP_USER_DIR IDL Reference Guide

Chapter 3: Routines: A 95

APP_USER DIR QUERY

The APP_USER_DIR_QUERY function is used to locate existing application user
directories previously created by the APP_USER_DIR function. An IDL application
can use APP_USER DIR_QUERY to locate the directories that were used by other
(presumably older) versions of itself. A newly installed version can use this
information to migrate application settings or data from another version in order to
preserve the user’s customizations.

To use APP_USER DIR_QUERY, your application should call it with the same
values of the Author Dirname and AppDirname arguments, and the exact set of
RESTRICT keywords, used to call APP_USER_DIR. In this configuration,
APP_USER _DIR_QUERY will return the same application user directory returned
by APP_USER_DIR. To search for other related application user directories, use the
QUERY keywords to specify which of the attributes specified in the call to
APP_USER DIR should be allowed to take on any value.

As an example, suppose your application creates user application directories that
depend on the version of the application and on the operating system in use. You
might want to locate all directories created for a specific application version,
regardless of the operating system in use when the directory was created.

Tip
The application user directory for the current system is always one of the values
returned by APP_USER_DIR_QUERY. In the common example of an application
that wants to migrate data from adifferent version, the path for the current systemis

not desired. Use the EXCLUDE_CURRENT keyword to suppressit from the
results.

Syntax

Result = APP_USER_DIR_QUERY (Author Dirname, AppDirname
[, COUNT=variable] [, /[EXCLUDE_CURRENT][, /QUERY_APPVERSION]
[, /QUERY_ARCH] [, /QUERY_FAMILY] [, /QUERY_FILE OFFSET BITS]
[, /QUERY _IDL_RELEASE] [, /QUERY_MEMORY_BITS] [, /QUERY_OS]
[RESTRICT Keywords])

IDL Reference Guide APP_USER _DIR_QUERY

96 Chapter 3: Routines: A
Return Value

Returns a string array containing all application user directories that match the query
criteria. If no matching application user directories exist, anull scalar string is
returned.

Arguments

AuthorDirname

A string specifying the name of the author directory to be used by the calling
application. For APP_USER_DIR_QUERY to work correctly, AuthorDirname must

be set to the same value used in the call to APP_USER _DIR. See APP_USER_DIR
for details.

AppDirname

A string specifying the name of the application directory to be used by the calling
application. For APP_USER_DIR_QUERY to work correctly, AppDirname must be
set to the same value used in the call to APP_USER_DIR. See APP_USER DIR for
details.

Keywords

COUNT

Set this keyword equal to a named variable that will contain the number of matching

application user directories found. If no matching directories are found, the specified
variable will contain the value O (zero).

EXCLUDE_CURRENT

By default, APP_USER DIR_QUERY includesthe application user directory that
matches the current system (the directory that would be returned by APP_USER _DIR)

in Result. Set this keyword to exclude the directory returned by APP_USER_DIR
from the Result.

RESTRICT Keywords

APP_USER DIR_QUERY accepts the same RESTRICT keywords documented for
APP_USER DIR. For APP_USER_DIR_QUERY to work correctly, you must

APP_USER_DIR_QUERY IDL Reference Guide

Chapter 3: Routines: A 97

specify the same RESTRICT keywords as were specified to APP_USER_DIR. See
the documentation for APP_USER_DIR for full details.

Thereisasubtle difference in the meaning of the RESTRICT keywords between
APP_USER_DIR and APP_USER DIR_QUERY. In the case of APP_USER DIR,
specifying one of the RESTRICT keywords causes IDL to create a directory whose
name incorporates information about the value of the specified attribute on the
current platform. In the case of APP_USER_DIR_QUERY, specifying one of the
RESTRICT keywordstells IDL that the directory name must contain information
about the specified attribute; if the corresponding QUERY keyword is a so specified,
directory names that contain any value for the specified attribute will be matched.

QUERY Keywords

A minimally correct call to APP_USER _DIR_QUERY consists of specifying the
same Author Dirname argument, AppDirname argument, and RESTRICT keywords
as the corresponding call to APP_USER_DIR. Such acall will return asingle string
containing the path returned by APP_USER_DIR. Using APP_USER_DIR_QUERY
in this manner is not particularly interesting; in order to locate other application user
directoriesin addition to the one that applies to the current platform, you must add
one or more QUERY keywords.

Each QUERY keyword corresponds to one of the RESTRICT keywords. The
presence of a QUERY keyword tells APP_USER_DIR_QUERY to search for
application user directories that satisfy all of the RESTRICT keywords while
alowing any value for the attribute specified by the QUERY keyword.

QUERY_APPVERSION

Set this keyword to match application user directories that have any value for the
application version. This keyword is quietly ignored if the
RESTRICT_APPVERSION keyword is not set.

QUERY_ARCH

Set this keyword to match application user directories that have any value for the
hardware architecture. This keyword is quietly ignored if the RESTRICT_ARCH
keyword is not set.

QUERY_FAMILY

Set this keyword to match application user directories that have any value for the
operating system family. Thiskeyword isquietly ignored if the RESTRICT_FAMILY
keyword is not set.

IDL Reference Guide APP_USER _DIR_QUERY

98 Chapter 3: Routines: A

QUERY_FILE_OFFSET _BITS

Set this keyword to match application user directories that have any value for the
number of bits used for file offsets. This keyword is quietly ignored if the
RESTRICT_FILE_OFFSET_BITS keyword is not set.

QUERY_IDL_RELEASE

Set this keyword to match application user directories that have any value for the IDL
version string. This keyword is quietly ignored if the RESTRICT_IDL_RELEASE
keyword is not set.

QUERY_MEMORY_BITS

Set this keyword to match application user directories that have any value for the
number of bits used for memory addresses. This keyword is quietly ignored if the
RESTRICT_MEMORY _BITS keyword is not set.

QUERY_OS

Set this keyword to match application user directories that have any value for the
operating system. This keyword is quietly ignored if the RESTRICT_OS keyword is
not set.

Example

In the discussion of the APP_USER_DIR function, we give the example of an IDL
application supporting the “Amazing” Grill System, a product of the fictional Acme
Widgets, Inc. The application user directory created for that application is dependent
on two attributes:

1. Application version (RESTRICT_APPVERSION)
2. Operating system family (RESTRICT_FAMILY)

When a new version of IDL runsthis application for the first time, the application
code will find that its newly created application directory is empty. In such a
situation, the application might wish to offer the user a choice between starting over
with the application defaults or migrating settings and data from an older version of
the application.

The following call to APP_USER_DIR_QUERY can be used to locate application
user directories that are for other versions of the application, but for the same
operating system family. The QUERY _APPVERSION keyword causes the function

APP_USER_DIR_QUERY IDL Reference Guide

Chapter 3: Routines: A 99

to match all application versions, while the EXCLUDE_CURRENT keyword tells it
to exclude the application user directory for the current system:
0ld_appdirs = APP_USER_DIR_QUERY('acme', ‘'acme_grill', $

RESTRICT_APPVERSION='1.0', /RESTRICT FAMILY, $
/QUERY_APPVERSION, /EXCLUDE_CURRENT)

Note that APP_USER DIR_QUERY may return more than one directory. It isup to
the application to decide which oneto use. Applications that intend to migrate
information between versions should include information in their application user
directories that will facilitate such migration.

Version History

6.1 Introduced

See Also

APP_USER DIR, FILE_SEARCH

IDL Reference Guide APP_USER _DIR_QUERY

100 Chapter 3: Routines: A
ARG PRESENT

The ARG_PRESENT function is useful in user-written procedures that need to know
if the lifetime of avalue they are creating extends beyond the current routine’s
lifetime. This can be important for two reasons:

1. To avoid expensive computations that the caller is not interested in.

2. To prevent heap variable leakage that would result if the routine creates

pointers or object references and assigns them to arguments that are not passed
back to the caller.

Syntax
Result = ARG_PRESENT(Variable)

Return Value

Returns a nonzero value if the following conditions are met:

e Theargument to ARG_PRESENT was passed as a plain argument or keyword
to the current routine by its caller, and

e Theargument to ARG_PRESENT is anamed variable into which avalue will
be copied when the current routine exits.

In other words, ARG_PRESENT returns TRUE if the value of the specified variable
will be passed back to the caller.

Arguments

Variable
The variable to be tested.

Example

Suppose that you are writing an IDL procedure that has the following procedure
definition line:

PRO myproc, RET_PTR = ret_ptr

ARG_PRESENT IDL Reference Guide

Chapter 3: Routines: A 101

Theintent of the RET_PTR keyword is to pass back a pointer to a new pointer heap
variable. The following command could be used to avoid creating (and possibly
losing) a pointer if no named variable is provided by the caller:

IF ARG_PRESENT (ret_ptr) THEN BEGIN

The commands that follow would only be executed if ret_ptr issupplied and will
be copied into avariable in the scope of the calling routine.

Version History

5.0 Introduced

See Also

KEYWORD_SET, N_ELEMENTS, N_PARAMS

IDL Reference Guide ARG_PRESENT

102 Chapter 3: Routines: A

ARRAY_EQUAL

The ARRAY_EQUAL function is afast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL (A NE B), because it stops the
comparison as soon as the first inequality isfound, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
operands are of the same data type.

Arrays may be compared to scalars, in which case each element is compared to the
scalar. For two arraysto be equal, they must have the same number of elements. If the
types of the operands differ, the type of the least precise is converted to that of the
most precise, unlessthe NO_TY PECONV keyword is specified to prevent it. This
function works on all numeric types, strings, pointer references, and object
references. In the case of pointer and object references, ARRAY _EQUAL compares
the references (which are long integers), not the heap variables to which the
references point.

Syntax
Result = ARRAY_ EQUAL(Opl, Op2[,/NO_TYPECONV])
Return Value

Returns 1 (true) if, and only if, all elements of Op1 are equal to Op2; returns O (false)
at the first instance of inequality.

Arguments
Op1l, Op2
The variables to be compared.
Keywords

NO_TYPECONV

By default, ARRAY _EQUAL converts operands of different typesto acommon type
before performing the equality comparison. Set NO_TYPECONYV to disallow this
implicit type conversion. If NO_TYPECONYV is specified, operands of different
types are never considered to be equal, even if their numeric values are the same.

ARRAY_ EQUAL IDL Reference Guide

Chapter 3: Routines: A 103

Examples

; Return True) if all elements of a are equal to a 0 byte:

(1

IF ARRAY_EQUAL(a, Ob) THEN ...

; Return True (1) if all elements of a are equal all elements of b:
(a

IF ARRAY_EQUAL(a, b) THEN ...

Version History

54 I ntroduced

IDL Reference Guide ARRAY_ EQUAL

104 Chapter 3: Routines: A

ARRAY_INDICES

The ARRAY _INDICES function converts one-dimensional subscripts of an array
into corresponding multi-dimensional subscripts.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
array_indices.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = ARRAY_INDICES(Array, Index [, /DIMENSIONS])
Return Value

If Index isascalar, returns avector containing m dimensional subscripts, where mis
the number of dimensions of Array.

If Index isavector containing n elements, returns an (m x n) array, with each row
containing the multi-dimensional subscripts corresponding to that index.

Arguments

Array

An array of any type, whose dimensions should be used in converting the subscripts.
If DIMENSIONS is set then Array should be a vector containing the dimensions.

Index

A scalar or vector containing the one-dimensional subscripts to be converted.
Keywords
DIMENSIONS

If this keyword is set, then Array is assumed to be a vector containing the dimensions.

Tip
This keyword is useful when you don't have the actual Array, and want to avoid
alocating the array just to find the indices.

ARRAY _INDICES IDL Reference Guide

Chapter 3: Routines: A 105

Examples

Example 1

This example finds the location of the maximum value of arandom 10 by 10 array:

seed = 111

array = RANDOMU (seed, 10, 10)

mx = MAX(array, location)

ind = ARRAY_INDICES (array, location)

PRINT, ind, arrayl[ind[0],ind[1]1]1, $
FORMAT = ' (%"Value at [%d, %d] is %f")'
IDL prints:
Value at [3, 6] is 0.973381
Example 2
This example is the same as the previous example, but uses the/ DIMENSIONS
keyword.
seed = 111

array = RANDOMU (seed, 10, 10)

mx = MAX(array, location)

dims = SIZE(array, /DIMENSIONS)

ind = ARRAY_INDICES(dims, location, /DIMENSIONS)

print, ind, arrayl[ind[0],ind[1]], $
format = ' (%"Value at [%d, %d] 1is %$f")'
IDL prints:

Value at [3, 6] is 0.973381

Example 3

This example routine locates the highest point in the example Maroon Bells data set
and places aflag at that point.

Enter the following code in the IDL editor:

PRO ExARRAY_INDICES

; Import Maroon Bells data.

file = FILEPATH('surface.dat', $
SUBDIRECTORY = ['examples', 'data'])

data = READ_BINARY (file, DATA_DIMS = [350, 450], $
DATA_TYPE = 2, ENDIAN='little')

; Display data.

IDL Reference Guide ARRAY_INDICES

106

ISURFACE, data

; Calculate the value and one-dimensional
; array location of the highest point.
maxValue = MAX(data, maxPoint)

; Using ARRAY_INDICES to convert the one-

; dimensional array location to a two-

; dimensional aray location.

maxLocation = ARRAY_ INDICES (data, maxPoint)

; Print the results.
PRINT, 'Highest Point Location: ', maxLocation
PRINT, 'Highest Point Value: ', maxValue

Create flag for the highest point.

= maxLocation[0]

maxLocation[1]

= maxValue

xFlag = [x, x, X + 50., x]

yFlag = [y, v, ¥y + 50., vyl

zFlag = [z, z + 1000., z + 750., z + 500.]

i
X
Y
b4

; Display flag at the highest point.
IPLOT, xFlag, yFlag, zFlag, /OVERPLOT

END

(Left) and After Rotation (Right)

ARRAY_INDICES

Chapter 3: Routines: A

Save the code as ExARRAY_INDICES.pro, compileit and runit. The following
figure displays the output of this example:

Figure 3-1: Maroon Bells Surface Plot with Flag at Highest Point Before Rotation

IDL Reference Guide

Chapter 3: Routines: A 107

For a better view of the flag, use the Rotate tool to rotate the surface.

Version History

6.0 I ntroduced

See Also

MAX, MIN, WHERE

IDL Reference Guide ARRAY_INDICES

108 Chapter 3: Routines: A

ARROW

The ARROW procedure draws one or more vectors with arrow heads.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
arrow.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

ARROW, X0, YO, X1, Y1[, /DATA |, /NORMALIZED] [, HSIZE=length]
[, COLOR=index] [, HTHICK=value] [, /SOLID] [, THICK=value]

Arguments
X0, YO

Arrays or scalars containing the coordinates of thetail end of the vector or vectors.
Coordinates are in DEVICE coordinates unless otherwise specified.

X1,Y1

Arrays or scalars containing the coordinates of the arrowhead end of the vector or
vectors. X1 and Y1 must have the save number of elements as X0 and YO.

Keywords
DATA

Set this keyword if vector coordinates are DATA coordinates.

NORMALIZED
Set this keyword if vector coordinates are NORMALIZED coordinates.

HSIZE

Use this keyword to set the length of the lines used to draw the arrowhead. The
default is 1/64th the width of the display (ID.X_SIZE / 64.). If the HSIZE is positive,
the value is assumed to be in device coordinate units. If HSIZE is negative, the
arrowhead length is set to the vector length * ABS(HSIZE). The lines are separated
by 60 degrees to make the arrowhead.

ARROW IDL Reference Guide

Chapter 3: Routines: A 109

COLOR

The color of the arrow. The default is the highest color index.
HTHICK

The thickness of the arrowheads. The default is 1.0.
SOLID

Set this keyword to make a solid arrow, using polygon fills, looks better for thick
arrows.

THICK
The thickness of the body. The default is 1.0.

Examples

Draw an arrow from (100,150) to (300,350) in DEVICE units:
ARROW, 100, 150, 300, 350
Draw a sine wave with arrows from the line Y = 0 to SIN(X/4):

X FINDGEN (50)

Y SIN(x/4)

PLOT, X, Y

ARROW, X, REPLICATE(0,50), X, Y, /DATA

Version History

Pre4.0 Introduced

See Also

ANNOTATE, PLOTS, VELOVECT

IDL Reference Guide ARROW

110 Chapter 3: Routines: A

ASCII_TEMPLATE

The ASCII_TEMPLATE function presents a graphical user interface (GUI) which
generates atemplate defining an ASCI| file format. Templates are IDL structure
variables that may be used when reading ASCI| files with the READ_ASCI| routine.
See READ_ASCI|I for details on reading ASCI| files.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
ascii_template.pro inthe1ib subdirectory of the IDL distribution.

Syntax

Result = ASCII_TEMPLATE([Filename] [, BROWSE_LINES=lines]
[, CANCEL=variable] [, GROUP=widget_id])

Return Value
Returns a template defining an ASCII file format.
Arguments

Filename

A string containing the name of afile to base the template on. If Filenameis not
specified, adialog alows you to choose afile.

Keywords
BROWSE_LINES

Set this keyword equal to the number of linesthat will be read in at atime when the
“Browse” button is selected. The default is 50 lines.

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “ Cancel” button, or 0 otherwise.

ASCIl_TEMPLATE IDL Reference Guide

Chapter 3: Routines: A 111

GROUP

The widget ID of an existing widget that serves as “group leader” for the
ASCIlI_TEMPLATE graphical user interface. When a group leader iskilled, for any
reason, all widgets in the group are also destroyed.

Examples

Use the following command to generate a template structure from the file “myFile”:

myTemplate = ASCII_TEMPLATE (myFile)

Note
If no filename is supplied in the call to the ASCII_TEMPLATE function, afile
selection dialog is displayed prior to the first ASCII_TEMPLATE screen.

Using the ASCII Template Dialog

The ASCII_TEMPLATE function lets you describe the data organization of an ASCI|
file and generates atemplate that describes how to correctly import the ASCII data.
The READ_ASCII function accesses the datain an ASCI| file, using the template to
determine how to import the data correctly. (You only have to explicitly call
READ_ASCII when you call ASCII_TEMPLATE from the command line. When
you start the ASCI1 Template dialog from an iTool or the workbench, the
READ_ASCII routineis called for you.) The templateisan IDL variable that you can
use to read other files with the same organization.

After starting the ASCI I Template dialog using one of the methods described in
“Launching the ASCII Template Dialog” (Chapter 3, Using IDL), complete the
following stepsto create the template:

1. Select the ASCII file. Inthe Select Fileto Open dialog, select
sine_waves.txt from the examples\data subdirectory of your IDL
distribution. The ASCII Template window is displayed.

2. Define ASCII datatype and range. For this data set, make sure the following
options are selected and then click Next:

* Field Type of Delimited
e Comment Stringto Ignoreisblank asthere are no file comments

« Data Startsat Linevalue of 1

IDL Reference Guide ASCII_TEMPLATE

112

Chapter 3: Routines: A

The following table describes each of these options.

Field Type

Choose from fixed width or delimited.

Comment
String to Ignore

Enter any character that indicates text sectionsto
ignore.

Data Startsat | Enter the line number containing the first line of
Line data to be read.
Selected Text | Showsthereal datafrom the selected text file. The
File option is also given to Get next 50 Lines.
' 5]

ASCIl Template Step 1 of 3: Define Data Type/Range

First choose the figld type which best describes your data;
 Fized Width [fields are sligned in columns]

& Delimited (fields are separated by commas, whitespace, etc.

Comment String ta lgnore:
Data Starts at Line: |1

Gt next B0 lines..

Selected Text Fils:

C:-4RETHIDLE2Y exanplesidatal sine_waves_ txt

Cancel | << Back | Mext >3 |

Figure 3-2: The ASCII Template Step 1, Defining Data Type and Range

3.

ASCII_TEMPLATE

Define ASCI | datafield char acteristics. For this data set, select the following
options and then click Next:

Number of Fields Per Lineequals 2
Delimiter Between Data Elements equals White space

Valueto Assign to Missing Data option is | EEE NaN
Selected Records shows datain thefile.

IDL Reference Guide

Chapter 3: Routines: A

The following table describes each of these options:

Number of
Fields Per Line

Specify how many fields should appear per line.

Delimiter
Between Data
Elements

Define the delimiter type between data elements.

Note - If you selected a Field Type of Fixed
Width on the previous dialog screen, thisfield is
not visible.

Valueto Assign
Missing Data

Choose a value to assign any missing data. Select
|EEE Nan or define a custom value.

Selected
Records

Shows the dataitself in its desired column-
delimited format.

Figure 3-3: The ASCII Template Step 2, Defining Delimeters/Fields

IDL Reference Guide

ASCIl Template Step 2 of 3: Define Delimiter/Fields

Humber of Figlds Per Line: |2

Delimiter Between Data Elements:
& white Space ¢ Colon i Tah
" Camma " Semicolon © Other

Yalue to Assign to Missing Dater @ [EEENaN

Selected Records:

C:4REILIDLEZ \ examplesidatal sine_waves. bxt

Cancel | «<<Back | Next>>|

113

ASCII_TEMPLATE

114 Chapter 3: Routines: A

4. Specify field characteristics. For this data set, define the following:

 NameFieldl smoothsine and Field2 NoisySine by selecting each field
and entering the names in the Name field. The Type fields are correct and
do not need to be changed.

e Accept the default Grouping (none).

The following table describes each of these options:

Name Allows you to name your fields. Default values are
Field1, Field2, and so on. You can enter the name
into the Name field to the right.

Data Type Allowsyou to set the datatype for your fields. You
can enter a different type by selecting it from the
Type drop-down menu.

Location Allows you to specify the starting location (in
columns) for each field when using fixed width
fields. You can enter a new value in the Column
field to theright. (The L ocation table column and
Column text field only appear when using fixed
width fields.

Grouping Letsyou join selected fields into asingle field that
isto be manipulated or displayed as agroup. The
default is no grouping.

Selected Shows a sample of the data with your defined
Records configuration parameters.

ASCIl_TEMPLATE IDL Reference Guide

Chapter 3: Routines: A 115

X
ASCI| Template Step 3 of 3: Field Specification

Meme: [SmoctiGie

Type: IWI

a0 o

Group I Group Al | UnGnoup: I Ungluuuﬁl\l

Sample Record:

il

Cancel | << Backl Finish |

Figure 3-4: ASCIlI Template Step 3, Field Specifications

5. Createthetemplate. Click Finish.

Theresult of these actions depends on the location from which you launched the
ASCI| Template dialog. The READ_ASCII function, which reads data from afile
according to the template specification, is automatically called when you access the
ASCI| Template dialog from iTools. From the command line, you must explicitly
read the ASCII data with the template specification. After defining the structure of
your ASCII data using the ASCI1 Template dialog, refer to the appropriate section:

e iToolsASCII data access— the ASCII datais read and placed in the Data
Manager. You can display single or multiple fields of the data using the | nsert
Visualization dialog. See “Inserting Visualizations’ (Chapter 3, iTool User’s
Guide) for details.

e Command line ASCI| data access — the template is a structure defining the
format of the ASCII data. Accessthe datausing READ_ASCI|I, and specify
the template (or other characteristics) as parameters of the data access
operation. See “Working with aREAD_ASCII Data Structure” on page 2018
for details.

IDL Reference Guide ASCII_TEMPLATE

116

Chapter 3: Routines: A

Example: Create a SAVE File of a Custom ASCII Template

When importing an ASCI| datafileinto IDL, you must first describe the format of the
data using the interactive ASCIlI_TEMPLATE function. If you have a number of
ASCII filesthat have the same format, you can create and save a customized ASCI|
template using the SAVE procedure. After creating a SAVE file of your custom
template, you can avoid having to repeatedly define the same fields and records when
reading in ASCI| files that have the same structure.

1

ASCII_TEMPLATE

At the IDL command line, enter the following to create the variable
plotTemplate, Which will contain your custom ASCII template:

plotTemplate = ASCII_TEMPLATE()
A dialog box appears, prompting you to select afile.

Sdecttheplot. txt filein the examples/data subdirectory of the IDL
distribution.

Note
Another way to import ASCII dataisto use the Import ASCI| File toolbar
button on the workbench toolbar. To use this feature, simply click the button
and select plot. txt from the file selection dialog.

After selecting thefile, the Define Data Type/Range dialog appears. First,
choose the field type. Since the data file is delimited by tabs (or whitespace)
select the Delimited button. In the Data Starts at Linefield, specify to begin
reading the data at line 3, not line 1, since there are two comment lines at the
beginning of thefile. Click Next to continue.

In the Define Delimiter /Fields dialog box, select Tab as the delimiter between
dataelements since it is known that tabs were used in the original file. Click
Next.

In the Field Specification dialog box, name each field as follows:
e Click on thefirst row (row 1). In the Namefield, enter time.
* Select the second row and enter temperaturel.

¢ Sdlect the third row and enter temperature?2.

Click Finish.

Type the following line at the IDL command linetoread intheplot. txt file
using the custom template, plotTemplate:

IDL Reference Guide

Chapter 3: Routines: A 117
PLOT_ASCII = READ_ASCII (FILEPATH('plot.txt',6 SUBDIRECTORY = $
['examples', 'data']), TEMPLATE = plotTemplate)
8. Enter the following lineto print the plot . txt file data
PRINT, PLOT_ASCII

The file contents are printed in the Output Log window. Your output will
resemble the following display.

[TL+ PRINT, PLOT_SSCIT
i 1 1z

2.90000 2, 20000
1.90000 3.90000

.. w s
H
-
4] | 3

Marne | Type ‘ Value
PLOTTEMPLATE STRUCT { <Anorymausy
PLOT_ASCI STRUCT { <Anonymouss

[* T2 T Locals (Params', Common), System, [4] | |

Figure 3-5: PLOT_ASCII Printout

9. Create a SAVE file of your custom template by entering the following:
SAVE, plotTemplate, FILENAME='myPlotTemplate.sav'

10. To restore the template so that you can read another ASCI| file, enter:
RESTORE, 'myPlotTemplate.sav'

Thisfile contains your custom ASCII template information stored in the
structure variable, plotTemplate.

Note
If you are attempting to restore afile that is not in your current working
directory, you will need to specify a path to thefile.

11. After restoring your custom template, you can read another ASCI| filethat is
delimited in the same way as the original file by using the READ_ASCI|I
function and specifying plotTemplate forthe TEMPLATE:

PLOT_ASCII = READ_ASCII(FILEPATH('plot.txt',6 $
SUBDIRECTORY = ['examples', 'data'l), $
TEMPLATE = plotTemplate)

12. Enter the following to display the contents of the file using the customized
ASCII template structure previously defined using the dialog.

IDL Reference Guide ASCII_TEMPLATE

118

PRINT, PLOT_ASCII

Version History

Chapter 3: Routines: A

5.0 Introduced

See Also

QUERY_ASCII, READ_ASCII, BINARY_TEMPLATE

ASCII_TEMPLATE

IDL Reference Guide

Chapter 3: Routines: A 119

ASIN

The ASIN function returns the angle, expressed in radians, whose sineis X (i.e., the
arc-sine).

For real input, the range of ASIN is between -rt/2 and /2.
For input of acomplex number, Z = X +iY, the complex arcsineis given by,
asin(Z) = asin(B) +i alog(A + sqrt(A2- 1)) if Y >=0
asin(Z) = asin(B) - i alog(A + sqrt(AZ- 1)) if Y <0
where
A =05 sgrt((X + 1)2+ Y2 + 0.5 sgrt((X - 1)2 + Y?)
B = 0.5 sgrt((X + 1)% + Y?) - 0.5 sgrt((X - 1)% + Y?)

The separation of the two formulas at Y = 0 takes into account the branch-cut
discontinuity along the real axisfrom - to -1 and +1 to +e0, and ensures that
sin(asin(2)) isequal to Z. For reference, see formulas 4.4.37-39 in Abramowitz, M.
and Stegun, 1.A., 1964: Handbook of Mathematical Functions (Washington: National
Bureau of Standards).

Syntax
Result = ASIN(X)
Return Value
Returns the angle, expressed in radians, whose sineis X (i.e., the arc-sine).
Arguments
X

The sine of the desired angle. For real input, X should beintherange-1to+1. If X is
double-precision floating or complex, the result is of the same type. All other types
are converted to single-precision floating-point and yield floating-point results. If X
isan array, the result has the same structure, with each element containing the arcsine
of the corresponding element of X.

IDL Reference Guide ASIN

120

ASIN

Chapter 3: Routines: A

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords' for details.

Examples

Find the angle whose sine is 0.707 and print the result in degrees by entering:

PRINT, 180/!PI*ASIN(0.707)
IDL prints:
44.9913

Find the complex arcsine of 2 + i and print the result by entering:

PRINT, ASIN(COMPLEX(2,1))
IDL prints:
(1.06344, 1.46935)

See the ATAN function for an example of visualizing the complex arcsine.

Version History

Origina Introduced

See Also

ACOS, COS, COSH, SIN, SINH, ATAN, TAN, TANH

IDL Reference Guide

Chapter 3: Routines: A 121

ASSOC

The ASSOC function associates an array structure with afile. It provides abasic
method of random access input/output in IDL.

Note
Unformatted data files generated by FORTRAN programs under UNIX contain an
extralong word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. Thisistrue even
if the F77_UNFORMATTED keyword is specified in the
OPENR/OPENU/OPENW statement. Therefore, ASSOC should not be used with
such files. Instead, such files should be processed using READU and WRITEU. An
example of using IDL to read such datais given in “Using Unformatted
Input/Output” (Chapter 18, Application Programming).

Note
Associated file variables cannot be used for output with files opened using the
COMPRESS keyword to OPEN. Thisis due to the fact that it is not possible to
move the current file position backwards in a compressed file that is currently open
for writing. ASSOC is allowed with compressed files opened for input only.
However, such operations may be slow due to the large amount of work required to
change the file position in a compressed file.

Effective use of ASSOC requires the ahility to rapidly position the file to arbitrary
positions. In general, files that require random access may not be good candidates
for compression. If thisis necessary however, such files can be processed using
READU and WRITEU.

Syntax
Result = ASSOC(Unit, Array_Structure [, Offset] [, /PACKED])
Return Value
Returns avalue that when assigned to a variable, stores the association between an

array structure and afile in an associated variable. This variable provides a means of
mapping afile into vectors or arrays of a specified type and size.

IDL Reference Guide ASSOC

122 Chapter 3: Routines: A

Arguments
Unit
The IDL file unit to associate with Array_Structure.
Array_Structure

An expression of the data type and structure to be associated with Unit are taken from
Array_Structure. The actua value of Array_Structureis not used.

Offset

The offset in the file to the start of the datain thefile, in bytes.
Keywords

PACKED

When ASSOC is applied to structures, the default action isto map the actual
definition of the structure for the current machine, including any holes required to
properly align the fields. (IDL uses the same rules for laying out structures as the C
language). If the PACKED keyword is specified, 1/0 using the resulting variable
instead works in the same manner as READU and WRITEU, and data is moved one
field at atime and there are no alignment gaps between the fields.

Examples

Suppose that the file images . dat holds 5 images as 256-element by 256-element
arrays of bytes. Open thefile for reading and create an associated variable by

entering:
OPENR, 1, 'images.dat' ;Open the file as file unit 1.
A = ASSOC (1, BYTARR (256, 256, /NOZERO)) ;Make an associated
variable.

Now A[Q] correspondsto the first image in thefile, A[1] is the second element, etc.
To display the first image in thefile, you could enter:

TV, A[O0]

The datafor the first image is read and then displayed. Note that the data associated
with A[Q] isnot held in memory. It isread in every timethereis areference to A[Q].
To store the image in the memory-resident array B, you could enter:

B = A[0]

ASSOC IDL Reference Guide

Chapter 3: Routines: A 123

Note
Itisalso possible to refer to individual e ements within an associated array directly,
using multiple subscripts. See“Multiple Subscripts With Associated File Variables”
(Chapter 18, Application Programming) for details and examples.

Version History

Original Introduced

See Also

OPENR/OPENU/OPENW, READU, “Associated Input/Output” (Chapter 18,
Application Programming).

IDL Reference Guide ASSOC

124 Chapter 3: Routines: A

ATAN

The ATAN function returns the angle, expressed in radians, whose tangent is X (i.e.,
the arc-tangent). If two parameters are supplied, the angle whose tangent is equal to
Y/X is returned.

For real input, the range of ATAN is between -n/2 and wt/2 for the single argument
case, and between -t and &t if two arguments are given.

In the single argument case with a complex number, Z = X +iY, the complex
arctangent is given by,

atan(Z) = 0.5 atan(2x, 1 - X2 - y) + 0.25i alog((x? + (y+1)/(x2 + (y-1)2))

In the above formula, the use of the two-argument arctangent separates the solutions
at X = 0 and takes into account the branch-cut discontinuity along the imaginary axis
from -ieo to -i and +i to +iee, and ensuresthat tan(atan(2)) isequal to Z. For reference,
see formulas 4.4.37-39 in Abramowitz, M. and Stegun, |.A., 1964: Handbook of
Mathematical Functions (Washington: National Bureau of Standards).

In the two argument case with two complex numbers Zy and Zx, the complex
arctangent is given by,

atan(Zy, Zx) = -i dog((Zx + iZy)/sqrt(zx? + Zy?))

In the two-argument case (either real or complex), if both arguments are zero, the
result returned is platform-dependent but typically O.

Syntax

Result = ATAN(X [, /PHASE])
or
Result = ATAN(Y, X)

Return Value

Returns the angle, expressed in radians, whose tangent is X (i.e., the arc-tangent). If
two parameters are supplied, the angle whose tangent is equal to Y/X isreturned.

ATAN IDL Reference Guide

Chapter 3: Routines: A 125

Arguments

X

The tangent of the desired angle. If X is double-precision floating or complex, the
result is of the same type. All other types are converted to single-precision floating-
point and yield floating-point results. If X isan array, the result has the same
structure, with each element containing the arctangent of the corresponding element
of X.

An optional argument. If this argument is supplied, ATAN returns the angle whose
tangent is equal to Y/X. If both arguments are arrays, the function matches up the
corresponding elements of X and Y, returning an array with the same dimensions as
the smallest array. If one argument isa scalar and the other argumentsis an array, the
function uses the scalar value with each element of the array, and returns an array
with the same dimensions as the input array.

Keywords
PHASE

If this keyword is set, and the argument is a complex number Z, then the complex

phase angle is computed as ATAN(Imaginary(Z), Real_part(2)). If this keyword is

not set, then the complex arctangent is computed as described above. If the argument

is not complex or if two arguments are present, then this keyword isignored.

Tip
Using the PHA SE keyword is equivalent to computing ATAN(Imaginary(Z),
Rea _part(Z)), but uses less memory and is faster.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide ATAN

126 Chapter 3: Routines: A

Example

Find the angle whose tangent is 0.5 and print the result in degrees by entering:

PRINT, 180/!PI*ATAN(0.5)
IDL prints:
26.5651

Find the angle whose tangent is 0.5, taking into account that the tangent came from
the ratio -0.25/-0.5:

PRINT, 180/!PI*ATAN(-0.25, -0.5)
IDL prints:
-153.435

Find the complex arccosine of 2 + i and print the result by entering:

PRINT, ATAN(COMPLEX(2,1))
IDL prints:
(1.17810, 0.173287)

Create avisualization of the complex arctangent:

Create a grid of complex numbers.

= 100

(FINDGEN (n) -(n-1)/2.0)/(n/4)

= DCOMPLEX (REBIN(x,n,n), REBIN(TRANSPOSE(x),n,n))

;
n
X
Z

; Try any of these transcendental functions:
; ACOS, COS, COSH, ASIN, SIN, SINH,

; ATAN, TAN, TANH, ALOG, EXP

fn = ATAN(z)

ISURFACE, FLOAT(fn), x, x, COLOR=[255, 180, 0]
ISURFACE, IMAGINARY(fn), x, x, COLOR=[0, 150, 255], /OVERPLOT

Version History

Origina Introduced
5.6 Added PHA SE keyword

ATAN IDL Reference Guide

Chapter 3: Routines: A 127

See Also

ACOS, COS, COSH, SIN, ASIN, SINH, TAN, TANH

IDL Reference Guide ATAN

128

Chapter 3: Routines: A

AXIS

AXIS

The AXIS procedure draws an axis of the specified type and sca e at a given position.
It can be used to add additional axesto plots or to draw axes at a specified position.
The new scaleis saved for use by subsequent overplotsif the SAVE keyword
parameter isset. By default, AXISdrawsan X axis. The XAXIS, YAXIS, and ZAXIS
keywords can be used to select a specific axis type and position.

Syntax

AXIS[, X[, Y[, ZI11 [, /ISAVE] [, XAXIS={0| 1} | YAXIS={0 |1} | ZAXIS={0|1]2
|3}] [, /XLOG] [, /YNOZEROQ] [, /YLOG]

Graphics Keywords: [, CHARSIZE=valug] [, CHARTHICK=integer]
[, COLOR=valug] [, /IDATA |, /DEVICE |, INORMAL] [, FONT=integer]
[, /NODATA] [, INOERASE] [, SUBTITLE=string] [, /T3D] [, TICKLEN=value]
[,{X|Y | Z} CHARSIZE=value]
[,{X]Y |Z}GRIDSTY LE=integer{0to 5}]
[, {X]Y | Z} MARGIN=[left, right]]

{X]Y | Z} MINOR=integer]

XY | ZYRANGE=[min, max]]

| Y | Z} STY LE=value]

| Y | Z} THICK =value]

| Y | Z} TICKFORMAT=string]

| Y | Z} TICKINTERVAL= valug]

|Y | Z} TICKLAYOUT=scalar]

| Y | Z} TICKLEN=valug]

|Y | Z} TICKNAME=string_array]

I

I

I

I

I

[,
[{
[{
[{
[{
[+ {
[{
[, {
[{
[{X]Y |Z} TICKS=integer]
[,{X]Y |Z}TICKUNITS=string]
L{X]Y |Z}TICKV=array]
[L{X]|Y |Z}TICK_GET=variable]
[{

[,

Y | Z} TITLE=string]
ZVALUE=value{0to 1}]

X
X
X
X
X
X
X
X
X
X
X
X

IDL Reference Guide

Chapter 3: Routines: A 129

Arguments

X,Y,and Z

Scalars giving the starting coordinates of the new axis. If no coordinates are specified,
the axisisdrawn in its default position as given by the [XY Z]AXIS keyword. When
drawing an X axis, the X coordinate is ignored, similarly the Y and Z arguments are
ignored when drawing their respective axes (i.e., new axes will always point in the
correct direction).

Keywords
SAVE

Set this keyword to indicate that the scaling to and from data coordinates established
by the call to AXISisto be saved in the appropriate axis system variable, X, 1Y, or
1Z. If this keyword is not present, the scaling is not changed.

XAXIS

Set this keyword to draw an X axis. If the X argument is not present, setting XAXIS
equal to 0 draws an axis under the plot window with the tick marks pointing up, and
setting XA XIS equal to one draws an axis above the plot window with the tick marks
pointing down. If the X argument is present, the X axisis positioned accordingly, and
setting XAXIS equal to 0 or 1 causes the tick marks to point up or down, respectively.

XLOG
Set this keyword to specify alogarithmic X axis
YAXIS

Set this keyword to draw aY axis. If the Y argument is not present, setting YAXIS
equal to 0 draws an axis on the left side of the plot window with the tick marks
pointing right, and setting YAXIS equal to one draws an axis on the right side of the
plot window with the tick marks pointing left. If the Y argument is present, the Y axis
is positioned accordingly, and setting YAXIS equal to O or 1 causes the tick marksto
point right or left, respectively.

Note
The YAXIS keyword must be specified in order use any Y* graphics keywords. See
the note under “ Graphics Keywords Accepted” on page 130 for more information.

IDL Reference Guide AXIS

130

AXIS

Chapter 3: Routines: A

YLOG

Set this keyword to specify alogarithmic Y axis.

YNOZERO

Set this keyword to inhibit setting the minimum Y axisvalue to zero when the Y data
are all positive and non-zero, and no explicit minimum Y value is specified (using
YRANGE, or Y.RANGE). By default, the Y axis spans the range of 0 to the
maximum value of Y, in the case of positive Y data. Set bit 4in!Y.STYLE to make
this option the defauilt.

ZAXIS

Set thiskeyword to draw a Z axis. If the Z argument is not present, setting ZAXIS has
the following meanings:

e 0= lower (front) right, with tickmarks pointing left
e 1=lower (front) left, with tickmarks pointing right
e 2= upper (back) left, with tickmarks pointing right
e 3= upper (back) right, with tickmarks pointing left

If the Z argument is present, the Z axis is positioned accordingly, and setting ZAXIS
equal to 0 or 1 causesthetick marksto point left or right, respectively.

Note that AXIS uses the 3D plotting transformation stored in the system variable
field 'PT.

Note
The ZAXI1S keyword must be specified in order use any Z* graphics keywords. See

the note under Graphics Keywords Accepted for more information.

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords” for the description of the following graphics
and plotting keywords:

CHARSIZE, CHARTHICK, COLOR, DATA, DEVICE, FONT, NODATA,
NOERASE, NORMAL, SUBTITLE, T3D, TICKLEN, [XYZ]CHARSIZE,
[XYZ]GRIDSTYLE, [XYZ]JMARGIN, [XYZ]MINOR, [XYZ]RANGE,
[XYZ]STYLE, [XYZ]THICK, [XYZ]TICKFORMAT, [XYZ]TICKINTERVAL,
[XYZ]TICKLAYOUT, [XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS,
[XYZ]TICKUNITS, [XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE

IDL Reference Guide

Chapter 3: Routines: A 131

Note
In order for the Y* or Z* graphics keywords to work with the AXI1S procedure, the
corresponding YAXIS or ZAXIS keyword must be specified. For example, the
following code will not draw atitle for the Y axis:

AXIS, YTITLE ='Y-axis Title'

To use the YTITLE graphics keyword, you must specify the YAXIS keyword to
AXIS:

AXIS, YAXIS = 0, YTITLE ='Y-axis Title'

Because the AXIS procedure draws an X axis by default, it is not necessary to
specify the XAXIS keyword in order to use the X* graphics keywords.

Examples

The AXIS procedure accepts the set of plotting keyword parameters that govern the
scaling and appearance of the axes. Additionally, the keyword parameters XAXIS,
YAXIS, and ZAXIS specify the orientation and position (if no position coordinates
are present) of the axis. The value of these parameters are O for the bottom or |eft axis
and 1 for the top or right. The tick marks and their annotation extend away from the
plot window. For example, specify YAXIS = 1 to draw ay-axis on theright of the
window.

The optional keyword parameter SAV E saves the data-scaling parameters established
for the axisin the appropriate axis system variable, !X, 1Y, or !Z. Any of the
coordinate systems can be used by including the appropriate coordinate keyword in
the call. The coordinate corresponding to the axis direction isignored. When
specifying an x-axis, the x-coordinate parameter isignored, but must be present if
thereisay coordinate.

The following example shows how the AX1S procedure can be used with normal or
polar plots to draw axes through the origin, dividing the plot window into four
quadrants:

; Make the plot, polar in this example, and suppress the X and Y
; axes using the XSTYLE and YSTYLE keywords:
PLOT, /POLAR, XSTYLE=4, YSTYLE=4, TITLE='Polar Plot', r, theta

; Draw an X axis, through data Y coordinate of 0. Because the XAXIS

; keyword parameter has a value of 0, the tick marks point down:
AXIS,0,0,XAX=0, /DATA

IDL Reference Guide AXIS

132

AXIS

Chapter 3: Routines: A

; Similarly, draw the Y axis through data X = 0. The tick marks
; point left:
AXIS,0,0,0,YAX=0, /DATA

Drawing Axes with a Different Scale

The figure shown below illustrates using AXIS to draw axes with a different scale,
opposite the main x- and y-axes. The plot is produced using PLOT with the bottom
and left axes annotated and scaled in units of days and degrees Fahrenheit. The
XMARGIN and YMARGIN keyword parameters are specified to allow additional
room around the plot window for the new axes. The keyword parameters XSTYLE =
8 and YSTYLE = 8inhibit drawing the top and right axes.

Month
Ja Fe Mo Ap Wo Ju Ju Au 58 O¢ Mo Da

lﬁ 80 | 195
F =
g 7OF 1205
— E E H
5 BOF 5O
b 1w
g 5":1;‘ ‘:H'Jﬁ
Pt E . on
o 401 v 8
A B30k 30
0 100 200 300 400

Day of Year
Denver Average Temperature

Figure 3-6: A plot created with the AXIS procedure

Next, the AXIS procedure is called to draw the top, XAXIS =1, axis, labeled in
months. Eleven tick intervals with 12 tick marks are drawn. The x value of each
monthly tick mark isthe day of the year that is approximately the middle of the
month. Tick-mark names come from the MONTH string array.

Theright y-axis, YAXIS = 1, isdrawn in the same manner. The new y-axisrangeis
set by converting the original y-axis minimum and maximum values, saved by PLOT
in 1Y.CRANGE, from Fahrenheit to Celsius, using the formula C = 5(F-32)/9. The

IDL Reference Guide

Chapter 3: Routines: A 133

keyword parameter ysTYLE = 1 forcesthe y-axis range to match the given range
exactly. The program is asfollows:

; Plot the data, omit right and top axes:
PLOT, DAY, TEMP, /YNOZERO, $

SUBTITLE = 'Denver Average Temperature',K $
XTITLE = 'Day of Year', $
YTITLE = 'Degrees Fahrenheit',K $

XSTYLE=8, YSTYLE=8, XMARGIN=[8, 8], YMARGIN=[4, 4]

; Draw the top x-axis, supplying labels, etc.

; Make the characters smaller so they will fit:

AXIS, XAXIS=1, XTICKS=11l, XTICKV=DAY, XTICKN=MONTH, $
XTITLE='Month', XCHARSIZE = 0.7

; Draw the right y-axis. Scale the current y-axis minimum

; values from Fahrenheit to Celsius and make them

; the new min and max values. Set YSTYLE=1 to make axis exact.

AXIS, YAXIS=1, YRANGE = (!Y.CRANGE-32)*5./9., YSTYLE = 1, §$
YTITLE = 'Degrees Celsius'

Example Code
The code above isincluded in the batch file p1ot 09 in the examples/doc/plot
subdirectory of the IDL distribution.

Using AXIS with Polar Plots

If the POLAR keyword parameter is set, the IDL PLOT procedure convertsits
coordinates from polar to Cartesian coordinates when plotting. The first parameter to
plot isthe radius, R, and the second is the angle 6 (expressed in radians). Polar plots
are produced using the standard axis and label styles, with box axes enclosing the plot
area.

The following figure illustrates using AXIS to draw centered axes, dividing the plot
window into the four quadrants centered about the origin. This method uses PLOT to
plot the polar data and to establish the coordinate scaling, but suppresses the axes.
Next, two callsto AXIS add the x- and y-axes, drawn through data coordinate (0, 0).

IDL Reference Guide AXIS

134 Chapter 3: Routines: A

Folar Plot

Figure 3-7: Using AXIS for polar plots

; Make a radius vector:

R = FINDGEN (100)

; Make a vector:

THETA = R/5

; Plot the data, suppressing the axes by setting their styles to 4:
PLOT, R, THETA, SUBTITLE='Polar Plot', XSTY=4, YSTY=4, /POLAR
AXIS, 0, 0, XAX=0

; Draw the x and y axes through (0, 0):

AXIS, 0, 0, YAX=0

Example Code
The code above isincluded in the batch file p1ot 09 in the examples/doc/plot

subdirectory of the IDL distribution.

Version History

Origina Introduced

AXIS IDL Reference Guide

Chapter 3: Routines: A 135

See Also

LABEL_DATE, PLOT

IDL Reference Guide AXIS

Chapter 4
Routines: B

IDL Reference Guide 136

Chapter 4: Routines: B 137

BAR PLOT

The BAR_PLOT procedure creates abar graph. This routine iswritten in the IDL
language. Its source code can be found in thefile bar_plot.prointhelib
subdirectory of the IDL distribution.

Syntax

BAR_PLOT, Values [, BACKGROUND=color_index]
[, BARNAMES=string_array] [, BAROFFSET=scalar] [, BARSPACE=scalar]
[, BARWIDTH=value] [, BASELINES=vector] [, BASERANGE=scalar{ 0.0 to
1.0}] [, COLORS=vector] [, /OUTLINE] [, /OVERPLOT] [, /ROTATE]
[, TITLE=string] [, XTITLE=string] [, Y TITLE=string]

Arguments

Values

A vector containing the values to be represented by the bars. Each element in Values
corresponds to a single bar in the output.

Keywords
BACKGROUND

A scalar that specifiesthe color index to be used for the background color. By defaullt,
the normal IDL background color is used.

BARNAMES

A string array, containing one string label per bar. If the bars are vertical, the labels
are placed beneath them. If horizontal (rotated) bars are specified, the labels are
placed to the left of the bars.

BAROFFSET

A scalar that specifies the offset to be applied to the first bar, in units of “nominal bar
width”. This keyword allows, for example, different groups of barsto be overplotted
on the same graph. If not specified, the default offset is equal to BARSPACE.

IDL Reference Guide BAR_PLOT

138

Chapter 4: Routines: B

BARSPACE

A scalar that specifies, in units of “nominal bar width”, the spacing between bars. For
example, if BARSPACE is 1.0, then all barswill have one bar-width of space between
them. If not specified, the bars are spaced apart by 20% of the bar width.

BARWIDTH

A floating-point value that specifies the width of the barsin units of “nominal bar
width”. The nominal bar width is computed so that al the bars (and the space
between them, set by default to 20% of the width of the bars) will fill the available
space (optionally controlled with the BASERANGE keyword).

BASELINES

A vector, the same size as Values, that contains the base val ue associated with each
bar. If not specified, a base value of zero isused for dl bars.

BASERANGE

A floating-point scalar in the range 0.0 to 1.0, that determines the fraction of the total
available plotting area (in the direction perpendicular to the bars) to be used. If not
specified, the full available areais used.

COLORS

A vector, the same size as Values, containing the color index to be used for each bar.
If not specified, the colors are sel ected based on spacing the color indices as widely
as possible within the range of available colors (specified by !D.N_COLORS).

OUTLINE
If set, this keyword specifies that an outline should be drawn around each bar.
OVERPLOT

If set, this keyword specifies that the bar plot should be overplotted on an existing
graph.

ROTATE

If set, thiskeyword indicatesthat horizontal rather than vertical bars should be drawn.
The bases of horizontal bars are on the left, “Y” axis and the bars extend to the right.

BAR_PLOT IDL Reference Guide

Chapter 4: Routines: B 139

TITLE

A string containing the main title for the bar plot.
XTITLE

A string containing the title for the X axis.
YTITLE

A string containing thetitle for the Y axis.

Examples

By using the overplotting capahility, it isrelatively easy to create stacked bar charts,
or different groups of bars on the same graph.

Thefollowing example creates atwo-dimensional array of 5 columns and 8 rows, and
creates a plot with 5 bars, each of which isa* stacked” composite of 8 sections.

;Handle TrueColor displays:
DEVICE, DECOMPOSED=0

;Load color table:
LOADCT, 5

;Make axes black:
I'P.COLOR=0

;Create 5-column by 8-row array:
array = INDGEN(5, 8)

;Create a 2D array, equal in size to array, that has identical
;color index values across each row to ensure that the same item is
;represented by the same color in all bars:

colors = INTARR(5, 8)

FOR I = 0, 7 DO colors[*,I]1=(20*I)+20

;With arrays and colors defined, create stacked bars (note that
;the number of rows and columns is arbitrary):

;Scale range to accommodate the total bar lengths:
!Y.RANGE = [0, MAX(array)]

nrows = N_ELEMENTS (array [0, *])

base = INTARR (nrows)

IDL Reference Guide BAR_PLOT

140 Chapter 4: Routines: B

FOR I = 0, nrows-1 DO BEGIN
BAR_PLOT, array[*,I], COLORS=colors[*,I], BACKGROUND=255, $
BASELINES=base, BARWIDTH=0.75, BARSPACE=0.25, OVER=(I GT 0)
base = arrayl[*,I]
ENDFOR

;To plot each row of array as a clustered group of bars within the
;same graph, use the BASERANGE keyword to restrict the available
;plotting region for each set of bars, where NCOLS is the number of
;columns in array. (In this example, each group uses the same set
;of colors, but this could easily be changed.):

ncols = N_ELEMENTS (array[*,0])
FOR I = 0, nrows-1 DO BEGIN
BAR_PLOT, arrayl[*,I], COLORS=colors[*,I], BACKGROUND=255, $
BARWIDTH=0.75, BARSPACE=0.25, BAROFFSET=I*(1l.4*ncols), $
OVER=(I GT 0), BASERANGE=0.12
ENDFOR

Version History

Pre 4.0 I ntroduced

See Also

PLOT, PSYM Graphics Keyword

BAR_PLOT IDL Reference Guide

Chapter 4: Routines: B

BEGIN...END

141

The BEGIN...END statement defines a block of statements. A block of statementsis
agroup of statementsthat is treated as a single statement. Blocks are necessary when
more than one statement is the subject of a conditional or repetitive statement. For

more information on using BEGIN...END and other IDL program control statements,
see Chapter 7, “Program Control” (Application Programming).

Syntax

BEGIN

statements

END | ENDIF | ENDELSE | ENDFOR | ENDREP | ENDWHILE

The END identifier used to terminate the block should correspond to the type of

statement in which BEGIN is used. The following table lists the correct END
identifiersto use with each type of statement.

Statement IdeEnI\tliI?ier Example

ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEGIN
END?Z;E

FOR variable=init, limit DO ENDFOR FOR i=1,5 DO BEGIN

BEGIN PRINT, arrayl[i]
ENDFOR

IF expression THEN BEGIN ENDIF IF (0) THEN BEGIN
END?;I

REPEAT BEGIN ENDREP REPEAT BEGIN
END?E; éN;‘Ii A GT B

IDL Reference Guide

Table 4-1: Types of END Identifiers

BEGIN...

END

142 Chapter 4: Routines: B

END
Statement Identifier Example

WHILE expression DO BEGIN | ENDWHIL | WHILE ~ EOF (1) DO BEGIN

E READF, 1, A, B, C
ENDWHILE
LABEL: BEGIN END LABELl: BEGIN
PRINT, A
END
case_expression: BEGIN END CASE name OF

'Moe': BEGIN
PRINT, 'Stooge'
END
ENDCASE

switch_expression: BEGIN END SWITCH name OF
'Moe': BEGIN
PRINT, 'Stooge'
END
ENDSWITCH

Table 4-1: Types of END ldentifiers (Continued)

Note
CASE and SWITCH also have their own END identifiers. CASE should always be
ended with ENDCASE, and SWITCH should aways be ended with ENDSWITCH.

Version History

Origina Introduced

See Also

BREAK, CASE, CONTINUE, FOR, GOTO, IF..THEN...ELSE, REPEAT...UNTIL,
SWITCH, WHILE...DO, Chapter 7, “Program Control” (Application Programming)

BEGIN...END IDL Reference Guide

Chapter 4: Routines: B 143

BESELI

The BESEL | function returnsthe | Bessel function of order N for the argument X.
The BESELI function is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELI(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the | EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range -709 to 7009.

Note
If Xisnegative then N must be an integer (either positive or negative).

N

A scalar or array specifying the order of the Bessdl function to calculate. Valuesfor N
can be integers or real numbers. If N is negative then it must be an integer.

IDL Reference Guide BESELI

144

Keywords

DOUBLE

Chapter 4: Routines: B

Set this keyword equal to oneto return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return asingle-precision result if both inputs are single precision,

and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of

iterations.

Note

If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plotsthe | and K Bessdl functions for orders 0, 1 and 2:

X = FINDGE

;Plot I and K Bessel Functions:

N (40) /10

PLOT, X, BESELI (X, 0), MAX_VALUE=4, $
TITLE = 'I and K Bessel Functions'

OPLOT, X, BESELI(X, 1)

OPLOT, X, BESELI (X, 2)

OPLOT, X, BESELK (X, 0), LINESTYLE=2

OPLOT, X, BESELK(X, 1), LINESTYLE=2

OPLOT, X, BESELK(X, 2), LINESTYLE=2

;Annotate plot:

xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]

ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]

labels = ['!8K!X!DO','!8K!X!D1',"!18K!X!D2','!18I!X!D0"',
"18I!X!ID1', "18I!X!D2"']

XYOUTS, xcoords, ycoords, labels, /DATA

BESELI

IDL Reference Guide

Chapter 4: Routines: B 145

Thisresultsin the following plot:

| ond K Bessel Functions
4_"'|""'|"'|""""'|""""'

Figure 4-1: | and K Bessel Functions.

For an example calculating the accuracy of the Bessel function, see* Example 2" for
the BESEL J routine.

Version History

Origina Introduced
5.6 Added DOUBLE and ITER keywords
See Also

BESELJ, BESELK, BESELY

IDL Reference Guide BESELI

146 Chapter 4: Routines: B

BESELJ

The BESEL J function returns the J Bessel function of order N for the argument X.
The BESEL Jfunction is adapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELJ(X, N [, /DOUBLE] [, ITER=variabl€])

Return Value

If both arguments are scalars, the function returns a scalar. |f both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If X is double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the | EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range -10° to 108,

Note
If Xisnegative then N must be an integer (either positive or negative).

N

A scalar or array specifying the order of the Bessdl function to calculate. Vauesfor N
can beintegers or real numbers. If N is negative then it must be an integer.

BESELJ IDL Reference Guide

Chapter 4: Routines: B 147

Keywords

DOUBLE

Set this keyword equal to oneto return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return asingle-precision result if both inputs are single precision,
and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

Example 1

The following example plotsthe Jand Y Bessel functions for orders 0, 1, and 2:

X = FINDGEN(100)/10

;Plot J and Y Bessel Functions:

PLOT, X, BESELJ (X, 0), TITLE = 'J and Y Bessel Functions'
OPLOT, X, BESELJ(X, 1)

OPLOT, X, BESELJ (X, 2)

OPLOT, X, BESELY (X, 0), LINESTYLE=2

OPLOT, X, BESELY (X, 1), LINESTYLE=2

OPLOT, X, BESELY (X, 2), LINESTYLE=2

;Annotate plot:

xcoords = [1, 1.66, 3, .7, 1.7, 2.65]

ycoords = [.8, .62,.52, -.42, -.42, -.42]

labels = ['!8J!X!D0O','!8J!X!D1','18J!X!D2','18Y!X!ID0"',
"18Y!X!IDL', '18Y!XID2']

XYOUTS, xcoords, ycoords, labels, /DATA

IDL Reference Guide BESELJ

148

BESELJ

Chapter 4: Routines: B

Thisresultsin the following plot:

J and ¥ Bessel Funclions
1.0 L e . D A A R |

Figure 4-2: The J and Y Bessel Functions.

Example 2

Different order Bessel functions have recurrence relationships to each other. These
rel ationships can be used to determine how accurately IDL is computing the Bessel
functions. In the following example, the recurrence relationships for each order are
set to zero and the | eft side of the equations are plotted. The plots show how close the
left side of the equations are to zero, and therefore, how accurate IDL’s computation
of the Bessel functions are.

This example uses the following recurrence relationship:
X(Jh_1(X) +Jy41(X))=2nJ(X) = 0

where J(X) isthe Bessel function of thefirst kind of order n—1, n, or n + 1. (Similar
recurrence relationships could be used for the other forms of the Bessel function.)
Results are plotted for n equal to 1 through 6.

IDL Reference Guide

Chapter 4: Routines: B 149

PRO AnalyzingBESELJ

; Derive x values.
x = (DINDGEN(1000) + 1.)/100.

; Initialize display window.
WINDOW, 0, TITLE = 'Bessel Functions'

; Display the first 8 orders of the Bessel function of
; the first kind.
PLOT, x, BESELJ(x, 0), /XSTYLE, /YSTYLE, $

XTITLE = 'x', YTITLE = 'f(x)', $
TITLE = 'Bessel Functions of the First Kind'
OPLOT, x, BESELJ(x, 1), LINESTYLE = 1
OPLOT, x, BESELJ(x, 2), LINESTYLE = 2
OPLOT, x, BESELJ(x, 3), LINESTYLE = 3
OPLOT, x, BESELJ(x, 4), LINESTYLE = 4
OPLOT, x, BESELJ(x, 5), LINESTYLE = 5
OPLOT, x, BESELJ(x, 6), LINESTYLE = 0
OPLOT, x, BESELJ(x, 7), LINESTYLE = 1

; Initialize display window for recurrence relations.
WINDOW, 1, XSIZE = 896, YSIZE = 512, S

TITLE = 'Testing the Recurrence Relations'
!'P.MULTI = [0, 2, 3, 0, 0]

; Initialize title variable.
nstring: [|O|, llll |2ll |3|, '4'1 |5ll |6|, l7l]

; Display recurrence relationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n = 1, 6 DO BEGIN

equation = x* (BESELJ(x, (n - 1)) + $

BESELJ (x, (n + 1))) - 2.*FLOAT(n)*BESELJ (x, n)

PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $
TITLE = 'n = ' + nString[n] + ': Orders of ' + $
nString[n - 1] + ', ' + nString[n] + ', and ' + $
nString[n + 1]

PRINT, 'm = ' + nString[n] + ': !

PRINT, 'minimum = ', MIN(equation)

PRINT, 'maximum = ', MAX(equation)

ENDFOR

; Return display window back to its default setting, one
; display per window.
'P.MULTI = 0

END

IDL Reference Guide BESELJ

150 Chapter 4: Routines: B

The results for this example are shown in the following figure.

no=1: Orders of 0. 1, ond 2 _ n=2 Ordersof 1.2 ond 3
=l

Figure 4-3: Recurrence Relationship for J(x)

All of these plots show that this Bessel function is cal culated accurately within
machine tolerance.

Version History

Original Introduced
5.6 Added DOUBLE and ITER keywords
See Also

BESELI, BESELK, BESELY

BESELJ IDL Reference Guide

Chapter 4: Routines: B 151

BESELK

The BESELK function returnsthe K Bessdl function of order N for the argument X.
The BESELK functionisadapted from “SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELK(X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If Xis double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the | EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be greater than or equal to zero.

N

A scalar or array specifying the order of the Bessdl function to calculate. Vauesfor N
can be integers or real numbers. If N is negative then it must be an integer.

IDL Reference Guide BESELK

152

Keywords

DOUBLE

Chapter 4: Routines: B

Set this keyword equal to oneto return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return asingle-precision result if both inputs are single precision,

and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of

iterations.

Note

If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plotsthe | and K Bessdl functions for orders 0, 1 and 2:

X = FINDGE

;Plot I and K Bessel Functions:

N (40) /10

PLOT, X, BESELI (X, 0), MAX_VALUE=4, $
TITLE = 'I and K Bessel Functions'

OPLOT, X, BESELI(X, 1)

OPLOT, X, BESELI (X, 2)

OPLOT, X, BESELK (X, 0), LINESTYLE=2

OPLOT, X, BESELK(X, 1), LINESTYLE=2

OPLOT, X, BESELK(X, 2), LINESTYLE=2

;Annotate plot:

xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]

ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]

labels = ['!8K!X!DO','!8K!X!D1',"!18K!X!D2','!18I!X!D0"',
"18I!X!ID1', "18I!X!D2"']

XYOUTS, xcoords, ycoords, labels, /DATA

BESELK

IDL Reference Guide

Chapter 4: Routines: B

153

Thisresultsin the following plot:

| ond K Bessel Functions

T T T

Figure 4-4: |1 and K Bessel Functions.

For an example calculating the accuracy of the Bessel function, see* Example 2" for
the BESEL J routine.

Version History

Origina

Introduced

5.6

Added DOUBLE and ITER keywords

See Also

BESELI, BESELJ, BESELY

IDL Reference Guide

BESELK

154 Chapter 4: Routines: B

BESELY

The BESELY function returnsthe Y Bessdl function of order N for the argument X.
The BESELY function is adapted from “ SPECFUN - A Portable FORTRAN Package
of Special Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax

Result = BESELY (X, N [, /DOUBLE] [, ITER=variable])

Return Value

If both arguments are scalars, the function returns a scalar. |f both arguments are
arrays, the function matches up the corresponding elements of X and N, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the smallest input array.

If X is double-precision, the result is double-precision, otherwise the result is single-
precision.

Note
If the function does not converge for an element of X, the corresponding element of

the Result array will be set to the | EEE floating-point value NaN.

Arguments

X

A scalar or array specifying the values for which the Bessel function is required.
Values for X must be in the range 0 to 108,

N

A scalar or array specifying the order of the Bessdl function to calculate. Vauesfor N
can be integers or real numbers. If N is negative then it must be an integer.

BESELY IDL Reference Guide

Chapter 4: Routines: B 155

Keywords

DOUBLE

Set this keyword equal to oneto return adouble-precision result, or to zero to return a
single-precision result. The computationswill always be done using double precision.
The default isto return asingle-precision result if both inputs are single precision,
and to return a double-precision result in all other cases.

ITER

Set this keyword equal to a named variable that will contain the number of iterations
performed. If the routine converged, the stored value will be equal to the order N. If X
or N are arrays, ITER will contain a scalar representing the maximum number of
iterations.

Note
If the routine did not converge for an element of X, the corresponding element of the
Result array will be set to the |EEE floating-point value NaN, and ITER will
contain the largest order that would have converged for that X value.

Examples

The following example plotsthe Jand Y Bessel functionsfor orders 0, 1, and 2:

X = FINDGEN(100)/10

;Plot J and Y Bessel Functions:
PLOT, X, BESELJ (X, O TITLE = 'J and Y Bessel Functions'

)
OPLOT, X, BESELJ(X, 1)
OPLOT, X, BESELJ (X, 2)
OPLOT, X, BESELY (X, 0), LINESTYLE=2
OPLOT, X, BESELY (X, 1), LINESTYLE=2
OPLOT, X, BESELY (X, 2), LINESTYLE=2
;Annotate plot:
xcoords = [1, 1.66, 3, .7, 1.7, 2.65]
ycoords = [.8, .62,.52, -.42, -.42, -.42]
labels = ['!8J!X!D0O','!8J!X!D1','18J!X!D2','18Y!X!D0"',

"18Y!X!IDL', '18Y!XID2']

XYOUTS, xcoords, ycoords, labels, /DATA

IDL Reference Guide BESELY

156 Chapter 4: Routines: B

Thisresultsin the following plot:

J and ¥ Bessel Funclions
1.0 L e . D A A R |

Figure 4-5: The J and Y Bessel Functions.

For an example calculating the accuracy of the Bessel function, see* Example 2" for
the BESEL J routine.

Version History

Origina Introduced
5.6 Added DOUBLE and ITER keywords
See Also

BESELI, BESELJ, BESELK

BESELY IDL Reference Guide

Chapter 4: Routines: B 157

BETA

The BETA function returns the value of the beta function B(Z, W). Thisroutineis
written in the IDL language. Its source code can be found inthefilebeta.pro inthe
1ib subdirectory of the IDL distribution.

Syntax
Result = BETA(Z, W[, /DOUBLE])
Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of Z and W, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If both of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

Z, W

The point at which the betafunction is to be evaluated. Z and W can be scalar or array.
Z or W may be complex.

Keywords
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established

IDL Reference Guide BETA

158 Chapter 4: Routines: B

by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords' for details.

Examples

To evaluate the beta function at the point (1.0, 1.1) and print the result:
PRINT, BETA(1.0, 1.1)
IDL prints:
0.909091
The exact solution is:
((1.00 * .95135077) / (1.10 * .95135077)) = 0.909091.

Version History

40.1 Introduced
5.6 Added Z and W arguments to accept complex input
See Also

GAMMA, IBETA, IGAMMA, LNGAMMA

BETA IDL Reference Guide

Chapter 4: Routines: B 159

BILINEAR

The BILINEAR function uses abilinear interpolation a gorithm to compute the value
of adataarray at each of a set of subscript values.

Thisroutineis written in the IDL language. Its source code can be found in the file
bilinear.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = BILINEAR(P, IX, JY [, MISSING=valug])

Return Value

This function returns atwo-dimensional interpolated array of the same type as the
input array.

Arguments
P

A two-dimensional data array.

IXand JY

Arrays containing the X and Y “virtual subscripts’ of P for which to interpolate
values. | X and JY can be either of the following:

¢ One-dimensional, n-element floating-point arrays of subscriptsto look upin P.
One-dimensional arrays will be converted to two-dimensional arraysin such a
way that 1X contains n identical rows and JY contains n identical columns.

» Two-dimensional, n-element floating-point arrays that uniquely specify the X
subscripts (the | X array) and the Y subscripts (the JY array) of the points to be
computed from the input array P.

Note
L ocation points outside the bounds of the array P—that is, elements of the IX or I'Y
arguments that are either less than zero or greater than the largest subscript in the
corresponding dimension of P — are interpolated to the closest value within the
bounds of the array P.

IDL Reference Guide BILINEAR

160

Chapter 4: Routines: B

It is better to use two-dimensional arrays for | X and JY because the algorithm is
somewhat faster. If 1X and JY are specified as one-dimensional, the returned two-
dimensional arrays X and JY can be re-used on subsequent callsto take advantage of
the faster 2D a gorithm.

Keywords

MISSING

The valueto return for elements outside the bounds of P. The bounds of P are 0 to n-1
and 0 to m-1 where P isan n x marray.

Note
If MISSING valueis set to acomplex number, IDL uses only the real part.

Examples

BILINEAR

Create a3 x 3 floating point array P:
P = FINDGEN(3, 3)

Suppose we wish to find the value of apoint half way between the first and second
elements of the first row of P. Create the subscript arrays | X and JY:

IX 0.5 ;Define the X subscript.

JY 0.0 ;Define the Y subscript.

Z = BILINEAR(P, IX, JY) ;Interpolate.

PRINT, Z ;Print the value at the point IX,JY within P.

IDL prints:
0.500000

Suppose we wish to find the values of a2 x 2 array of pointsin P. Create the subscript
arrays IX and JY:

IX [[0.5, 1.9], [1.1, 2.2]] ;Define the X subscripts.
JY [[0.1, 0.9], [1.2, 1.8]] ;Define the Y subscripts.
Z = BILINEAR(P, IX, JY) ;Interpolate.
PRINT, Z ;Print the array of values.

IDL prints:

0.800000 4.60000
4.70000 7.40000

IDL Reference Guide

Chapter 4: Routines: B 161
Version History
Original Introduced
6.1 Added MISSING keyword
See Also
INTERPOL, INTERPOLATE, KRIG2D
IDL Reference Guide BILINEAR

162 Chapter 4: Routines: B

BIN_DATE

The BIN_DATE function converts a standard form ASCII date/time string to abinary
string.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
bin_date.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = BIN_DATE(Ascii_Time)

Return Value

The function returns a six-element integer array where:
e Element Oistheyear (e.g., 1994)
e Element 1 isthe month (1-12)
e Element 2 isthe day (1-31)
e Element 3isthe hour (0-23)
e Element 4 is minutes (0-59)

e Element 5is seconds (0-59)
Arguments
Ascii_Time

A string containing the date/time to convert in standard ASCII format. If this
argument is omitted, the current date/time is used. Standard form is a 24 character
string:

DOW MON DD HH:MM:SS YYYY

where DOW is the day of the week, MON is the month, DD isthe day of month,
HH:MM:SSisthetimein hours, minutes, second, and YYYY isthe year.

Keywords

None.

BIN_DATE IDL Reference Guide

Chapter 4: Routines: B 163
Version History
Pre 4.0 Introduced
See Also
CALDAT, JULDAY, SYSTIME
IDL Reference Guide BIN_DATE

164 Chapter 4: Routines: B

BINARY_TEMPLATE

The BINARY _TEMPLATE function presents agraphical user interface which alows
the user to interactively generate atemplate structure for use with READ_BINARY.

The graphical user interface allows the user to define one or more fieldsin the binary
file. Thefile may be big, little, or native byte ordering.

Individua fields can be edited by the user to define the dimensionality and type of
datato be read. Where necessary, fields can be defined in terms of other previously
defined fields using IDL expressions. Fields can also be designated as “ Verify”.
When afileisread using atemplate with “Verify” fields, those fields will be checked
against a user defined value supplied via the template.

Note
Greater than (“>") and less than (“<") symbols can appear in the “New Field” and
the “Modify Field” dialogs where the offset value is displayed. The presence of
either symbol indicates that the supplied offset value is “relative” from the end of
the previous field or from the initial position in the file. Greater than means off set
forward. Less than means offset backward. “>0" and “<0” are synonymous and
mean “ offset zero bytes’. You can delete these special symbols (thereby indicating
that their corresponding offset valueis not “relative”’) by typing over them in the
“New Field” or “Modify Field” dialogs.

Syntax

Result = BINARY_TEMPLATE ([Filename] [, CANCEL=variable]
[, GROUP=widget_id] [, N_ROWS=rows] [, TEMPLATE=variable])

Return Value
This function returns an anonymous structure that contains the template. If the user
cancels out of the graphical user interface and no initial template was supplied, it
returns zero.

Arguments

Filename

A scalar string containing the name of a binary file which may be used to test the
template. Asthe user interacts with the BINARY _TEMPLATE graphical user

BINARY_TEMPLATE IDL Reference Guide

Chapter 4: Routines: B 165

interface, the user’s input will be tested for correctness against the binary datain the
file. If filename is not specified, adialog alows the user to choose thefile.

Keywords

CANCEL

Set this keyword to a named variable that will contain the byte value 1 if the user
clicked the “ Cancel” button, or O otherwise.

GROUP

Thewidget ID of an existing widget that serves as “group leader” for the
BINARY_TEMPLATE interface. When a group leader iskilled, for any reason, al
widgets in the group are a so destroyed.

N_ROWS

Set this keyword to the number of rowsto be visiblein the BINARY _TEMPLATE's
table of fields.

Note
The N_ROWS keyword is analogous to the WIDGET_TABLE and the

Y _SCROLL_SIZE keywords.

TEMPLATE

Set this keyword to structure variable containing an initial template (usually from a
previouscall to BINARY _TEMPLATE). Thistemplate structure will be used to fill in
theinitial fieldsin the new BINARY_TEMPLATE. If TEMPLATE is specified and
the user cancels out of the dialog, the specified template will be returned as the

Result.

Examples

Use the following command to launch the Binary Template dialog so that a structure
can be defined for thefile, head. dat:

sTemplate = BINARY_TEMPLATE (FILEPATH('head.dat',6 $
SUBDIRECTORY=['examples', 'data'l))

IDL Reference Guide BINARY_TEMPLATE

166 Chapter 4: Routines: B

Note
If no filename is supplied in the call to the BINARY_TEMPLATE function, afile
selection dialog is displayed prior to the first BINARY_TEMPLATE screen.

Using the BINARY_TEMPLATE Interface

A binary template describes of the format of the datain abinary file, and can be used
to successfully import binary datafrom any file that shares has structure. The Binary
Template dialog allows you to specify characteristics of each field within a binary
file, and returns a structure containing the template information. The
READ_BINARY function accesses the datain abinary file, using the template to
determine how to import the data correctly. (You only have to explicitly call
READ_BINARY when you call BINARY _TEMPLATE from the command line.
When you start the Binary Template dialog from an iTool or the workbench, the
READ_BINARY routineiscalled for you.)

After starting the Binary Template dialog using one of the methods described in
“Launching the Binary Template Dialog” (Chapter 3, Using IDL), complete the
following stepsto create the template:

1. Seect thebinary file Inthe Select Fileto Open didog, select surface.dat
from the examples\data subdirectory of your IDL distribution. Thisfile
contains an integer array of elevation data of the Maroon Bells mountains, a
group of mountains located among the Rocky Mountains of Colorado.The
Binary Template window is displayed.

2. Definetemplate and data characteristics. Define the following in this
example before defining field information:

e Template Nameof sMarBellsTemplate

« File'shyteorderingissetto Little Endian

BINARY_TEMPLATE IDL Reference Guide

Chapter 4: Routines: B

167

The following table describes each of these options.

Template
name

Enter aname that describes the template. Thisfield is
optional.

File'sbyte
ordering

Select the byte order of the data:

Native — the storage method is native to the machine you
are currently running. Little Endian for Intel
microprocessor-based machines and Big Endian for

M otorola microprocessor-based machines. No byte
swapping will be performed.

Little Endian — the storage method where the |east
significant byte appears first in the number. Given the
hexadecima number A02B, the Little Endian method stores
it as 2BA0. Specify thisif the original file was created on a
machine that uses an Intel microprocessor.

Big Endian — the storage method where the most
significant byte appears first in the number. Given the
hexadecimal number A02B, the big endian method stores it
as A02B. Specify thisif the original file was created on a
machine that uses a Motorola microprocessor.

See “Filesand 1/0O” (Chapter 9, Application Programming)
for more information on byte ordering.

IDL Reference Guide

BINARY_TEMPLATE

168

##l Binary Template [surface.dat] [%]
Template name: ISMarbeIIsTempIate File: byte ardering: ILittIe Endian 'l

Fields:

Chapter 4: Routines: B

Mew Field... | Modify Field... | Bemove Field

Offset Dimensions Return

6] | Cancel |

Figure 4-6: Binary Template

3. OpentheNew Field dialog. Fields are read in the order in which they are
listed in the main dialog for BINARY _TEMPLATE, with offsets being added
to the current file position pointer before each field isread. Click New Field...
to enter the description of anew field.

Note
If afield has already been defined, clicking in the Return column will toggle

the value of the field between Yes and No. Fields that are not marked for

return can be used for calculations by other fields in the template. At |east

one field must be marked Yes for return in order for the

BINARY _TEMPLATE function to return atemplate.

4. Define characteristics of thefield. Use the New Fidd dialog to define the
datatype and dimensions of the field as well as any offsets. In this example,
configure the following:

BINARY_TEMPLATE

Field nameismarbells

TypeisInteger

Offset is 0 From beginning of file

Field is Returned in the result when read

IDL Reference Guide

Chapter 4: Routines: B 169

* Number of dimensionsvalueis 2, and are defined as 350 and 450
respectively

The following table describes the New Field dialog options:

Field name Enter aname that describes the datafield.

Type Select the data type of the field from adroplist that
offersthe following IDL types: byte, integer, long,
float, double, complex, dcomplex, uint, ulong,
long64 and ulong64. Strings are read as an array of
bytes for later conversion to type STRING.

Offset Specify the data offset using integer values, field
names, or any valid IDL expression.

Absolute integer — defines afixed location (in
bytes) from the beginning of the file or theinitial
file position for an externally opened file.

Relativeinteger — uses apreceding > or <
character, to indicate a positive (>) or negative (<)
byte offset relative to the current file position
pointer after the previousfield (if any) isread.

Expression — can include the names of fields that
will be read before the current field — that is, the
field number of the referenced field must be lower
than the field number of the field being defined.

From beginning of file— read from the
beginning of the file plus any offset.

From initial position in file/From end of
previousfile— read from the beginning of thefile
or from the end of the previousfield plus any
offset.

IDL Reference Guide BINARY_TEMPLATE

170 Chapter 4: Routines: B

When fileis Returned in theresult — select this to return the
read... field when thefileisread

Verified as being equal to — select thisand
define the condition. The Verify field can contain
an integer, field name, or any valid IDL
expression. Only scalar fields can be verified.
READ_BINARY reportsan error if averification

fails.
Number of Select the number of dimensions of the field
dimensions ranging from O (scalar) to 8 (which isthe

maximum number of dimensionsthat an IDL
variable can have.) The Size of each dimension can
be an integer, field name, or any valid IDL
expression. Select Rever se to read any of the first
three dimensions of array datain reversed order.

Note
If BINARY_TEMPLATE iscalled by aprogram that isrunning in the IDL

Virtual Machine, the Offsets, Verify, and Size fields can contain integers or
field names, but not an IDL expression.

BINARY_TEMPLATE IDL Reference Guide

Chapter 4: Routines: B

#ill| New Field

Field name: Imarbells

Type: | Integer (16 bits) =]

Offzet: |>D bytes

€~ From beginning of file
& From initial position in file

Offzet can be an integer or an expression
involving fields defined earlier in the template.

Wwhen a file iz read, this field should be:

¥ Retured in the result

I™ | Werified as being equal to: I

The Yerify field can be a number or an expression
involving fields defined earlier in the template.

Mumber of dimensions: |2 'I
Tst: Size: |350 [~ Reverss
2nd: Size: |450 [~ Reverss

Srd: Sizes I [T Feverss

Athir Sizes I—
it Sizes I—
Eithir Sizes I—
i Sizes I—
Httir Sizes I—

E ach dimension can be an integer or an expression
involving fields defined earlier in the template.

ak. | Cancel |

171

Figure 4-7: Binary Template - New Field

5. Createthetemplate. Click OK to create the new field definition. Thisfile

containsasingle field so click OK on the Binary Template dialog to create
the template. If needed, you could click New Field to define additional data
fields.

The BINARY_TEMPLATE function returns a structure variable containing the
template. The result of the previous actions depends on the location from which you
launched the Binary Template dialog. The READ_BINARY function, which reads
datafrom afile according to the template specification, is automatically called when
you access the Binary Template dialog from iTools. From the command line, you
must explicitly read the binary data with the template specification.

After defining the structure of your binary data using the Binary Template dialog,
refer to the appropriate section:

IDL Reference Guide

iTools binary data access — the binary datais read and placed in the Data
Manager. If it is not automatically displayed, use the Insert Visualization
dialog to display fields of the data. See “Inserting Visualizations’ (Chapter 3,
iTool User’'s Guide) for details.

Command line binary data access — the template is a structure defining the
format of the binary data. Access the data using READ_BINARY, and specify

BINARY_TEMPLATE

172 Chapter 4: Routines: B

the template (or other characteristics) as parameters of the data access
operation. See “Working with aREAD_ASCII Data Structure” on page 2018
for details.

Note
You can create a SAVE file of atemplate in order to use it from session to session.
See “Example: Create a SAVE File of aCustom ASCII Template” on page 116 for a
related example.

Version History

53 Introduced

See Also

READ_BINARY, ASCII_TEMPLATE

BINARY_TEMPLATE IDL Reference Guide

Chapter 4: Routines: B 173

BINDGEN

The BINDGEN function creates a byte array with the specified dimensions. Each
element of the array is set to the value of its one-dimensional subscript.

Syntax
Result = BINDGEN(D, [,Dg])
Return Value
This function returns a byte array with the specified dimensions.
Arguments
Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments or
array elements are not integer values, IDL will convert them to integer values before
creating the new array.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide BINDGEN

174 Chapter 4: Routines: B

Examples

To create afour-element by four-element byte array, and store the result in the
variable A, enter:

A = BINDGEN (4,4)

Each element in A holds the value of its one-dimensional subscript. That is, if you
enter the command:

PRINT, A
IDL prints the result:
1 2 3
5 6 7
9 10 11
3

1 14 15

Version History

Origina Introduced

See Also

CINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN

BINDGEN IDL Reference Guide

Chapter 4: Routines: B 175

BINOMIAL

The BINOMIAL function computes the probability that in a cumulative binomial
(Bernoulli) distribution, arandom variable X is greater than or equal to a user-
specified value V, given N independent performances and a probability of occurrence
or success P in a single performance:

N
Probability(X>V) = z

Xx=V

N!
X' (N =x)!

P*(1-p)N ™Y

Thisroutineis written in the IDL language. Its source code can be found in the file
binomial.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = BINOMIAL(V, N, P [, /DOUBLE] [, /GAUSSIAN])
Return Value

This function returns a single- or double-precision floating point scalar or array that
contains the value of the probability.

Arguments
Y,

A non-negative integer specifying the minimum number of times the event occursin
N independent performances.

N
A non-negative integer specifying the number of performances.

P

A non-negative single- or double-precision floating-point scalar or array, in the
interval [0.0, 1.0], that specifies the probability of occurrence or success of asingle
independent performance.

IDL Reference Guide BINOMIAL

176 Chapter 4: Routines: B

Keywords

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.
GAUSSIAN

Set this keyword to use the Gaussian approximation, by using the normalized variable
Z=(V—-NP)/SQRT(NP(1-P)).

Note
The Gaussian approximation is useful when N islarge and neither P nor (1-P) is
close to zero, where the binomial summation may overflow. If GAUSSIAN is not
explicitly set, and the binomial summation overflows, then BINOMIAL will
automatically switch to using the Gaussian approximation.

Examples
Compute the probability of obtaining at least two 6sin rolling a die four times. The
result should be 0.131944.
result = BINOMIAL(2, 4, 1.0/6.0)

Compute the probability of obtaining exactly two 6sinrolling adie four times. The
result should be 0.115741.

result = BINOMIAL(2, 4, 1./6.) - BINOMIAL(3, 4, 1./6.)

Compute the probability of obtaining three or fewer 6sin rolling adiefour times. The
result should be 0.999228.

result = BINOMIAL(O, 4, 1./6.) - BINOMIAL(4, 4, 1./6.)

Version History

Pre4.0 Introduced

See Also

CHISQR_PDF, F_PDF, GAUSS PDF, T_PDF

BINOMIAL IDL Reference Guide

Chapter 4: Routines: B 177

BIT FFS

The BIT_FFS function returns the index of the first bit set (non-zero) in itsinteger
argument.

Syntax
Result = BIT_FFS(Value)
Return Value

BIT_FFSreturns the index of thefirst bit set in Value. Bits are numbered starting at
one (the least significant bit). Zero (0) isreturned if Value has no bits set. If Valueis
an array, the result is an array with the same structure, where each element contains
the index of thefirst bit set in the corresponding element of Value.

Arguments

Value

A scalar or array of any integer type.
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide BIT_FFS

178

Example

Chapter 4: Routines: B

Binary integer arithmetic has the property that any integer value with asingle bit set
isapower of 2. For example, the value 1024 is equivalent to 210 The followi ng
statement uses BIT_FFS to determine the power to which 2 must be raised to yield

1024

p = BIT_FFS(1024) - 1

PRINT, FORMAT=' (%"2"%d = %d")'
IDL prints:

2710 = 1024

Version History

Py

2°p

6.2 I ntroduced

BIT_FFS

IDL Reference Guide

Chapter 4: Routines: B 179

BIT_POPULATION

The BIT_POPULATION function returns the number of set (non-zero) bitsin its
integer argument.

Syntax
Result = BIT_POPULATION(Value)
Return Value

BIT_POPULATION returns the number of set (non-zero) bitsin Value. If Valueisan
array, theresult is an array with the same structure, where each element contains the
count of non-zero bits in the corresponding element of Value.

Arguments

Value

A scalar or array of any integer type.
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

Example

The following statement displays the number of bitsin an IDL long integer:
PRINT, BIT_POPULATION('ffffffff'xl)
IDL prints:

32

IDL Reference Guide BIT_POPULATION

180 Chapter 4: Routines: B

Version History

6.2 Introduced

BIT_POPULATION IDL Reference Guide

Chapter 4: Routines: B 181

BLAS_AXPY

The BLAS AXPY procedure updates an existing array by adding a multiple of
another array. It can also be used to update one or more one-dimensional subvectors
of an array according to the following vector operation:

Y =aX+Y

where aisascalefactor and X is an input vector.
BLAS_AXPY can be faster and use less memory than the usua IDL array notation
(e.g. Yy=y+a*x) for updating existing arrays.

Note
BLAS AXPY is much faster when operating on entire arrays and rows, than when
used on columns or higher dimensions.

Syntax
BLAS AXPY, Y, A, X[, D1, Locl [, D2, Range]]
Arguments
Y

The array to be updated. Y can be of any numeric type. BLAS AXPY does not
change the size and type of Y.

A

The scaling factor to be multiplied with X. A may be any scalar or one-element array
that IDL can convert to the type of X. BLAS _AXPY does not change A.

X

The array to be scaled and added to array Y, or the vector to be scaled and added to
subvectors of Y.

D1

An optiona parameter indicating which dimension of Y isto be updated.

IDL Reference Guide BLAS AXPY

182

Locl

Chapter 4: Routines: B

A variable with the same number of elements as the number of dimensions of Y. The
Locl and D1 arguments together determine which one-dimensional subvector (or
subvectors, if D1 and Range are provided) of Y isto be updated.

D2

An optiona parameter, indicating in which dimension of Y a group of one-
dimensional subvectors are to be updated. D2 should be different from D1.

Range

A variable containing D2 indices indicating where to put one-dimensional updates of

Y.
Keywords
None

Examples

The following examples show how to usethe BLAS AXPY procedure to add a

multiple of an array, add a constant, and a group of subvectors.

seed = 5L

Create amultidimensional array:

A = FINDGEN (4,

Print A:
PRINT, A
IDL prints:

0.00
4.0
8.0
12.
l6.

20.
24.
28.
32.
36.

BLAS_AXPY

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

2)

1.00000
5.00000
9.00000

13.
17.

21.
25.
29.
33.
37.

0000
0000

0000
0000
0000
0000
0000

2.00000
6.00000

10.
14.
18.

22.
26.
30.
34.
38.

0000
0000
0000

0000
0000
0000
0000
0000

3.00000
7.00000

11.
15.
19.

23.
27.
31.
35.
39.

0000
0000
0000

0000
0000
0000
0000
0000

IDL Reference Guide

Chapter 4: Routines: B 183

Create arandom update:

B = RANDOMU (seed, 4, 5, 2)

Print B
PRINT, B
IDL prints:
0.172861 0.680409 0.917078 0.917510
0.766779 0.648501 0.334211 0.505953
0.652182 0.158174 0.912751 0.257593
0.810990 0.267308 0.188872 0.237323
0.312265 0.551604 0.944883 0.673464
0.613302 0.0874299 0.782052 0.374534
0.0799968 0.581460 0.433864 0.459824
0.634644 0.182057 0.832474 0.235194
0.432587 0.453664 0.738821 0.355747
0.933211 0.388659 0.269595 0.796325
Add amultipleof Bto A (i.e,, A=A + 45*B):
BLAS_AXPY, A, 4.5, B
Print A:
PRINT, A
IDL prints:
0.777872 4.06184 6.12685 7.12880
7.45051 7.91825 7.50395 9.27679
10.9348 9.71178 14.1074 12.1592
15.6495 14.2029 14.8499 16.0680
17.4052 19.4822 22.2520 22.0306
22.7599 21.3934 25.5192 24.6854
24.3600 27.6166 27.9524 29.0692
30.8559 29.8193 33.7461 32.0584
33.9466 35.0415 37.3247 36.6009
40.1994 38.7490 39.2132 42.5835

Add a constant to a subvector of A (i.e. A[*, 3, 1] = A[*, 3, 1] + 4.3):
BLAS_AXPY, A, 1., REPLICATE(4.3, 4), 1, [0, 3, 1]
Print A:
PRINT, A

IDL prints:

IDL Reference Guide BLAS AXPY

184

0.777872
7.45051

10.
15.
17.

22

30

9348
6495
4052

.7599
24.
.8559
38.
40.

3600

2466
1994

4.
7.
9.

14.
19.

21

27.
29.
39.
38.

06184
91825
71178
2029
4822

.3934
6166
8193
3415
7490

Create avector update and print:

C = FINDGEN (5)

PRINT, C

IDL prints:

0.000000
Add C to agroup of subvectorsof A (i.e. FORi=0,1DOA[1,*,i] =A[1,*,i]+C)and

1.

00000

6.12685
7.50395

14.
14.
22.

25.
27.
33.
41.
39.

1074
8499
2520

5192
9524
7461
6247
2132

2.00000

Chapter 4: Routines: B

7.12880
9.27679

12.
16.
22.

24

3.00000

1592
0680
0306

.6854
29.
32.
40.
42.

0692
0584
9009
5835

4.00000

print:
BLAS_AXPY, A, 1. c, 2, [1, 0, 01, 3, LINDGEN(2)
PRINT, A
IDL prints:
0.777872 4.06184 6.12685 7.12880
7.45051 8.91825 7.50395 9.27679
10.9348 11.7118 14.1074 12.1592
15.6495 17.2029 14.8499 16.0680
17.4052 23.4822 22.2520 22.0306
22.7599 21.3934 25.5192 24 .6854
24 .3600 28.6166 27.9524 29.0692
30.8559 31.8193 33.7461 32.0584
38.2466 42 .3415 41.6247 40.9009
40.1994 42.7490 39.2132 42 .5835
Version History
51 Introduced
See Also

BLAS_AXPY

REPLICATE_INPLACE

IDL Reference Guide

Chapter 4: Routines: B 185

BLK_CON

The BLK_CON function computes a “fast convolution” of adigital signal and an
impul se-response sequence. It returns the filtered signal.

Thisroutineis written in the IDL language. Its source code can be found in the file
blk_con.prointhe 1lib subdirectory of the IDL distribution.

Syntax
Result = BLK_CON(Filter, Sgnal [, B_LENGTH=scalar] [, /DOUBLE])

Return Value

This function returns a vector with the same length as Sgnal. If either of the input
arguments are double-precision or the DOUBLE keyword is set, the result is double-
precision, otherwise the result is single-precision.

Arguments

Filter

A P-element floating-point vector containing the impul se-response sequence of the
digital filter.

Signal
An n-dlement floating-point vector containing the discrete signal samples.

Keywords
B_LENGTH

A scalar specifying the block length of the subdivided signal segments. If this
parameter is not specified, a near-optimal valueis chosen by the algorithm based
upon the length P of the impul se-response sequence. If P isavaluelessthan 11 or
greater than 377, then B_LENGTH must be specified.

B_LENGTH must be greater than the filter length, P, and |ess than the number of
signal samples.

IDL Reference Guide BLK_CON

186 Chapter 4: Routines: B
DOUBLE
Set this keyword to force the computation to be done using double-precision
arithmetic.
Examples

; Create a filter of length P = 32:
filter REPLICATE(1.0,32) ;Set all points to 1.0
filter (2*INDGEN(16)) = 0.5 ;Set even points to 0.5

7

Create a sampled signal with random noise:

signal = SIN((FINDGEN(1000)/35.0)"2.5)

noise
signal

7

(RANDOMU (SEED, 1000)-.5) /2.
signal + noise

Convolve the filter and signal using block convolution:

result = BLK_CON(filter, signal)

Version History

Pre4.0

I ntroduced

See Also

CONVOL

BLK_CON

IDL Reference Guide

Chapter 4: Routines: B 187

BOX_CURSOR

The BOX_CURSOR procedure emulates the operation of avariable-sized box cursor
(also known as a“marquee” selector).

Warning
BOX_CURSOR does not function properly when used within a draw widget. See
the BUTTON_EVENTS and MOTION_EVENTS keywords in WIDGET_DRAW.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
box_cursor.pro inthe 1ib subdirectory of the IDL distribution.

Using BOX_CURSOR

Once the box cursor has been realized, hold down the left mouse button to move the
box by dragging. Hold down the middle mouse button to resize the box by dragging.
(The corner nearest the initial mouse position is moved.) Press the right mouse button
to exit the procedure and return the current box parameters.

On machines with only two mouse buttons, hold down the left and right buttons
simultaneously to resize the box.

Syntax
BOX_CURSOR, [X0, YO, NX, NY [, /INIT] [, /FIXED_SIZE]] [, IMESSAGE]
Arguments

X0, YO

Named variables that will contain the coordinates of the lower |eft corner of the box
cursor.

NX, NY

Named variables that will contain the width and height of the cursor, in pixels.

IDL Reference Guide BOX_CURSOR

188 Chapter 4: Routines: B

Keywords

INIT

If this keyword is set, the arguments X0, YO, NX, and NY contain the initial position
and size of the box.

FIXED_SIZE

If this keyword is set, NX and NY contain theinitial size of the box. This size may not
be changed by the user.

MESSAGE

If this keyword is set, IDL prints a message describing operation of the cursor.

Version History

Pre 4.0 I ntroduced

See Also

Routines: CURSOR

Keywordsto “IDL Direct Graphics Devices’ on page 5363:
CURSOR_CROSSHAIR, CURSOR_IMAGE, CURSOR_STANDARD,
CURSOR_XY

BOX_CURSOR IDL Reference Guide

Chapter 4: Routines: B 189

BREAK

The BREAK statement provides a convenient way to immediately exit from aloop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to GOTO
statements.

Note
BREAK isan IDL statement. For information on using statements, see Chapter 7,
“Program Control” (Application Programming).

Syntax
BREAK
Examples

This example exits the enclosing WHILE loop when the value of i hits 5.

I =20
WHILE (1) DO BEGIN
i=1i+1
IF (i eg 5) THEN BREAK
ENDWHILE

Version History

54 Introduced

See Also

BEGIN...END, CASE, CONTINUE, FOR, GOTO, IF..THEN...ELSE,
REPEAT...UNTIL, SWITCH, WHILE...DO, Chapter 7, “Program Control”
(Application Programming)

IDL Reference Guide BREAK

190 Chapter 4: Routines: B

BREAKPOINT

The BREAKPOINT procedure alows you to insert and remove breakpointsin
programs for debugging. A breakpoint causes program execution to stop after the
designated statement is executed. Breakpoints are specified using the source file
name and line number. For multiple-line statements (statements containing “$”, the
continuation character), specify the line number of the last line of the statement.

You can insert breakpoints in programs without editing the source file. Enter the
following:

HELP, /BREAKPOINT

to display the breakpoint table which gives the index, module and source file
locations of each breakpoint.

Syntax

BREAKPOINT [, File], Index [, AFTER=integer] [, /CLEAR]
[, CONDITION="expression’] [, /DISABLE] [, /ENABLE]
[, /ON_RECOMPILE] [, /ONCE] [, /SET]

Arguments
File

An optional string argument that contains the name of the sourcefile. Note that if File
is not in the current directory, the full path name must be specified even if Fileisin
one of the directories specified by 'PATH.

Index

The line number at which to clear or set a breakpoint.
Keywords
AFTER

Set this keyword equal to an integer n. Execution will stop only after the nth time the
breakpoint is hit. For example:

BREAKPOINT, /SET, 'test.pro', 8, AFTER=3

BREAKPOINT IDL Reference Guide

Chapter 4: Routines: B 191

This sets a breakpoint at the eighth line of thefile test .pro, but only stops
execution after the breakpoint has been encountered three times.

CLEAR

Set this keyword to remove a breakpoint. The breakpoint to be removed is specified
either by index, or by the source file and line number. Use command HELP,
/BREAKPOINT to display the indices of existing breakpoints. For example:

; Clear breakpoint with an index of 3:
BREAKPOINT, /CLEAR, 3

; Clear the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /CLEAR, 'test.pro',8

CONDITION

Set this keyword to a string containing an IDL expression. When a breakpoint is
encountered, the expression is evaluated. If the expression istrue (if it returns a non-
zero value), program execution isinterrupted. The expression is evaluated in the
context of the program containing the breakpoint. For example:

BREAKPOINT, 'myfile.pro', 6, CONDITION='i gt 2'
If i isgreaterthan 2 at line 6 of myfile.pro, the program is interrupted.

DISABLE
Set this keyword to disable the specified breakpoint, if it exists. The breakpoint can
be specified using the breakpoint index or file and line number:

; Disable breakpoint with an index of 3:
BREAKPOINT, /DISABLE, 3

; Disable the breakpoint corresponding to the statement in the file
; test.pro, line number 8:
BREAKPOINT, /DISABLE, 'test.pro',S8

ENABLE

Set this keyword to enable the specified breakpoint if it exists. The breakpoint can be
specified using the breakpoint index or file and line number:

; Enable breakpoint with an index of 3:

7

BREAKPOINT, /ENABLE, 3

; Enable the breakpoint at line 8 of the file test.pro
BREAKPOINT, /ENABLE, 'test.pro',8

IDL Reference Guide BREAKPOINT

192 Chapter 4: Routines: B

ON_RECOMPILE

Set this keyword to specify that the breakpoint will not take effect until the next time
thefile containing it is compiled.

ONCE

Set this keyword to make the breakpoint temporary. If ONCE is set, the breakpoint is
cleared as soon asit is hit. For example:
BREAKPOINT, /SET, 'file.pro', 12, AFTER=3, /ONCE

sets a breakpoint at line 12 of file.pro. Execution stopswhen line 12 is
encountered the third time, and the breakpoint is automatically cleared.

SET

Set this keyword to set a breakpoint at the designated source file line. If this keyword
is set, the first input parameter, File must be a string expression that contains the
name of the source file. The second input parameter must be an integer that
represents the source line number.

For example, to set abreakpoint at line 23 in the sourcefile xyz . pro, enter:

BREAKPOINT, /SET, 'xyz.pro', 23

Version History

Pre 4.0 I ntroduced

BREAKPOINT IDL Reference Guide

Chapter 4: Routines: B

BROYDEN

193

The BROY DEN function solves a system of n nonlinear equations (wheren>2) inn
dimensions using a globally-convergent Broyden's method.

BROY DEN is based on the routine broydn described in section 9.7 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax

Result = BROY DEN(X, Vecfunc [, CHECK=variable] [,/ DOUBLE] [, EPS=value]

[, ITMAX=value] [, STEPMAX=value] [, TOLF=valuge] [, TOLMIN=valug]
[, TOLX=value])

Return Value
This function returns an n-element vector containing the solution.
Arguments
X

An n-dement vector (where n > 2) containing an initial guess at the solution of the
system.

Note
If BROYDEN is complex then only the real part is used for the computation.

Vecfunc

A scalar string specifying the name of a user-supplied IDL function that definesthe

system of non-linear equations. This function must accept a vector argument X and
return a vector result.

IDL Reference Guide BROYDEN

194 Chapter 4: Routines: B

For example, suppose we wish to solve the following system:

3x—cos(yz)—-1/2

x? —81(y +0.1)2+ sin(z) + 1.06|= o
10t -3
3

e Xy + 20z +

To represent this system, we define an IDL function named BROY FUNC:
FUNCTION broyfunc, X
RETURN, [3.0 * X[0] - COS(X[1]*X[2]) - 0.5,%
X[0]72 - 81.0*(X[1] + 0.1)72 + SIN(X[2]) + 1.06,%
EXP (-X[0]*X[1]) + 20.0 * X[2] + (10.0*!PI - 3.0)/3.0]
END

Keywords
CHECK

BROY DEN calls an internal function named fmin () to determine whether the
routine has converged to alocal rather than a global minimum (see Numerical
Recipes, section 9.7). Use the CHECK keyword to specify a named variable which
will be set to 1 if the routine has converged to alocal minimum or to O if not. If the
routine does converge to alocal minimum, try restarting from a different initial guess
to obtain the global minimum.

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.

EPS

Set this keyword to a number close to machine accuracy, used to remove noise from
each iteration. The default is 10”7 for single precision, and 10" for double precision.

ITMAX

Use this keyword to specify the maximum allowed number of iterations. The default
is 200.

BROYDEN IDL Reference Guide

Chapter 4: Routines: B 195

STEPMAX

Usethis keyword to specify the scaled maximum step length allowed in line searches.
The default valueis 100.0.

TOLF
Set the convergence criterion on the function values. The default valueis 1.0 x 1074,
TOLMIN

Set the criterion for deciding whether spurious convergence to a minimum of the
function £min () has occurred. The default valueis 1.0 x 10°6.

TOLX
Set the convergence criterion on X. The default valueis 1.0 x 107
Examples
We can use BROY DEN to solve the non-linear system of equations defined by the
BROY FUNC function above:

;Provide an initial guess as the algorithm’s starting point:
X = [-1.0, 1.0, 2.0]

;Compute the solution:
result = BROYDEN (X, 'BROYFUNC')

;Print the result:
PRINT, result

IDL prints:
0.500000 -1.10731e-07 -0.523599
The exact solution (to eight-decimal accuracy) is[0.5, 0.0, -0.52359877].

Version History

Pre4.0 Introduced

See Also

FX_ROQT, FZ_ROOTS, NEWTON

IDL Reference Guide BROYDEN

196

Chapter 4: Routines: B

BUTTERWORTH

The BUTTERWORTH function returns an array that contains the absolute value of
the low-pass Butterworth kernel.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
butterworth.pro inthe 1ib subdirectory of the IDL distribution.

The form of the filter is given by the following equation:
1

O\ 2N
1+(Q)

where Q is the frequency, €. is the cutoff frequency, and N is the order.

Syntax

Result = BUTTERWORTH(X [, Y[, Z]] [, CUTOFF=value] [, ORDER=value]
[, /ORIGIN] [, XDIM=value] [, Y DIM=valug] [, ZDIM=value])

Return Value

Theresultiseither alD, 2D, or 3D array with the dimensions of the result defined by
theinputs X, Y, and Z.

Arguments

X

Either a scalar value containing the number of elements in the x direction or a vector
of up to three elements giving the number of elementsin the x, y, and z directions,
respectively.

The number of eementsin they direction. This argument isignored if X contains
more than one element.

The number of e ementsin the z direction. Thisargument isignored if X contains
more than one element.

BUTTERWORTH IDL Reference Guide

Chapter 4: Routines: B 197

Keywords

CUTOFF

The cutoff frequency. The default value is 9.
ORDER

The order of thefilter. The default valueis 1.
ORIGIN

If set, the return array is centered at the corners of the array.
XDIM

The x spacing of the columns.
YDIM

They spacing of the rows.
ZDIM

The z spacing of the planes.

Example

; 1f 'im' is the variable containing an image to be filtered
filter = BUTTERWORTH(SIZE(im, /DIMENSIONS))
filtered_image = FFT(FFT(im, -1) * filter, 1)

Version History

6.3 Introduced

IDL Reference Guide BUTTERWORTH

198 Chapter 4: Routines: B

BYTARR

The BY TARR function creates a byte vector or array.
Syntax

Result = BY TARR(D[, ..., Dg] [, /INOZERO])
Return Value

This function returns a byte vector or array.
Arguments
D

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified.

Keywords

NOZERO

Normally, BY TARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed (array elements contain random values)
and BY TARR executes faster.

Examples

To create B asa 3 by 3 by 5 byte array where each element is set to zero, enter:

B = BYTARR(3, 3, 5, /NOZERO)

Version History

Original Introduced

BYTARR IDL Reference Guide

Chapter 4: Routines: B 199

See Also

COMPLEXARR, DBLARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULONG64ARR, ULONARR

IDL Reference Guide BYTARR

200 Chapter 4: Routines: B

BYTE

The BYTE function returns aresult equal to Expression converted to byte type. If
Expression isastring, each string is converted to a byte vector of the same length as
the string. Each element of the vector is the character code of the corresponding
character in the string. The BY TE function can also be used to extract datafrom
Expression and placeit in a byte scalar or array without modification, if more than
one parameter is present. See “ Type Conversion Functions’ on page 267 for details.

Syntax
Result = BY TE(Expression[, Offset [, D4, ..., Dg]]])
Return Value

Returns abyte value or array of the same dimensions as the Expression. If Expression
is acomplex number, BY TE returns the real part.

Arguments

Expression

The expression to be converted to type byte.

Offset

The byte offset from the beginning of Expression. Specifying this argument allows
fields of data extracted from Expression to be treated as byte data without conversion.

Di
When extracting fields of data, the D; arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The D; arguments can be either an array or a series of scalar expressions. If asingle
argument is specified, it can be either a scalar expression or an array of up to eight
eements. If multiple arguments are specified, they must al be scalar expressions. Up
to eight dimensions can be specified.

BYTE IDL Reference Guide

Chapter 4: Routines: B 201

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by !CPU for a single invocation of this routine. See Appendix C, “ Thread Pool
Keywords’ for details.

Example

If the variable A contains the floating-point value 10.0, it can be converted to byte
type and saved in the variable B by entering:

B = BYTE(A)

Version History

Origina Introduced

See Also

COMPLEX, DCOMPLEX, DOUBLE, FIX, FLOAT, LONG, LONG64, STRING,
UINT, ULONG, ULONG64

IDL Reference Guide BYTE

202 Chapter 4: Routines: B

BYTEORDER

The BY TEORDER procedure convertsintegers between host and network byte
ordering or floating-point values between the native format and XDR (IEEE) format.
This routine can also be used to swap the order of bytes within both short and long
integers. If the type of byte swapping is not specified via one of the keywords below,
bytes within short integers are swapped (even and odd bytes are interchanged).

The size of the parameter, in bytes, must be evenly divisible by two for short integer
swaps, and by four for long integer swaps. BY TEORDER operates on both scalars
and arrays. The parameter must be a variable, not an expression or constant, and may
not contain strings. The contents of Variable are overwritten by the result.

Network byte ordering is “big endian”. That is, multiple byte integers are stored in
memory beginning with the most significant byte.

Syntax

BYTEORDER, Variable,, ..., Variable, [, [IDTOVAX] [, [IDTOXDR] [, /FTOVAX]
[, IFTOXDR] [, /HTONL] [, /HTONS] [, /L64SWAP] [, /LSWAP] [, /NTOHL]
[, INTOHS] [, /[SSWAP] [, /[SWAP_IF_BIG_ENDIAN]
[, /SWAP_IF_LITTLE_ENDIAN] [, /VAXTOD] [, /VAXTOF] [, /XDRTOD]
[, /XDRTOF]

Arguments

Variable,

A named variable (not an expression or constant) that contains the data to be
converted. The contents of Variable are overwritten by the new values.

Keywords
DTOVAX

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX D float format. See“Note on Accessing Datain VAX Floating Point Format” on
page 205.

BYTEORDER IDL Reference Guide

Chapter 4: Routines: B 203

DTOXDR

Set this keyword to convert native double-precision floating-point format to XDR
(IEEE) format.

FTOVAX

Set this keyword to convert native (IEEE) single-precision floating-point format to
VAX Ffloat format. See “Note on Accessing Datain VAX Floating Point Format” on
page 205.

FTOXDR

Set this keyword to convert native single-precision floating-point format to XDR
(IEEE) format.

HTONL

Set this keyword to perform host to network conversion, longwords.
HTONS

Set this keyword to perform host to network conversion, short integers.
L64SWAP

Set this keyword to perform a 64-bit swap (8 bytes). Swap the order of the bytes
within each 64-bit word. For example, the eight bytes within a 64-bit word are
changed from (Bg, By, By, B3 By, Bs, Bg, B7), t0 (B7, Bg, Bs, B4 B3, By, By, By).

LSWAP

Set this keyword to perform a 32-bit longword swap. Swap the order of the bytes
within each longword. For example, the four bytes within alongword are changed
from (Bp, By, B2, By), to (B3, Bo, By, Bo).

NTOHL
Set this keyword to perform network to host conversion, longwords.

NTOHS

Set this keyword to perform network to host conversion, short integers.

IDL Reference Guide BYTEORDER

204

Chapter 4: Routines: B

SSWAP

Set this keyword to perform a short word swap. Swap the bytes within short integers.
The even and odd numbered bytes are interchanged. Thisis the default action, if no
other keyword is set.

SWAP_IF_BIG_ENDIAN

If this keyword is set, the BY TEORDER request will only be performed if the
platform running IDL uses “big endian” byte ordering. On little endian machines, the
BY TEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

SWAP_IF_LITTLE_ENDIAN

If this keyword is set, the BY TEORDER request will only be performed if the
platform running IDL uses“little endian” byte ordering. On big endian machines, the
BYTEORDER request quietly returns without doing anything. Note that this
keyword does not refer to the byte ordering of the input data, but to the computer
hardware.

VAXTOD

Set this keyword to convert VAX D float format to native (IEEE) double-precision
floating-point format. See “Note on Accessing Datain VAX Floating Point Format”
on page 205.

VAXTOF

Set this keyword to convert VAX F float format to native (IEEE) single-precision
floating-point format. See “Note on Accessing Datain VAX Floating Point Format”
on page 205.

XDRTOD

Set this keyword to convert XDR (IEEE) format to native double-precision floating-
point.

XDRTOF

Set this keyword to convert XDR (IEEE) format to native single-precision floating-
point.

BYTEORDER IDL Reference Guide

Chapter 4: Routines: B 205

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

Note on Accessing Data in VAX Floating Point
Format

When converting between VAX and | EEE formats, you should be aware of the
following basic numerical issuesin order to get the best results. Trandation of
floating-point values from IDL's native | EEE format to the VAX format and back
(that is, VAX to IEEE to VAX) isnot acompletely reversible operation, and should be
avoided when possible. There are many cases where the recovered values will differ
from the original values, including:

» TheVAX floating-point format lacks support for the | EEE specia values (NaN
and Infinity). Hence, their special meaning islost when they are converted to
VAX format and cannot be recovered.

* ThelEEE and VAX floating formats haveintrinsic differencesin precision and
range, which can cause information to be lost in both directions. When
converting from one format to ancther, IDL rounds the value to the nearest
representabl e value in the target format.

Asapractical matter, aninitial conversion of existing VAX format datato IEEE
cannot be avoided if the data is to be used on modern machines. However, each
format conversion can add a small amount of error to the resulting values, soit is
important to minimize the number of such conversions. Use IEEE/VAX conversions
only to read existing VAX format data, and create all new files using the native |EEE
format. Thisintroduces only a single unavoidable conversion, and minimizes the
resulting conversion error.

IDL Reference Guide BYTEORDER

206 Chapter 4: Routines: B

Version History

Pre4.0 Introduced
Pre6.1 Deprecated DTOGFLOAT and GFLOATTOD keywords

For more information on deprecated features, see Appendix |, “ Obsolete Features’.
See Also

SWAP_ENDIAN

BYTEORDER IDL Reference Guide

Chapter 4: Routines: B 207

BYTSCL

TheBY TSCL function scales al values of Array that liein the range (Min < x < Max)
into the range (0 < x < Top). For floating-point input, each vaue is scaled using the
formula (Top + 0.9999)* (x - Min)/(Max - Min). For integer input, each valueis scaled
using the formula ((Top + 1)*(x - Min) - 1)/(Max - Min).

Syntax

Result = BYTSCL(Array [, MAX=valug] [, MIN=valu€] [, /NAN] [, TOP=value])

Return Value

The returned result has the same structure as the original parameter and is of byte
type.

Arguments

Array

The array to be scaled and converted to bytes.
Keywords
MAX

Set this keyword to the maximum value of Array to be considered. If MAX isnot
provided, Array is searched for its maximum value. All values greater or equal to
MAX are set equal to TOP in the result.

Note
The data type of the value specified for MAX should match the data type of the
input array. Since MAX is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

MIN
Set this keyword to the minimum value of Array to be considered. If MIN is not

provided, Array is searched for its minimum value. All values less than or equal to
MIN are set equal to 0 in the result.

IDL Reference Guide BYTSCL

208 Chapter 4: Routines: B

Note

The datatype of the value specified for MIN should match the data type of the input
array. Since MIN is converted to the data type of the input array, specifying
mismatched data types may produce undesired results.

NAN

Set this keyword to cause the routine to check for occurrences of the |EEE floating-
point values NaN or Infinity in the input data. Elementswith the value NaN or Infinity
are treated as missing data. (See “ Specia Floating-Point Values® (Chapter 8,
Application Programming) for more information on |EEE floating-point values.)

TOP

Set this keyword to the maximum value of the scaled result. If TOP is not specified,
255 is used. Note that the minimum value of the scaled result is always 0.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool

Keywords' for details.
Examples

Note
Also see “Byte-Scaling” (Chapter 8, Image Processing in IDL).

BYTSCL is often used to scale images into the appropriate range for 8-bit displays.
As an example, enter the following commands:

; Create a simple image array and display:
IM = DIST(200)
™V, IM

; Scale the image into the full range of bytes (0 to 255) and
; re-display it:
IM = BYTSCL (IM)

BYTSCL IDL Reference Guide

Chapter 4: Routines: B

; Display the new image:

™V, IM

Version History

209

Origina Introduced

See Also

BYTE, TVSCL

IDL Reference Guide

BYTSCL

Chapter 5
Routines: C

IDL Reference Guide 210

Chapter 5: Routines: C 211

C_CORRELATE

The C_CORRELATE function computes the cross correlation Pxy(L) or cross
covariance Rxy(L) of two sample populations X and Y as afunction of thelag L

N-|L|—1
DI COMESII$ PR
= ForL<O
N-1 N-1
> =2 > (Y —Y)?
k=0 k=0
ny(l—) = .
> =) VirL =)
= ForL >0
N-1 N-1
> i =X2] Y (e —Y)?
k=0 k:0
N—|L| -1
1 7 j—
N X4 —X)(Y—Y) ForL <O
k=0
ny(l—) =
N-L-1
1 7 —
N X =X) Y+ —Y) ForL >0
k=0

where x and y are the means of the sample populations x = (Xg, X1, Xp, .. , X\.1) and y
= (Yor Y1, Y2» -+ » YN-1)» FESPECtively.

Thisroutineis written in the IDL language. Its source code can be found in the file
c_correlate.pro inthe 1ib subdirectory of the IDL distribution.

IDL Reference Guide C_CORRELATE

212 Chapter 5: Routines: C

Syntax

Result = C_CORRELATE(X, Y, Lag [, /COVARIANCE] [, /DOUBLE])

Return Value

Returns the cross correlation Pxy(L) or cross covariance Rxy(L) of two sample
populations X and Y as afunction of thelag L.

Arguments
X

An n-element integer, single-, or double-precision floating-point vector.
Y

An n-dement integer, single-, or double-precision floating-point vector.

Lag

A scalar or n-element integer vector in the interval [-(n-2), (n-2)], specifying the
signed distances between indexed elements of X.

Keywords
COVARIANCE

Set this keyword to compute the sample cross covariance rather than the sample cross
correlation.

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.

Examples

Define two n-element sample populations:

= [3.73, 3.67, 3.77, 3.83, 4.67, 5.87, 6.70, 6.97, 6.40, 5.57]
Y = [2.31, 2.76, 3.02, 3.13, 3.72, 3.88, 3.97, 4.39, 4.34, 3.95]
; Compute the cross correlation of X and Y for LAG = -5, 0, 1, 5,
; 6, 7:
lag = [-5, 0, 1, 5, 6, 7]

C_CORRELATE IDL Reference Guide

Chapter 5: Routines: C 213

result = C_CORRELATE (X, Y, lag)
PRINT, result
IDL prints:

-0.428246 0.914755 0.674547 -0.405140 -0.403100 -0.339685

Version History

4.0 Introduced

See Also

A_CORRELATE, CORRELATE, M_CORRELATE, P_CORRELATE,
R_CORRELATE, “Correlation Analysis’ (Chapter 9, Using IDL)

IDL Reference Guide C_CORRELATE

214 Chapter 5: Routines: C

CALDAT

The CALDAT procedure computes the month, day, year, hour, minute, or second
corresponding to a given Julian date. The inverse of this procedure is JULDAY.

Note
The Julian calendar, established by Julius Caesar in the year 45 BCE, was corrected
by Pope Gregory XI11 in 1582, excising ten days from the calendar. The CALDAT
procedure reflects the adjustment for dates after October 4, 1582. See the example
below for anillustration.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
caldat.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
CALDAT, Julian, Month [, Day [, Year [, Hour [, Minute [, Second]]]]]
Arguments

Julian

A numeric value or array that specifies the Julian Day Number (which begins at
noon) to be converted to a calendar date.

Note
Julian values must be in the range -1095 to 1827933925, which corresponds to
calendar dates 1 Jan 4716 B.C.E. and 31 Dec 5000000, respectively.

Note
Julian Day Numbers should be maintained as double-precision floating-point data
when the numbers are used to determine hours, minutes, and seconds.

Month

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the desired month (1 = January, ..., 12 = December).

CALDAT IDL Reference Guide

Chapter 5: Routines: C 215

Day

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the day of the month (1-31).

Year

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the desired year (e.g., 1994).

Hour

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the hour of the day (0-23).

Minute

A named variable that, on output, contains alongword integer or longword integer
array representing the number of the minute of the hour (0-59).

Second

A named variable that, on output, contains a double-precision floating-point value or
adouble-precision floating-point array representing the number of the second of the
minute (0-59).

Keywords

None.
Examples

In 1582, Pope Gregory X1 adjusted the Julian calendar to correct for its inaccuracy
of slightly more than 11 minutes per year. As aresult, the day following October 4,
1582 was October 15, 1582. CALDAT follows this convention, as illustrated by the
following commands:

CALDAT, 2299160, Monthl, Dayl, Yearl

CALDAT, 2299161, Month2, Day2, Year2

PRINT, Monthl, Dayl, Yearl
PRINT, Month2, Day2, Year2

IDL Reference Guide CALDAT

216

CALDAT

Chapter 5: Routines: C

IDL prints:
10 4 1582
10 15 1582
Warning

You should be aware of this discrepancy between the original and revised Julian
calendar reckoningsif you calculate dates before October 15, 1582.

Be sure to distinguish between Month and Minute when assigning variable names.
For example, the following code would cause the Month value to be the same as the
Minute value:

;Find date corresponding to Julian day 2529161.36:
CALDAT, 2529161.36, M, D, Y, H, M, S
PRINT, M, D, Y, H, M, S

IDL prints:
0 4 2212 18 0 0.00000000

Moreover, Julian Day Numbers should be maintained as double-precision floating-
point data when the numbers are used to determine hours, minutes, and seconds.

So, instead of the previous call to CALDAT, use something like:

CALDAT, 2529161.36D, Month, Day, Year, Hour, Minute, Second
PRINT, Month, Day, Year, Hour, Minute, Second

IDL prints:
7 4 2212 20 38 23.999989
You can also use arrays for the Julian argument:

CALDAT, DINDGEN (4) + 2449587.0D, m, 4, y
PRINT, m, 4, y

IDL prints:
8 8 8 8
22 23 24 25
1994 1994 1994 1994

Version History

Pre4.0 Introduced

IDL Reference Guide

Chapter 5: Routines: C 217

See Also

BIN_DATE, JULDAY, SYSTIME

IDL Reference Guide CALDAT

218 Chapter 5: Routines: C

CALENDAR

The CALENDAR procedure displays a calendar for amonth or an entire year on the
current plotting device. This IDL routine imitates the UNIX cal command.

Thisroutineis written in the IDL language. Its source code can be found in the file
calendar.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
CALENDAR [[, Month] , Year]
Arguments

Month

The number of the month for which a calendar isdesired (1 is January, 2 is February,
..., 12 is December). If called without arguments, CALENDAR draws a calendar for
the current month.

Year

The number of the year for which a calendar should be drawn. If YEAR is provided
without MONTH, acalendar for the entire year isdrawn. If called without arguments,
CALENDAR draws a caendar for the current month.

Example

; Display a calendar for the year 2038.
CALENDAR, 2038

; Display the calendar for October, 1582.
CALENDAR, 10, 1582

Version History

Original Introduced

See Also

SYSTIME

CALENDAR IDL Reference Guide

Chapter 5: Routines: C 219

CALL_EXTERNAL

The CALL_EXTERNAL function callsafunction in an external sharable object and
returns ascalar value. Parameters can be passed by reference (the default) or by
value. See Chapter 3, “Using CALL_EXTERNAL" (External Development Guide)
for examples.

CALL_EXTERNAL issupported under all operating systems supported by IDL,
athough there are system specific detail s of which you must be aware. This function
requires no interface routines and is much simpler and easier to use than the
LINKIMAGE procedure. However, CALL_EXTERNAL performs no checking of
the type and number of parameters. Programming errors are likely to cause IDL to
crash or to corrupt your data.

Warning
Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using theinternal IDL_Message() function. Performing
input or output from external code, especially to the user console or tty (e.g. using
printf () or equivalent functionality in other languages to send text to stdout) may
create errors or generate unexpected results.

CALL_EXTERNAL supports the IDL Portable Convention, a portable calling
convention that works on all platforms. This convention passes two arguments to the
called routine, an argument count (argc) and an array of arguments (argv).

CALL_EXTERNAL aso offers afeature called Auto Glue that can greatly simplify
use of the CALL_EXTERNAL portable convention if you have the appropriate C
compiler installed on your system. Auto glue automatically writes the glue function
required to convert the (argc, argv) arguments to the actual function call, and then
compiles and loads the glue function transparently. If you want IDL to simply write
the glue function for you, but not compileit, the WRITE_WRAPPER keyword can
be used.

The result of the CALL_EXTERNAL function is a scalar value returned by the
external function. By default, thisisascalar long (32-bit) integer. This default can be
changed by specifying one of the keywords described below that alter the result type.

Syntax
Result = CALL_EXTERNAL (Image, Entry [, P, ..., Pn.1] [, /ALL_VALUE]

[,/B_VALUE|,/D_VALUE|,/F VALUE|,/l_VALUE|,/L64 VALUE |
,/S VALUE |, /Ul_VALUE [, /UL_VALUE |, /UL64 VALUE] [, /CDECL]

IDL Reference Guide CALL_EXTERNAL

220 Chapter 5: Routines: C

[, RETURN_TYPE=value] [, /JUNLOAD] [, VALUE=byte array]
[, WRITE_WRAPPER=wrapper_file])

Auto Glue Keywords: [, /AUTO_GLUE] [, CC=string]
[, COMPILE_DIRECTORY =string] [, EXTRA_CFLAGS=string]
[, EXTRA_LFLAGS=string] [, /IGNORE_EXISTING_GLUE] [, LD=string]
[, /NOCLEANURP] [, /[SHOW_ALL_OUTPUT] [, /VERBOSE]

Return Value

Thisfunction calls afunction in an external sharable object and returns a scalar value.

Arguments
Image

The name of the file, which must be a sharable library (UNIX), or DLL (Windows),
which contains the routine to be called.

Entry

A string containing the name of the symbol in the library which is the entry point of
the routine to be called.

Po, veny PN-l

The parameters to be passed to the external routine. All array and structure arguments
are passed by reference (address). The default isto also pass scalars by reference, but
the ALL_VALUE or VALUE keywords can be used to pass them by value. Care
must be taken to ensure that the type, structure, and passing mechanism of the
parameters passed to the external routine match what it expects. There are some
restrictions on data types that can be passed by value, and the user needs to be aware
of how IDL passes strings. Both issues discussed in further detail below.

Keywords
ALL_VALUE

Set this keyword to indicate that all parameters are passed by value. There are some

restrictions on data types that should be considered when using this keyword, as
discussed below.

CALL_EXTERNAL IDL Reference Guide

Chapter 5: Routines: C 221

B_VALUE

If set, this keyword indicates that the called function returns a byte value.
CDECL

The Microsoft Windows operating system has two distinct system defined standards
that govern how routines pass arguments. stdcall, which isused by much of the
operating system as well as languages such as Visual Basic, and cdec1, whichis
used widely for programming in the C language. These standards differ in how and
when arguments are pushed and removed from the system stack. The standard used
by a given function is determined when the function is compiled, and can usually be
controlled by the programmer. If you call afunction using the wrong standard (e.g.
calling astdcall function asif it were cdec1, or the reverse), you could get
incorrect results, corrupted memory, or you could crash IDL. Unfortunately, thereis
no way for IDL to know which convention a given function uses; this information
must be supplied by the user of CALL_EXTERNAL. If the CDECL keyword is
present, IDL will usethe cdec1 convention to call the function. Otherwise, stdcall
isused.

D_VALUE

If set, this keyword indicates that the called function returns a double-precision
floating value.

F_VALUE

If set, this keyword indicates that the called function returns a single-precision
floating value.

| VALUE
If set, this keyword indicates that the called function returns an integer value.
L64 VALUE

If set, this keyword indicates that the called function returns a 64-bit integer value.
RETURN_TYPE

The type code to set the type of the result. See the description of the SIZE function
for alist of the IDL type codes.

IDL Reference Guide CALL_EXTERNAL

222

Chapter 5: Routines: C

S_VALUE

If set, this keyword indicates that the called function returns a pointer to a
null-terminated string.

UI_VALUE

If set, this keyword indicates that the called function returns an unsigned integer
value.

UL_VALUE

If set, this keyword indicates that the called function returns an unsigned long integer
value.

UL64_VALUE

If set, this keyword indicates that the called function returns an unsigned 64-bit
integer value.

UNLOAD

Normally, IDL keeps Image loaded in memory after the call to CALL_EXTERNAL
completes. Thisisdone for efficiency—Iloading a sharable object can be aslow
operation. Setting the UNLOAD keyword will cause IDL to unload Image after the
call toitiscomplete. Thisis useful if you are debugging code in Image, asit allows
you to iterate on your code without having to exit IDL between tests. It can also bea
good ideaif you do not intend to make any subsequent calls to routines within Image.

If IDL isunable to unload the sharable object, it will issue an error to that effect. In
addition to any operating system reported problem that might occur, IDL cannot
perform the UNLOAD operation if the sharable library has been used for any other
purpose in addition to CALL_EXTERNAL (e.g. LINKIMAGE).

VALUE

A byte array, with as many elements as there are optional parameters, indicating the
method of parameter passing. Arrays are aways passed by reference. If parameter P,
isascalar, it is passed by reference if VALUE]i] is O; and by valueif it is non-zero.
There are some restrictions on data types that should be considered when using this
keyword, as discussed below.

CALL_EXTERNAL IDL Reference Guide

Chapter 5: Routines: C 223

WRITE_WRAPPER

If set, WRITE_WRAPPER supplies the name of afile for CALL_EXTERNAL to
create containing the C function required to convert the (argc, argv) interface used
by the CALL_EXTERNAL portable calling convention to the interface of the target
function. If WRITE_WRAPPER is specified, CALL_EXTERNAL writesthe
specified file, but does not attempt to actually call the function specified by Entry.
Theresult from CALL_EXTERNAL isaninteger O in this case, and has no special
meaning. Use of WRITE_WRAPPER implies the PORTABLE keyword.

Note
Thisissimilar to Auto Glue only inthat CALL_EXTERNAL writes a function on

your behalf. Unlike Auto Glue, WRITE_WRAPPER does not attempt to compile
the resulting function or to useit. You might want to use WRITE_WRAPPER to
generate IDL interfacesfor an externa library in cases where you intend to combine
the interfaces with other code or otherwise modify it before using it with IDL.

Auto Glue Keywords

Auto Glue, discussed in the section “Auto Glue” on page 226, offers asimplified way
to usethe CALL_EXTERNAL portable calling convention. The following keywords
control its use. Many of these keywords correspond to the same keywords to the
MAKE_DLL procedure, and are covered in more detail in the documentation for that
routine.

AUTO_GLUE
Set this keyword to enable the CALL_EXTERNAL Auto Glue feature.
CcC

If present, atemplate string to be used in generating the C compiler command(s) to
compile the automatically generated glue function. For a more complete description
of this keyword, see MAKE _DLL.

COMPILE_DIRECTORY

Specifies the directory to use for creating the necessary intermediate files and the
final glue function sharable library. For a more complete description of this keyword,
see MAKE DLL.

IDL Reference Guide CALL_EXTERNAL

224

Chapter 5: Routines: C

EXTRA_CFLAGS

If present, a string supplying extra options to the command used to execute the C
compiler. For a more complete description of this keyword, see MAKE_DLL.

EXTRA_LFLAGS

If present, a string supplying extra options to the command used to execute the linker.
For a more compl ete description of this keyword, see MAKE _DLL.

IGNORE_EXISTING_GLUE

Normally, if Auto Glue finds a pre-existing glue function, it will use it without
attempting to build it again. Set IGNORE_EXISTING_GL UE to override this
caching behavior and force CALL_EXTERNAL to rebuild the glue function sharable
library.

LD

If present, atemplate string to be used in generating the linker command to build the
glue function sharable library. For a more complete description of this keyword, see
MAKE_DLL.

NOCLEANUP

If set, CALL_EXTERNAL will not remove intermediate files generated in order to
build the glue function sharable library after the library has been built. This keyword
can be used to preserve information for debugging in case of error, or for additional
information on how Auto Glue works. For a more complete description of this
keyword, see MAKE_DLL.

SHOW_ALL_OUTPUT

Auto Glue normally produces no output unless an error prevents successful building
of the glue function sharable library. Set SHOW_ALL_OUTPUT to see all output
produced by the process of building the library. For a more complete description of
this keyword, see MAKE_DLL.

VERBOSE

If set, VERBOSE causes CALL _EXTERNAL to issue informational messages as it
carries out the task of locating, building, and executing the glue function. For a more
complete description of this keyword, see MAKE _DLL.

CALL_EXTERNAL IDL Reference Guide

Chapter 5: Routines: C 225

String Parameters

IDL represents strings internally as IDL_STRING descriptors, which are defined in
the C language as.

typedef struct {
unsigned short slen;
unsigned short stype;
char *s;

} IDL_STRING;

To pass astring by reference, IDL passes the address of its IDL_STRING descriptor.

To pass a string by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

e Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

* Theslen field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

e Thestype fieldisused internally by IDL to know keep track of how the
memory for the string was obtained, and should be ignored by
CALL_EXTERNAL users.

» sisthepointer to the actual C string represented by the descriptor. If the string
iSNULL, IDL representsit asaNULL (0O) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

These issues are examined in greater detail in the IDL External Development Guide.
Calling Convention

CALL_EXTERNAL usesthe IDL Portable convention for calling user-supplied
routines. The IDL Portable calling convention can be simplified by using the Auto
Glue extension, described below.

The portable interface convention passes al arguments as elements of an array of C
void pointers (void *). The C language prototype for a user function called this way
looks like one of the following:

RET_TYPE xxx(int argc, void *argvl])

Where RET_TY PE is one of the following: UCHAR, short, IDI,_UINT, IDL_LONG,
IDL_ULONG, IDL_ILONG64, IDL_ULONG64, float, double, OF char *. Thereturn

IDL Reference Guide CALL_EXTERNAL

226

Chapter 5: Routines: C

type used must agree with the type assumed by CALL_EXTERNAL as specified via
the keywords described above.

Argc isthe number of arguments, and the vector argv contains the arguments
themselves, one argument per element. Arguments passed by reference map directly
to these (void *) pointers, and can be cast to the proper type and then dereferenced
directly by the called function. Passing arguments by value is allowed, but since the
values are passed in (void *) pointers, there are some limitations and restrictions on
what is possible;

* Typesthat are larger than a pointer cannot be passed by value, and
CALL_EXTERNAL will issue an error if thisis attempted. This limitation
applies only to the standard portable calling convention. Auto Glue does not
have this limitation, and is able to pass such variables by value.

» Integer values can be easily passed by value. IDL widens any of the integer
typesto the C int type and they are then converted to a (void *) pointer using a
C cast operation.

* Thereisno C language-defined conversion between pointers and floating point
types, so IDL copies the data for the value directly into the pointer element.
Although such values can be retrieved by the called routine with the correct C
casting operations, thisisinconvenient and error prone. It is best to pass non-
integer data by reference.

Auto Glue

Auto Glue is an extension to the IDL Portable Calling Convention that makes it
easier to use.

The portable calling convention requires your function to use the IDL defined (argc,
argv) interface for passing arguments. However, functions not explicitly written for
use with CALL_EXTERNAL may not have thisinterface. A common solution using
the portable convention isfor the IDL user to write a glue function that serves as an
interface between IDL and the called function. The entire purpose of this glue
function, which is usually very simple, isto convert the IDL (argc, argv) method of
passing parameters to a form acceptable to the called function. Writing this wrapper
function is easy for programmers who understand the C language, the system C
compiler and linker, and how sharable libraries work on their target operating system.
However, it is also tedious and error prone, and can be difficult for users that do not
aready have these skills.

Auto Glue usesthe MAKE_DLL procedure to automate the process of using glue
codeto cal functionsviathe CALL_EXTERNAL portable calling convention. Since

CALL_EXTERNAL IDL Reference Guide

Chapter 5: Routines: C 227

it depends so closely on MAKE_DLL, an understanding of how MAKE_DLL works
is necessary to fully understand Auto Glue. Aswith MAKE_DLL, Auto Glue
requires that your system have a suitable C compiler installed. Please refer to the
documentation for MAKE_DLL.

Auto Glue maintains a cache of previously built glue functions, and will reuse them
on subsequent requests, even between IDL sessions. Glue function libraries can be
recognized by their name, which starts with the prefix id1_ce, and ends with the
proper suffix for a sharable library on the target system (most UNIX: . so, Windows:
.d11). CALL_EXTERNAL finds asuitable glue function by performing the
following stepsin order, stopping after the first one that works:

1. Look for ace_glue subdirectory within the IDL distribution bin
subdirectory for the current platform. (For example, on a Windows system the
subdirectory could be located in <IDI,_DEFAULT>\bin\bin.x86.) If this
directory exists, it looks there for a sharable library containing the appropriate
glue function.

Note
For customer security reasons, the ce_glue subdirectory does not exist in the
distribution shipped with IDL, and IDL does not use it to create glue functions.
However, if an individua site creates this directory and places glue library files
withinit, IDL will use them. Multiple IDL sessions on a given system can all share
these same glue files, even when run by different users on a multi-user system. If
you keep your IDL distribution on a network based file server shared by multiple
clients, and if you provide a sufficient selection of gluefiles, it is possible that your
users will not require alocally installed C compiler to use Auto Glue.

If you do create the ce_g1ue subdirectory on a multi-user system, we
recommend that you make it along with all files contained within belong to the
owner of the IDL distribution, and apply file protections that prevent non-
privileged users from creating files in the directory or modifying them.

2. Look in the directory given by the COMPILE_DIRECTORY keyword, or if
COMPILE_DIRECTORY is not present, in the directory given by the
IMAKE_DLL.COMPILE_DIRECTORY system variable for the appropriate
glue function.

3. If thisstep isreached, there is no pre-existing glue function available.
CALL_EXTERNAL will create one in the same directory searched in the
previous step by generating a C language file containing the needed glue
function, and then compiling and linking it into a sharable library using the
functionality of the MAKE_DLL procedure.

IDL Reference Guide CALL_EXTERNAL

228

Chapter 5: Routines: C

» IDL loadsthe sharable library containing the glue function found in the
previous step, aswell asthe library you specified with the Image argument.

e CALL_EXTERNAL calsthe gluefunction, causing your function to be called
with the correct parameters.

Thefirst time CALL_EXTERNAL encounters the need for a glue function that does
not already exigt, it will automatically build it, and then use it without any external
indication that this has happened. You may notice abrief hesitationin IDL’s
execution as it waits for this process to occur. Once aglue function exists, IDL can
load it immediately on subsequent calls (even in unrelated later IDL sessions), and ho
delay will occur.

Example: Using Auto Glue To Call System Library Routines

Under Sun Solaris, there is afunction in the system math library called hypot() that
computes the length of the hypotenuse of aright-angled triangle:

sgrt (x*x + y*y)
This function has the C prototype:
double hypot (double x, double y)
The following IDL function uses Auto Glue to call this routine:

FUNCTION HYPOT, X, Y
; Use the 32-bit or the 64-bit math library?
LIBM= (! VERSION.MEMORY_BITS EQ 64) $
? '/usr/lib/sparcv9/libm.so’ : ‘/usr/lib/libm.so’
RETURN, CALL_EXTERNAL(LIBM, ’‘hypot’, double(x), double(y), $
/ALL_VALUE, /D_VALUE, /AUTO_GLUE)
END

Important Changes Since IDL 5.0

The current version of CALL_EXTERNAL differsfrom IDL versions up to and
including IDL 5.0 in afew ways that are important to users moving code to the
current version:

e Under Windows, CALL_EXTERNAL would pass IDL strings by value no
matter how the ALL_VALUE or VALUE keywords were set. Thiswas
inconsistent with al the other platforms and created unnecessary confusion.
IDL now uses these keywords to decide how to pass strings on all platforms.
Windows users with existing code that expects strings to be passed by value
without having specified it via one of these keywords will need to adjust their
use of CALL_EXTERNAL or their code.

CALL_EXTERNAL IDL Reference Guide

Chapter 5: Routines: C 229

e Older versions of IDL would quietly pass by value arguments that are larger
than a pointer without issuing an error when using the portable calling
convention. Although this might work on some hardware, it is error prone and
can cause IDL to crash. IDL now issues an error in this case. Programmers
with existing code moving to a current version of IDL should change their
code to pass such data by reference.

Examples

See Chapter 3, “Using CALL_EXTERNAL" (External Devel opment Guide).

Version History

Pre4.0 Introduced
Pre 6.1 Deprecated the DEFAULT, PORTABLE, and VAX_FLOAT
keywords

For information on deprecated features, see Appendix I, “ Obsolete Features’.

See Also

LINKIMAGE

IDL Reference Guide CALL_EXTERNAL

230 Chapter 5: Routines: C

CALL_FUNCTION

CALL_FUNCTION function callsthe IDL function specified by the string Name,
passing any additional parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_FUNCTION is much
faster. Therefore, CALL_FUNCTION should be used in preference to EXECUTE

whenever possible.

Syntax

Result = CALL_FUNCTION(Name[, Py, ..., P;])

Return Value

The result of the called function (specified by the string Name) is passed back as the
result of this routine.

Arguments

Name

A string containing the name of the function to be called. This argument can be a
variable, which alows the called function to be determined at runtime.

Pi

The arguments to be passed to the function given by Name. These arguments are the
positional and keyword arguments documented for the called function, and are
passed to the called function exactly asif it had been called directly.

Keywords
None.

Examples

The following command indirectly callsthe IDL function SQRT (the square root
function) with an argument of 4 and stores the result in the variable R;

R = CALL_FUNCTION('SQRT', 4)

CALL_FUNCTION IDL Reference Guide

Chapter 5: Routines: C

Version History

231

Pre 4.0 I ntroduced

See Also

CALL_PROCEDURE, CALL_METHOD, EXECUTE

IDL Reference Guide

CALL_FUNCTION

232 Chapter 5: Routines: C

CALL_METHOD

The CALL_METHOD function or procedure calls the object method specified by
Name, passing any additional parameters as its arguments.

Note
CALL_METHOD can also be used as a function or a procedure.

Although not as flexible as the EXECUTE function, CALL_METHOD is much
faster. Therefore, CALL_METHOD should be used in preference to EXECUTE
whenever possible.

Syntax

Result = CALL_METHOD(Name, ObjRef, [, Py, .., P])
or
CALL_METHOD, Name, ObjRef, [, Py, ..., P/

Return Value
Returns the results generated by the named function method when applicable.
Arguments

Name

A string containing the name of the method to be called. This argument can be a
variable, which alows the called method to be determined at runtime.

ObjRef
A scalar object reference that will be passed to the method as the Self argument.
P;

The arguments to be passed to the method given by Name. These arguments are the
positional and keyword arguments documented for the called method, and are passed
to the called method exactly asiif it had been called directly.

CALL_METHOD IDL Reference Guide

Chapter 5: Routines: C

Keywords
None.

Version History

233

5.1 I ntroduced

See Also

CALL_FUNCTION, CALL_PROCEDURE, EXECUTE

IDL Reference Guide

CALL_METHOD

234 Chapter 5: Routines: C

CALL_PROCEDURE

CALL_PROCEDURE callsthe procedure specified by Name, passing any additional
parameters as its arguments.

Although not as flexible as the EXECUTE function, CALL_PROCEDURE is much
faster. Therefore, CALL_PROCEDURE should be used in preference to EXECUTE

whenever possible.

Syntax

CALL_PROCEDURE, Name[, Py, ..., Py
Arguments

Name

A string containing the name of the procedure do be called. This argument can be a
variable, which alows the called procedure to be determined at runtime.
P;

The arguments to be passed to the procedure given by Name. These arguments are the
positional and keyword arguments documented for the called procedure, and are
passed to the called procedure exactly asif it had been called directly.

Example
The following example shows how to call the PLOT procedure indirectly with a
number of arguments. First, create a dataset for plotting by entering:
B = FINDGEN(100)
Call PLOT indirectly to create a polar plot by entering:
CALL_PROCEDURE, 'PLOT', B, B, /POLAR

A “spira” plot should appear.
Version History

Pre 4.0 I ntroduced

CALL_PROCEDURE IDL Reference Guide

Chapter 5: Routines: C 235

See Also

CALL_FUNCTION, CALL_METHOD, EXECUTE

IDL Reference Guide CALL_PROCEDURE

236

CANNY

Chapter 5: Routines: C

The CANNY function implements the Canny edge-detection algorithm.

The Canny edge-detection algorithm has the following steps:

1

CANNY

Smooth the image with a Gaussian filter. A 5x5 kernel with agiven sigmais
used.

Compute the gradient orientation and magnitude. A pair of 3x3 convolution
masks are used, one for estimating the gradient in the x-direction (G,):

-101
-202
-101

and the other for estimating the gradient in the y-direction (Gy):

121
000
-1-2-1

The magnitude of the gradient is approximated using ,/(G,)? + (Gy)?.
The edge direction is calculated using ATAN(G,, G,).

IDL Reference Guide

Chapter 5: Routines: C 237

This edge direction isthen related to adirection that can be traced in animage,
assigning each value to one of four sectors (0, 1, 2, or 3) as follows:

Figure 5-1: Relating Edge Direction to Direction in an Image

4. An edge point is defined to be a point whose gradient magnitudeislocally
maximum in the direction of the gradient. This process, which resultsin ridges
one pixel wide, is called nonmaxima suppression. After nonmaxima
suppression one ends up with an image which is zero everywhere except at the
local maxima points. At the local maxima points the value of the gradient
magnitude is preserved.

5. Hysteresisis applied to eliminate gaps. Any pixel in the nonmaxima
suppression image that has avalue greater than T_HIGH (high threshold
calculated from HIGH) is presumed to be an edge pixel, and is marked as such
immediately. Then any pixels that are connected to this edge pixel and that
have avalue greater than T_LOW (low threshold calculated from LOW) are
also selected as edge pixels. All edges are followed until the value drops below
T_LOW.

IDL Reference Guide CANNY

238 Chapter 5: Routines: C

Syntax

Result = CANNY (Image [, HIGH=value] [, LOW=value] [, SIGMA=valug])
Return Value

The result is a byte array containing the edges in the image.
Arguments

Image

A 2D image array.
Keywords

HIGH

The high value used to cal culate the high threshold during edge detection, given as a
factor of the histogram of the magnitude array. The input range is[0-1]. The default
valueis0.8. If theinput valueis outside the allowable range of [LOW-1], itissilently
clipped to fall into that range.

LOW

The low value used to calculate the low threshold during edge detection, given as a
factor of the HIGH value. The input rangeis[0-1]. The default value is 0.4. If the
input value is outside the allowable range of [0-1], it is clipped to fall into that range.

SIGMA

The sigma value used when creating the Gaussian kernel. The default value is 0.6

Version History

6.3 Introduced

CANNY IDL Reference Guide

Chapter 5: Routines: C 239

CASE

The CASE statement selects one, and only one, statement for execution, depending
on the value of an expression. This expression is called the case selector expression.
Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If amatchis
found, the statement is executed and control resumes directly below the CASE
statement.

The EL SE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For this reason, it isusually
written asthe last clause in the CASE statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an ELSE clause is not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

In this CASE statement, only one clause is selected, and that clause is the first one

whose value is equal to the value of the case selector expression.

Tip
Each clauseistested in order, so it is most efficient to order the most frequently
selected clauses first.

CASE is similar to the SWITCH statement. For more information on using CASE
and other IDL program control statements, aswell as the differences between CASE
and SWITCH, see Chapter 7, “Program Control” (Application Programming).

Syntax

CASE expression OF

expression: statement

expression: statement
[ELSE: statement]
ENDCASE

IDL Reference Guide CASE

240 Chapter 5: Routines: C

Examples

This example illustrates how the CASE statement, unlike SWITCH, executes only
the one statement that matches the case expression:

x=2

CASE x OF
1: PRINT, 'one'
2: PRINT, 'two'
3: PRINT, 'three'
4: PRINT, 'four'
ENDCASE

IDL Prints:

two

Version History

Origina Introduced

See Also

BEGIN...END, BREAK, CONTINUE, FOR, GOTO, IF..THEN...ELSE,
REPEAT...UNTIL, SWITCH, WHILE...DO, Chapter 7, “Program Control”
(Application Programming)

CASE IDL Reference Guide

Chapter 5: Routines: C 241

CATCH

The CATCH procedure provides a generalized mechanism for the handling of
exceptions and errorswithin IDL. Calling CATCH establishes an error handler for the
current procedure that intercepts all errors that can be handled by IDL, excluding
non-fatal warnings such as math errors (e.g., floating-point underflow).

When an error occurs, each active procedure, beginning with the offending procedure
and proceeding up the call stack to the main program level, is examined for an error
handler (established by a call to CATCH). If an error handler is found, control
resumes at the statement after the call to CATCH. The index of the error is returned
in the argument to CATCH. The 'ERROR_STATE system variable is also set. The
associated error messageis stored in 'lERROR_STATE.MSG. If no error handlers are
found, program execution stops, an error message is issued, and control revertsto the
interactive mode. A call to ON_IOERROR in the procedure that causes an 1/O error
supersedes CATCH, and takes the branch to the label defined by ON_IOERROR.

This mechanism is similar, but not identical to, the setjmp/longjmp facilitiesin C
and the catch/throw facilitiesin C++.

Error handling is discussed in more detail in “Controlling and Recovering from
Errors’ (Chapter 8, Application Programming).

Syntax
CATCH, [Variable] [, /CANCEL]
Arguments

Variable

A named variable in which the error index is returned. When an error handler is
established by acall to CATCH, Variableis set to zero. If an error occurs, Variableis
set to the error index, and control istransferred to the statement after the call to
CATCH. The error index is also returned in the CODE field of the 'ERROR_STATE
system variable, i.e., '"ERROR_STATE.CODE.

IDL Reference Guide CATCH

242

Chapter 5: Routines: C

Keywords

CANCEL

Set this keyword to cancel the error handler for the current procedure. This
cancellation does not affect other error handlers that may be established in other
active procedures.

Note
If the CANCEL keyword is set, the Variable argument must not be present.

Examples

CATCH

The following procedure illustrates the use of CATCH:

PRO CATCH_EXAMPLE

; Define variable A:
A = FLTARR(10)

; Establish error handler. When errors occur, the index of the
; error 1is returned in the variable Error_status:
CATCH, Error_status

;This statement begins the error handler:

IF Error_status NE 0 THEN BEGIN
PRINT, 'Error index: ', Error_status
PRINT, 'Error message: ', !ERROR_STATE.MSG
; Handle the error by extending A:
A=FLTARR(12)
CATCH, /CANCEL

ENDIF

; Cause an error:
All1]1=12

; Even though an error occurs in the line above, program
; execution continues to this point because the event handler
; extended the definition of A so that the statement can be
; re-executed.
HELP, A
END

IDL Reference Guide

Chapter 5: Routines: C 243

Running the CATCH_EXAMPLE procedure causes IDL to produce the following
output and control returns to the interactive prompt:

Error index: -144

Error message:

Attempt to subscript A with <INT (11)> is out of range.
A FLOAT = Array[12]

Version History

Pre4.0 Introduced

See Also

IERROR_STATE, ON_ERROR, ON_IOERROR, “Controlling and Recovering from
Errors’ (Chapter 8, Application Programming).

IDL Reference Guide CATCH

244 Chapter 5: Routines: C

The CD procedure is used to set and/or change the current working directory. This
routine changes the working directory for the IDL session and any child processes
started from IDL during that session after the directory changeis made. Under UNIX,
CD does not affect the working directory of the process that started IDL. The
PUSHD, POPD, and PRINTD procedures provide a convenient interface to CD.

IDL’s default current working directory depends on the platform and user interface:

e When using UNIX with the command-line interface (id1), the default current
working directory is the directory from which IDL was started.

« When using the IDL Workbench, the default current working directory is
controlled through the I nitial working directory setting, located on the IDL
Preferences page.

Syntax
CD [, Directory] [, CURRENT=variable]

Arguments

Directory

A scalar string specifying the path of the new working directory. If Directoryis
specified as anull string, the working directory is changed to the user’'s home
directory (UNIX) or to the directory specified by IDIR (Windows). If this argument
is not specified, the working directory is not changed.

Keywords
CURRENT

If CURRENT ispresent, it specifies anamed variable into which the current working
directory is stored as a scalar string. The returned directory is the working directory
before the directory is changed. Thus, you can obtain the current working directory
and changeit in a single statement:

CD, new_dir, CURRENT=o0ld_dir

CD IDL Reference Guide

Chapter 5: Routines: C 245

Note
Thereturn value of the CURRENT keyword does not include a directory separator
at the end of the string.

Examples

Windows

To change drives.
cD, 'C:!

To specify afull path:
CD, 'C:\MyDatal\January'

To change from the ¢ : \MyData directory to the c: \MyData\January directory:
CD, 'January'

To go back up adirectory, use “..”. For example, if the current directory is
C:\MyData\January, you could go up to the c: \MyData directory with the
following command:

CDh, '..'

If the current directory isc: \MyData\January, you could change to the
C:\MyData\February directory with the following command:

CD, '..\February'

Unix

To specify afull path:
CD, '/home/data/'

To change to the january subdirectory of the current directory:
CD, 'january'

To go back up adirectory, use “..”. For example, if the current directory is
/home/data/january, you could go up to the /home/data/ directory with the
following command:

CDh, '..'

If the current directory is /home /data/january, you could change to the
/home/data/february directory with the following command:

CD, '../february'

IDL Reference Guide CD

246

Version History

Chapter 5: Routines: C

Pre 4.0 I ntroduced

See Also

PUSHD, POPD

CD

IDL Reference Guide

Chapter 5: Routines: C 247

CDF Routines

For information, see Chapter 2, “Common Data Format” (IDL Scientific Data
Formats).

IDL Reference Guide CDF Routines

248 Chapter 5: Routines: C
CEIL

The CEIL function returns the closest integer greater than or equal to its argument.
Syntax
Result = CEIL(X[, /L64])

Return Value

If theinput value X isinteger type, Result has the same value and type as X.
Otherwise, Result is a 32-hit longword integer with the same structure as X.

Arguments
X

The value for which the ceiling function is to be evaluated. This value can be any
numeric type (integer, floating, or complex).

Keywords

L64

If set, the result type is 64-bit integer regardless of the input type. Thisis useful for
situations in which a floating point number contains a value too large to be
represented in a 32-bit integer.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords' for details.

CEIL IDL Reference Guide

Chapter 5: Routines: C 249

Examples

To print the ceiling function of 5.1, enter:

PRINT, CEIL(5.1)
; IDL prints:
6

To print the ceiling function of 3000000000.1, the result of which istoo large to
represent in a 32-bit integer:

PRINT, CEIL(3000000000.1D, /L64)
; IDL prints:
3000000001

Version History

Pre 4.0 I ntroduced

See Also

COMPLEXROUND, FLOOR, ROUND

IDL Reference Guide CEIL

250 Chapter 5: Routines: C

CHEBYSHEV

The CHEBY SHEV function returns the forward or reverse Chebyshev polynomial
expansion of a set of data. Note: Results from this function are subject to roundoff
error given discontinuous data.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
chebyshev.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

Result = CHEBY SHEV(D, N)
Return Value

Returns the forward or reverse Chebyshev polynomial expansion of a set of data.
Arguments

D
A vector containing the values at the zeros of Chebyshev polynomial.
N

A flag that, if set to -1, returns a set of Chebyshev polynomials. If set to +1, the
origina datais returned.

Keywords
None.

Version History

Original Introduced

See Also

FFT, WTN

CHEBYSHEV IDL Reference Guide

Chapter 5: Routines: C 251

CHECK_MATH

The CHECK_MATH function returns and clears the accumulated math error status.
Syntax

Result = CHECK_MATH([, MASK=bitmask] [, /NOCLEAR] [, /PRINT])
Return Value

The returned value is the sum of the bit values (described in the following table) of
the accumulated errors.

Value Condition
0 No errors detected since the last interactive prompt or call to
CHECK_MATH
1 Integer divided by zero
2 Integer overflow

16 Floating-point divided by zero

32 Floating-point underflow

64 Floating-point overflow

128 Floating-point operand error. Anillegal operand was
encountered, such as a negative operand to the SQRT or
ALOG functions, or an attempt to convert to integer a
number whose absolute value is greater than 231 - 1

Table 5-1: Math Error Status Values

Note
CHECK_MATH can only relay information reported by the underlying hardware.
Some hardware/operating system combinations may not report all of the math
errors listed.

Each type of error is only represented once in the return value—any number of
“Integer divided by zero” errorswill result in areturn value of 1.

IDL Reference Guide CHECK_MATH

252 Chapter 5: Routines: C

The math error statusis cleared (reset to zero) when CHECK_MATH iscalled, or
when errors are reported. Math errors are reported either never, when the interpreter
returns to an interactive prompt, or after execution of each IDL statement, depending
on the value of the 'EXCEPT system variable (see “!EXCEPT” on page 5496). See
“Examples’ below for further discussion.

Keywords
MASK

If present, the mask of exceptionsto check. Otherwise, all exceptions are checked.
Exceptions that are pending but not specified by MASK are not reported, and not
cleared. Set this keyword equal to the sum of the bit values for each exception to be
checked. For alist of the bit values corresponding to various exceptions, see
CHECK_MATH.

NOCLEAR

By default, CHECK_MATH returns the pending exceptions (as specified viathe
MASK keyword) and clears them from itslist of pending exceptions. If NOCLEAR
is set, the exceptions are not cleared and remain pending.

PRINT

Set this keyword to print an error message to the IDL command log if any
accumulated math errors exist. If this keyword is not present, CHECK_MATH
executes silently.

Examples

To simply check and clear the accumulated math error status using all the defaults,
enter:

PRINT, CHECK_MATH ()
IDL prints the accumulated math error status code and resets to zero.

CHECK_MATH and 'EXCEPT

Because the accumulated math error statusis cleared when it isreported, the behavior
and appropriate use of CHECK_MATH depends on the value of the system variable
IEXCEPT.

CHECK_MATH IDL Reference Guide

Chapter 5: Routines: C 253

o If IEXCEPT isset equal to 0, math exceptions are not reported automatically,
and thus CHECK_MATH will always return the error status accumul ated
since the last time it was called.

o If IEXCEPT isset equal to 1, math exceptions are reported when IDL returns
to the interactive command prompt. In this case, CHECK_MATH will return
appropriate error codes when used within an IDL procedure, but will always
return zero when called at the IDL prompt.

« If IEXCEPT isset equal to 2, math exceptions are reported after each IDL
statement. In this case, CHECK_MATH will return appropriate error codes
only when used within an IDL statement, and will always return zero
otherwise.

For example:

;Set value of !EXCEPT to zero.
EXCEPT=0

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:
Inf 1

The special floating-point value Inf is returned for 1./0. There is no integer analogue
to the floating-point Inf.

;Check the accumulated error status.
PRINT, CHECK_MATH/ ()

IDL prints:
17
CHECK_MATH reports floating-point and integer divide-by-zero errors.

;Set value of !EXCEPT to one.
EXCEPT=1

;Both of these operations cause errors.
PRINT, 1./0., 1/0

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0

IDL Reference Guide CHECK_MATH

254 Chapter 5: Routines: C

Thistime IDL aso prints error messages.

;Check the accumulated error status.
PRINT, CHECK_MATH ()

IDL prints:
0
The status was reset.

However, if we do not allow IDL to return to an interactive prompt before checking
the math error status:

;Set value of !EXCEPT to one.
EXCEPT=1

;Call to CHECK_MATH happens before returning to the
; IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH ()

IDL prints:

Inf 1
17

In this case, the math error status code (17) is printed, but because the error status has
been cleared by the call to CHECK_MATH, no error messages are printed when IDL
returns to the interactive command prompt. Finally,

;Set value of !EXCEPT to two.
| EXCEPT=2

;Call to CHECK_MATH happens before returning to the
; IDL command prompt.
PRINT, 1./0., 1/0 & PRINT, CHECK_MATH()

IDL prints:

Inf 1
% Program caused arithmetic error: Integer divide by 0
% Program caused arithmetic error: Floating divide by 0
% Detected at S$MAINS

0

Errors are printed before executing the CHECK _MATH function, so
CHECK_MATH reports no errors. However, if we include the call to
CHECK_MATH inthefirst PRINT command, we see the following:

;Call to CHECK_MATH is part of a single IDL statement.
PRINT, 1./0., 1/0, CHECK_MATH()

CHECK_MATH IDL Reference Guide

Chapter 5: Routines: C 255

IDL prints:

Inf 1 17
Printing Error Messages

The following code fragment prints abbreviated names of errors that have occurred:

;Create a string array of error names.
ERRS = ['Divide by 0', 'Underflow', 'Overflow', $
'Tllegal Operand']

;Get math error status.
J = CHECK_MATH ()
FOR I = 4, 7 DO IF ISHFT(J, -I) AND 1 THEN $

;Check to see if an error occurred and print the corresponding
;error message.
PRINT, ERRS(I-4), ' Occurred'

Testing Critical Code

Example 1

Assume you have a critical section of code that islikely to produce an error. The
following example shows how to check for errors, and if one is detected, how to
repeat the code with different parameters.

; Clear error status from previous operations, and print error
; messages if an error exists:
JUNK = CHECK_MATH (/PRINT)

; Disable automatic printing of subsequent math errors:
EXCEPT=0

;Critical section goes here.
AGAIN:

; Did an arithmetic error occur? If so, print error message and
; request new values:

IF CHECK_MATH() NE O THEN BEGIN

PRINT, 'Math error occurred in critical section.'

; Get new parameters from user:
READ, 'Enter new values.', ...

; Enable automatic printing of math errors:
| EXCEPT=2

IDL Reference Guide CHECK_MATH

256 Chapter 5: Routines: C

;And retry:
GOTO, AGAIN
ENDIF

Example 2

This example demonstrates the use of the MASK keyword to check for a specific
error, and the NOCLEAR keyword to prevent exceptions from being cleared:

PRO EXAMPLE2_CHECKMATH

PRINT, 1./0
PRINT, CHECK_MATH (MASK=16, /NOCLEAR)
PRINT, CHECK_MATH (MASK=2, /NOCLEAR)

END
IDL prints:

Inf

16

0

% Program caused arithmetic error: Floating divide by 0

Version History

Origina Introduced

See Also

FINITE, ISHFT, MACHAR, “!VALUES’ on page 5492, “!EXCEPT” on page 5496,
“Math Errors’ (Chapter 8, Application Programming).

CHECK_MATH IDL Reference Guide

Chapter 5: Routines: C 257

CHISQR CVF

The CHISQR_CVF function computes the cutoff value V in a chi-square distribution
with Df degrees of freedom such that the probability that arandom variable X is
greater than V is equal to a user-supplied probability P.

Thisroutineis written in the IDL language. Its source code can be found in the file
chisqgr_cvf.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = CHISQR_CVF(P, Df)
Return Value

Returns computes the cutoff value V in a chi-square distribution with Df degrees of
freedom such that the probability that arandom variable X is greater than V is equal
to auser-supplied probability P.
Arguments
P

A non-negative single- or double-precision floating-point scalar, in the interval [0.0,
1.0], that specifies the probability of occurrence or success.

Df

A positive integer, single- or double-precision floating-point scalar that specifies the
number of degrees of freedom of the chi-square distribution.

Keywords

None.

IDL Reference Guide CHISQR_CVF

258 Chapter 5: Routines: C

Examples

Use the following command to compute the cutoff value in a chi-square distribution
with three degrees of freedom such that the probability that arandom variable X is
greater than the cutoff valueis 0.100. The result should be 6.25139.

PRINT, CHISQR_CVF(0.100, 3)
IDL prints:

6.25139

Version History

4.0 I ntroduced

See Also

CHISQR_PDF, F_CVF, GAUSS CVF, T_CVF

CHISQR_CVF IDL Reference Guide

Chapter 5: Routines: C 259

CHISQR _PDF

The CHISQR_PDF function computes the probability P that, in a chi-square
distribution with Df degrees of freedom, arandom variable X islessthan or equal to a
user-specified cutoff value V.

Thisroutineis written in the IDL language. Its source code can be found in the file
chisqgr_pdf.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = CHISQR_PDF(V, Df)
Return Value

If both arguments are scalar, the function returns a scalar. If both arguments are
arrays, the function matches up the corresponding elements of V and Df, returning an
array with the same dimensions as the smallest array. If one argument isa scalar and
the other argument is an array, the function uses the scalar value with each element of
the array, and returns an array with the same dimensions as the input array.

If any of the arguments are double-precision, the result is double-precision, otherwise
the result is single-precision.

Arguments

\
A scalar or array that specifies the cutoff value(s).
Df

A positive scalar or array that specifies the number of degrees of freedom of the chi-
square distribution.

Keywords

None.

IDL Reference Guide CHISQR_PDF

260 Chapter 5: Routines: C

Examples

Use the following command to compute the probability that arandom variable X,
from the chi-square distribution with three degrees of freedom, isless than or equal to
6.25. The result should be 0.899939.

result = CHISQR_PDF (6.25, 3)
PRINT, result

IDL prints:
0.899939

Compute the probability that arandom variable X from the chi-square distribution
with three degrees of freedom, is greater than 6.25. The result should be 0.100061.

PRINT, 1 - chisgr_pdf(6.25, 3)
IDL prints:

0.100061

Version History

4.0 Introduced

See Also

BINOMIAL, CHISQR_CVF, F_PDF, GAUSS PDF, T_PDF

CHISQR_PDF IDL Reference Guide

Chapter 5: Routines: C 261

CHOLDC

Given a positive-definite symmetric n by n array A, the CHOLDC procedure
constructs its Cholesky decomposition A = LLT , where L isalower triangular array
and LT isthe transpose of L.

CHOLDC isbased on the routine cho1dc described in section 2.9 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, use the LA_CHOLDC procedure instead.

Syntax
CHOLDC, A, P [, /DOUBLE]
Arguments
A

Ann by narray. Oninput, only the upper triangle of A need be given. On output, L is
returned in the lower triangle of A, except for the diagonal elements, which are
returned in the vector P.

Note
If CHOLDC is complex then only the real part is used for the computation.

P

An n-element vector containing the diagonal elements of L.
Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Examples

See “CHOLSOL” on page 263.

IDL Reference Guide CHOLDC

262

Version History

Chapter 5: Routines: C

4.0

Introduced

See Also

CHOLSOL, LA_CHOLDC

CHOLDC

IDL Reference Guide

Chapter 5: Routines: C 263

CHOLSOL

The CHOL SOL function returns an n-element vector containing the solution to the
set of linear equations Ax = b, where A isthe positive-definite symmetric array
returned by the CHOLDC procedure.

CHOL SOL is based on the routine cho1s1 described in section 2.9 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Note
If you are working with complex inputs, use the LA_CHOL SOL procedure instead.

Syntax
Result = CHOLSOL(A, P, B[, /DOUBLE])

Return Value

Returns an n-element vector containing the solution to the set of linear equations
AXx = b, where A isthe positive-definite symmetric array returned by the CHOLDC.

Arguments
A

An n by n positive-definite symmetric array, as output by CHOLDC. Only the lower
triangle of A isaccessed.

Note
If CHOLSOL is complex then only the real part is used for the computation.

P

The diagonal elements of the Cholesky factor L, as computed by CHOLDC.
B

An n-element vector containing the right-hand side of the equation.

IDL Reference Guide CHOLSOL

264 Chapter 5: Routines: C

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Examples

To solve a positive-definite symmetric system Ax = b:

;Define the coefficient array:

A= [[6.0, 15.0, 55.0], s
[15.0, 55.0, 225.0]1, $
[55.0, 225.0, 979.0]1]

;Define the right-hand side vector B:
B = [9.5, 50.0, 237.0]

;Compute Cholesky decomposition of A:
CHOLDC, A, P

;Compute and print the solution:
PRINT, CHOLSOL (A, P, B)

IDL prints:
-0.499998 -1.00000 0.500000
The exact solution vector is[-0.5, -1.0, 0.5].

Version History

4.0 Introduced

See Also

CHOLDC, CRAMER, GS_ITER, LA_CHOLSOL, LU_COMPLEX, LUSOL,
SVSOL, TRISOL

CHOLSOL IDL Reference Guide

Chapter 5: Routines: C 265

CINDGEN

The CINDGEN function returns a complex, single-precision, floating-point array
with the specified dimensions.

Syntax
Result = CINDGEN(D4], ..., Dg])
Return Value

Returns a complex, single-precision, floating-point array with the specified
dimensions. Each element of the array hasitsreal part set to the value of its one-
dimensional subscript. The imaginary part is set to zero.

Arguments
Di

Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified. If the dimension arguments are
not integer values, IDL will convert them to integer values before creating the new

array.
Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

IDL Reference Guide CINDGEN

266 Chapter 5: Routines: C

Examples

To create C, a 4-element vector of complex values with the real parts set to the value
of their subscripts, enter:

C = CINDGEN(4)

Version History

Original Introduced

See Also

BINDGEN, DCINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN, UINDGEN, UL64INDGEN, ULINDGEN

CINDGEN IDL Reference Guide

Chapter 5: Routines: C 267

CIR_3PNT

The CIR_3PNT procedure returns the radius and center of acircle, given 3 points on
the circle. Thisis analogous to finding the circumradius and circumcircle of a
triangle; the center of the circumcircle is the point at which the three perpendicular
bisectors of the triangle formed by the points meet.

Thisroutineis written in the IDL language. Its source code can be found in the file
cir_3pnt.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
CIR_3PNT, X, Y, R, X0, YO
Arguments
X

A three-element vector containing the X-coordinates of the points.

Y

A three-element vector containing the Y-coordinates of the points.

R

A named variable that will contain the radius of the circle. The procedure returns 0.0
if the points are co-linear.

X0

A named variable that will contain the X-coordinate of the center of thecircle. The
procedure returns 0.0 if the points are co-linear.

YO

A named variable that will contain the Y-coordinate of the center of thecircle. The
procedure returns 0.0 if the points are co-linear.

Keywords

None.

IDL Reference Guide CIR_3PNT

268 Chapter 5: Routines: C

Examples

X = [1.0, 2.0, 3.0]

Y = [1.0, 2.0, 1.0]

CIR_3PNT, X, Y, R, X0, YO

PRINT, 'The radius is: ', R

PRINT, 'The center of the circle is at: ', X0, YO
Version History

Pre 4.0 I ntroduced

See Also

PNT_LINE, SPH_4PNT

CIR_3PNT IDL Reference Guide

Chapter 5: Routines: C 269

CLOSE

The CLOSE procedure closes the file units specified as arguments. All open files are
also closed when IDL exits.

Syntax

CLOSE[, Unity, ..., Unit,] [, /ALL] [, EXIT_STATUS=variable] [, /FILE]
[, IFORCE]

Arguments
Unit;
The IDL file unitsto close.
Keywords
ALL

Set this keyword to close all open file units. In addition, any file units that were
alocated viaGET _LUN arefreed.

EXIT_STATUS

Set this keyword to a named variable that will contain the exit status reported by a
UNIX child process started viathe UNIT keyword to SPAWN. This valueis the exit
value reported by the process by calling EXIT, and is analogous to the value returned
by $? under most UNIX shells. If used with any other type of file, 0 is returned.
EXIT_STATUS s not allowed in conjunction with the ALL or FILE keywords.

FILE

Set this keyword to close all file units from 1 to 99. File units greater than 99, which
are associated with the GET_LUN and FREE_LUN procedures, are not affected.

FORCE

Overridesthe IDL file output buffer and forces the file to be closed no matter what
errors occur in the process.

IDL buffers file output for performance reasons. If it isnot possible to properly flush
this datawhen afile closeis requested, an error is normally issued and thefile

IDL Reference Guide CLOSE

270 Chapter 5: Routines: C

remains open. An example of thismight be that your disk does not have room to write
the remaining data. This default behavior prevents data from being lost. To override
it and force the file to be closed no matter what errors occur in the process, specify
FORCE.

Examples

If file units 1 and 3 are open, they can both be closed at the same time by entering the
command:

CLOSE, 1, 3

Version History

Original Introduced
See Also
OPENR/OPENU/OPENW

CLOSE IDL Reference Guide

Chapter 5: Routines: C 271

CLUST WTS

The CLUST_WTS function computes the weights (the cluster centers) of an n-
column, m-row array, where n is the number of variables and mis the number of
observations or samples. CLUST_WT S uses k-means clustering. With thistechnique,
CLUST_WTS starts with k random clusters and then iteratively moves items between
clusters, minimizing variability within each cluster and maximizing variability
between clusters.

Note
Because the initial clusters are chosen randomly, your results may differ slightly
each timethe CLUST_WTS routine is invoked, even for the same input data. For
datawith well-defined clusters the differences should be dight. For randomly-
scattered data (no distinguishable clusters), the results may be significantly
different, which may indicate that k-means clustering is not appropriate for your
data.

Tip
For hierarchical tree clustering, seethe CLUSTER _TREE function.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax

Result = CLUST_WTS(Array [, /DOUBLE] [, N_CLUSTERS=valug]
[, N_ITERATIONS=integer] [, VARIABLE_WTS=vector])

Return Value
Returns an m-column, N_CLUSTERS-row array of cluster centers by computing the

weights (the cluster centers) of an n-column, m-row array, where n is the number of
variables and mis the number of observations or samples.

IDL Reference Guide CLUST WTS

272 Chapter 5: Routines: C

Arguments

Array

An n-column, m-row array of any data type except string, single- or double-precision
complex.

Keywords
DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
N_CLUSTERS

Set this keyword equal to the number of cluster centers. The default isto compute m
cluster centers.

N_ITERATIONS

Set this keyword equal to the number of iterations used when in computing the
cluster centers. The default isto use 20 iterations.

VARIABLE_WTS

Set thiskeyword equa to an m-element vector of floating-point variable weights. The
elements of this vector are used to give greater or lesser importance to each variable
(each column) in determining the cluster centers. The default isto give al variables
equal weighting using avalue of 1.0.

Examples

See “CLUSTER” on page 273.

Version History

5.0 I ntroduced

See Also

CLUSTER, CLUSTER_TREE, “Multivariate Analysis’ (Chapter 9, Using IDL)

CLUST_WTS IDL Reference Guide

Chapter 5: Routines: C 273

CLUSTER

The CLUSTER function computes the classification of an n-column, m-row array,
where n is the number of variables and mis the number of observations or samples.
CLUST_WTS uses k-means clustering. With this technique, CLUST_WTS starts
with k random clusters and then iteratively movesitems between clusters, minimizing
variability within each cluster and maximizing variability between clusters.

Note
Because the initial clusters are chosen randomly, your results may differ slightly
each timethe CLUST_WTS routine is invoked, even for the same input data. For
datawith well-defined clusters the differences should be dlight. For randomly-
scattered data (no distinguishable clusters), the results may be significantly
different, which may indicate that k-means clustering is not appropriate for your
data.

Tip
For hierarchical tree clustering, seethe CLUSTER _TREE function.

For more information on cluster analysis, see:

Everitt, Brian S. Cluster Analysis. New York: Halsted Press, 1993. ISBN 0-470-
22043-0

Syntax
Result = CLUSTER(Array, Weights [, /DOUBLE] [, N_CLUSTERS=valug])
Return Value

Resultsin a 1-column, m-row array of cluster number assignments that correspond to
each sample.

Arguments

Array

An n-column, m-row array of type float or double.

IDL Reference Guide CLUSTER

274

Weights

Chapter 5: Routines: C

An array of weights (the cluster centers) computed using the CLUST_WTS function.
The dimensions of this array vary according to keyword val ues.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

N_CLUSTERS

Set this keyword equal to the number of clusters. The default is based upon the row

dimension of the Weights array.

Examples

; Construct 3 separate clusters in a 3D space:

n = 50

cl = RANDOMN (seed, 3, n)

cl[0:1,*] -= 3

c2 = RANDOMN (seed, 3, n)

c2[0,*] += 3
c2[1,*] -= 3

c3 = RANDOMN (seed, 3, n)

c3[1:2,*] += 3

array = [[cl], [c2], [c3]]

; Compute cluster weights,
weights = CLUST_WTS (array,

; Compute the classification of each sample:
result = CLUSTER (array,

; Plot each cluster using a different symbol:
IPLOT, arrayl[*, WHERE (result eq 0)],
LINESTYLE = 6, SYM_ INDEX
IPLOT, arrayl[*, WHERE(result eqg 1)1,
LINESTYLE = 6, SYM_INDEX
IPLOT, array[*, WHERE (result eq 2)],
LINESTYLE = 6, SYM_INDEX

CLUSTER

N_CLUSTERS

using three clusters:
N_CLUSTERS

3)

/OVERPLOT, $

/OVERPLOT, $

IDL Reference Guide

Chapter 5: Routines: C

&l IDL iPlot [Untitled*]
File Edit Insert Operations ‘Window Help

D||E|E] of | [zl o] [ola|-]=] AlNolo|e|e|

275

o [3]

i \n“\w\ T

PR
K og
2
a

CLm

T T

|C|ick ta select items, click and drag to select multiple items |[592,EDE]

Figure 5-2: CLUSTER Example

Version History

5.0 Introduced

See Also

CLUST_WTS, CLUSTER_TREE, PCOMP, STANDARDIZE, “Multivariate

Analysis’ (Chapter 9, Using IDL).

IDL Reference Guide

CLUSTER

276 Chapter 5: Routines: C
CLUSTER_TREE

The CLUSTER_TREE function computes the hierarchical clustering for aset of m
itemsin an n-dimensional space. The CLUSTER_TREE function is designed to be
used with the DENDROGRAM or DENDRO_PLOT procedures.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cluster_tree.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

Result = CLUSTER_TREE(Pairdistance, Linkdistance [, LINKAGE = value])
or for LINKAGE = 3 (centroid):

Result = CLUSTER_TREE(Pairdistance, Linkdistance, LINKAGE = 3,
[, DATA = array] [, MEASURE=value] [, POWER_MEASURE=value])

Return Value

The Result is a 2-by-(m-1) integer array containing the cluster indices. Each row of
Result contains theindices of the two items that were clustered together. The distance

between the two items is contained in the corresponding element of the Linkdistance
output argument.

Note

The original mitems are given indices 0...m-1, while each newly-created cluster is
given anew index starting at m and incrementing.

Arguments

Pairdistance

Aninput array containing the pairwise distances as either a compact vector or asa
symmetric matrix, usually created by the DISTANCE MEASURE function. For the
compact vector form, Pairdistance should be an m* (m-1)/2 element vector, ordered
as: [Do, 1, Do, 2, - Do, m-1, D1, 2, --» D2, m-1l, where D; ; denotes the distance
between itemsi and j. For the matrix form, Pairdistance should be an m-by-m
symmetric matrix with zeroes down the diagonal.

CLUSTER_TREE IDL Reference Guide

Chapter 5: Routines: C 277

Linkdistance

Set this argument to a named variable in which the cluster distances will be returned
as an (m-1)-element single or double-precision vector. Each element of Linkdistance
corresponds to the distance between the two items of the corresponding row in
Result. If Pairdistance is double-precision then Linkdistance will be double-
precision, otherwise Linkdistance will be single-precision.

Keywords

DATA

If the LINKAGE keyword is set equal to 3 (centroid), then the DATA keyword must
be set to the array of original data as input to the DISTANCE_MEASURE function.
The data array is necessary for computing the centroid of newly-created clusters.

Note
DATA does not need to be supplied if LINKAGE is not equal to 3.

LINKAGE

Set this keyword to an integer giving the method used for linking clusters together.
Possible values are:

Value Method Used

0 (Default) Use single linkage (nearest neighbor). The distance
between two clustersis defined as the smallest distance
between itemsin the two clusters. This method tends to string
itemstogether and is useful for non-homogeneous clusters.

1 Use complete linkage (furthest neighbor). The distance
between two clustersis defined as the largest distance between
items. This method is useful for homogeneous, compact,
clusters but is not useful for long chain-like clusters.

Table 5-2: LINKAGE Values and Methods

IDL Reference Guide CLUSTER_TREE

278 Chapter 5: Routines: C

Value Method Used

2 Use weighted pairwise average. The distance between two
clustersis defined as the average distance for all pairs of
objects between each cluster, weighted by the number of
objectsin each cluster. This method works well for both
homogeneous clusters and for chain-like clusters.

3 Use weighted centroid. The distance between two clustersis
defined as the distance between the centroids of each cluster.
The centroid of acluster is the average position of all the
subclusters, weighted by the number of objectsin each
subcluster.

Table 5-2: LINKAGE Values and Methods (Continued)

Note
If the LINKAGE keyword is equal to 3, the distance between two clusters may be
less than the distance between items within one of the clusters. In adendrogram plot
thiswill cause the node lines to overlap.

MEASURE

If the LINKAGE keyword is equal to 3 (centroid), set this keyword to an integer
giving the distance measure (the metric) to use. Possible values are:

Value Type
0 (Default) Euclidean distance
1 CityBlock (Manhattan) distance
2 Chebyshev distance
3 Correlative distance
4 Percent disagreement

Table 5-3: MEASURE Values

For consistent results, the MEASURE value should match the value used in the
original call to DISTANCE_MEASURE. This keyword isignored if LINKAGE is
not equal to 3, or if POWER_MEASURE is set.

CLUSTER_TREE IDL Reference Guide

Chapter 5: Routines: C 279

Note
See DISTANCE_MEASURE for adetailed description of the various metrics.

POWER_MEASURE

If the LINKAGE keyword is equal to 3 (centroid), set this keyword to ascalar or a
two-element vector giving the parameters p and r to be used in the power distance
metric. If POWER_MEASURE is a scalar then the same valueis used for both p and
r. For consistent results, the POWER_MEASURE value should match the value used
in the original call to DISTANCE_MEASURE. This keyword isignored if

LINKAGE is not equal to 3.

Note
See DISTANCE_MEASURE for adetailed description of the power distance

metric.

Example

; Given a set of points in two-dimensional space.

DATA = [$
1, 11, $

[S,INC; NSO SR
[
N
ol

[
[
[
(4,
[
[
[

; Compute the Euclidean distance between each point.
DISTANCE = DISTANCE_MEASURE (data)

; Now compute the cluster analysis.
CLUSTERS = CLUSTER_TREE (distance, linkdistance)

PRINT, 'Item# Item# Distance'
PRINT, [clusters, TRANSPOSE (linkdistance)], $
FORMAT="' (I3, I7, F10.2)"

IDL Reference Guide CLUSTER_TREE

280 Chapter 5: Routines: C

When this codeisrun, IDL prints:

Item# Item# Distance
3 .25
1 .28
0 .56
4 .80
10 .95
1 9 .05

= g oo WL
N R R R R e

Items 5 and 3 are joined to create a new cluster, which is given the item number of 7.
Items 2 and 1 arejoined to create a cluster with item number 8. The process continues
until all items have been joined together. A graphical representation is shown below
(for clarity the last cluster, between items 9 and 11, has been omitted):

]
4
|
:—
2
1
4]
0 1 2 3 4 L5 &
X

Figure 5-3: Graphical Representation of Hierarchical Clustering

CLUSTER_TREE IDL Reference Guide

Chapter 5: Routines: C

Version History

281

6.1 Introduced

See Also

DENDRO_PLOT, DENDROGRAM, DISTANCE_MEASURE

IDL Reference Guide

CLUSTER_TREE

282 Chapter 5: Routines: C

CMYK_CONVERT

The CMYK_CONVERT procedure converts from the CMYK (cyan-magenta-
yellow-black) color model to RGB (red-green-blue) and vice versa.

The procedure uses the following method to convert from CMYK to RGB:
R = (255 - C) (1 - K/255)
G =(255- M) (1 - K/255)
B =(255-Y) (1-K/255)
To convert from RGB to CMY K, the procedure uses the following method:
K =minimum of (R, G, B)
C=255[1-R/(255-K)] (if K=255then C=0)
M = 255[1 - G/(255 - K)] (if K=255 then M=0)
Y =255[1- B/(255 - K)] (if K=255 then Y =0)
In both cases the CMYK and RGB values are assumed to be in the range 0 to 255.

Note
There is no single method that is used for CMY K/RGB conversion. The method
used by CMYK_CONVERT isthe simplest and, depending on printing inks and
screen colors, might not be optimal in all situations.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cmyk_convert .pro inthe 1ib subdirectory of the IDL distribution.

Syntax
CMYK_CONVERT, C,M, Y, K, R, G,B[,/TO_CMYK]
Arguments
C,M,Y, K

To convert from CMYK to RGB, set these arguments to scalars or arrays containing
the CMYK valuesin the range 0-255. To convert from RGB to CMYK (with the
TO_CMYK keyword set), set these arguments to named variables that will contain
the converted values.

CMYK_CONVERT IDL Reference Guide

Chapter 5: Routines: C 283

R,G,B

To convert from CMYK to RGB, set these arguments to named variables that will
contain the converted values. To convert from RGB to CMYK (withthe TO_CMYK
keyword set), set these arguments to scalars or arrays containing the RGB val ues.

Keywords

TO_CMYK

If this keyword is set, the values contained in the RGB arguments are converted to
CMYK. The default is to convert from CMYK to RGB.

Example

This example converts an image file's RGB datato CM YK, displays the image using
different color tables, converts CMYK back to RGB, and displays the image again.

file = FILEPATH('rose.jpg', SUBDIRECTORY=['examples', 'data'])
READ_JPEG, file, image

red = REFORM(image[O0,*,*])

green = REFORM(imagel[l,*,*])

blue = REFORM(imagel[2,*,*])

; Convert from RGB to CMYK
CMYK_CONVERT, ¢, m, y, k, red, green, blue, /TO_CMYK

; Display using cyan (green + blue) color table

IIMAGE, GREEN=c, BLUE=c, VIEW GRID=[2,3], DIM=[600,800]
; Display using magenta (red + blue) color table
IIMAGE, RED=m, BLUE=m, /VIEW_NEXT

; Display using yellow (red + green) color table
IIMAGE, RED=y, GREEN=y, /VIEW_NEXT

; Display using inverted grayscale (like ink)

IIMAGE, 255b-k, /VIEW_NEXT

; Convert from CMYK back to RGB
CMYK_CONVERT, ¢, m, v, k, r, g, b

IIMAGE, image, /VIEW_NEXT

IIMAGE, RED=r, GREEN=g, BLUE=b, /VIEW_NEXT

Version History

6.2 Introduced

IDL Reference Guide CMYK_CONVERT

284 Chapter 5: Routines: C

See Also

COLOR_QUAN

CMYK_CONVERT IDL Reference Guide

Chapter 5: Routines: C

COLOR_CONVERT

The COLOR_CONVERT procedure converts colorsto and from the RGB (Red
Green Blue) and a number of other color spaces.

285

RGB values are bytesin the range 0 to 255. Y CbCr values are bytes with the range
indicated below. Other values arein floating point.

These color spaces and their ranges are:

HLS

HSV

YUV

YIQ

YPbPr

YCbCr

Hue Lightness Saturation (double cone). Also known as HSL
and HSI. Hue is measured in degrees between 0 and 360, with 0
corresponding to red, 120 to green, and 240 to blue. Lightness
and Saturation are floating-point values between 0 and 1.

Hue Saturation Value (single cone). Hue is measured in degrees
between 0 and 360, with 0 corresponding to red, 120 to green,
and 240 to blue. Saturation and Value are floating-point values
between O and 1.

Luminance and two Chrominance. Y is afloating-point value
between 0 and 1, U is afloating-point value between -0.436 and
0.436, V is afloating-point value between -0.615 and 0.615.

Luminance In-phase Quadrature. Y is afloating-point value
between 0 and 1, | isafloating-point value between -0.596 and
0.596, Q is afloating-point value between -0.523 and 0.523.

Luma ChromaBlue ChromaRed (analog). Y is a floating-point
value between 0 and 1, Pb and Pr are floating-point values
between -0.5 to 0.5.

Luma ChromaBlue ChromaRed (digital). Y is afloating-point
value between 16 and 235, Cb and Cr are floating-point values
between 16 and 240.

The input parameters may be of one of the following forms:

* Threeinput parameters containing the input color triple(s) which may be
scalars or arrays of same size. These are followed by three output parameters
for returning the resuilt.

e Oneimage array of theform (3xmxn, mx3xn, or mxnx 3), followed by a
single output parameter for the result.

IDL Reference Guide

COLOR_CONVERT

286

Chapter 5: Routines: C

A reference containing a discussion of the various color systemsis: Foley and Van
Dam, Fundamentals of Interactive Computer Graphics, Addison-Wesley Publishing
Co., 1982.

Syntax

COLOR_CONVERT, lg, I1, I5, Og, Oy, O5 [, /HLS RGB |, /HSV_RGB |
,/IRGB_HLS|,/RGB_HSV |,/RGB_YCBCR|,/RGB_YIQ|, /RGB_YPBPR |
,/RGB_YUV |,/YCBCR_RGB|,/YIQ RGB|,/YPBPR_RGB |, /YUV_RGB]
[, INTERLEAVE=value]

or

COLOR_CONVERT, lg, Oy [, /HLS RGB |, /HSV_RGB |, /RGB_HLS|
,/IRGB_HSV |, /RGB_YCBCR]|,/RGB_YIQ|,/RGB_YPBPR|,/RGB_YUV |
,/YCBCR RGB |,/YIQ RGB|,/YPBPR_RGB |,/YUV_RGB]

[, INTERLEAVE=value]

Arguments

lg, 11, 1o

The input color triple(s). These arguments may be either scalars or arrays of same
length.

Oo, O1, O,

The variables to receive the result. Their structure is copied from the input
parameters.

lo
Aninput image array of theform 3xmxn, mx3xn,or mxnx 3.
Oo
A variable to receive the result. Its structure is copied from the input parameter, 1.

Keywords
HLS RGB

Set this keyword to convert from HLS to RGB.

COLOR_CONVERT IDL Reference Guide

Chapter 5: Routines: C 287

HSV_RGB

Set this keyword to convert from HSV to RGB.
INTERLEAVE

This keyword is useful only when calling this procedure with two arguments. It is
ignored when using six arguments. Set the keyword to the value that corresponds to
the image array's interleave format. The second output argument uses the same
interleave format when returning the result. The valid values for 2D arrays (3 x n or

nx3) are:
value array type
0 Pixel Interleave (3 x n) (default)
1 Row Interleave (n x 3)

Thevalid values for 3D arrays (3xmxn, mx3xn, or mxnx3) are:

value array type
0 Pixd Interleave (3x mxn)
(default)
1 Row Interleave (mx 3 x n)
2 Planar Interleave (mx n x 3)

RGB_HLS

Set this keyword to convert from RGB to HLS.
RGB_HSV

Set this keyword to convert from RGB to HSV.
RGB_YCBCR

Set this keyword to convert from RGB to Y CbCr.
RGB_YIQ

Set this keyword to convert from RGB to Y1Q.

IDL Reference Guide COLOR_CONVERT

288 Chapter 5: Routines: C

RGB_YPBPR

Set this keyword to convert from RGB to Y PoPr.
RGB_YUV

Set this keyword to convert from RGB to Y UV.
YCBCR_RGB

Set this keyword to convert from Y CbCr to RGB.
YIQ_RGB

Set this keyword to convert from Y1Q to RGB.
YPBPR_RGB

Set this keyword to convert from Y PbPr to RGB.
YUV_RGB

Set this keyword to convert from YUV to RGB.
Examples

The command:
COLOR_CONVERT, 255, 255, 0, h, s, v, /RGB_HSV

convertsthe RGB color triple (255, 255, 0), which isthe color yellow at full intensity
and saturation, to the HSV system. The resulting huein the variable his 60.0 degrees.
The saturation and value in the variables sand v, are set to 1.0.

The command:
COLOR_CONVERT, rgb_image, yuv_image, /RGB_YUV

convertsthe RGB_IMAGE image array of the form [3,m,n] to YUV_IMAGE, an
image array of the same form.

COLOR_CONVERT IDL Reference Guide

Chapter 5: Routines: C 289

Version History

Pre 4.0 I ntroduced
6.4 Added image array conversion and YUV, Y1Q, Y PbPr, and Y CbCr
color spaces
See Also

CMYK_CONVERT, HLS, HSV

IDL Reference Guide COLOR_CONVERT

290 Chapter 5: Routines: C

COLOR_EXCHANGE

The COLOR_EXCHANGE procedure replaces image pixels of agiven color with
pixels of anew color. For multi-channel images, every image color channel must
match the specified color in order for replacement to occur. Specify athreshold value
to replace colors close to the specified color.

Syntax

Result = COLOR_EXCHANGE(Image, Color, ReplaceColor
[, THRESHOL D=vector])

Return Value
Result is an array of the same dimensions and type as Image.
Arguments

Image

A 2D or 3D array of any basic type containing the input image. 2D arrays are treated
as one-channel images. 3D arrays must be of the form [N x n x m] where N isthe
number of image channels.

Color

An N-element vector that specifiesthe color in the image that isto be replaced, where
N is the number of image channels.

ReplaceColor

An N-element vector that specifies the color to be placed in the image where the
image color matches the Color argument, and where N is the number of image
channels.

Keywords
THRESHOLD

An N-element vector that specifies the threshold of the color in the array to be
replaced, where N is the number of image channels. Colors are replaced if every

COLOR_EXCHANGE IDL Reference Guide

Chapter 5: Routines: C 291

channel isinthe range Color +/- Threshold, inclusive. The default value is avector of
zeroes, specifying that an exact match is needed for replacement.

If athreshold is specified, THRESHOLD promotes the datatype of the threshold
value to ensure the comparisons do not overflow.

Examples

This example reads a TrueColor image file and displays the original and two versions
to which a color exchange operation has been applied.

; Read a TrueColor image:
file = FILEPATH('rose.jpg', SUBDIRECTORY = ['examples', 'data'l)

READ_JPEG, file, rose

; Replace all of the image’s pure red pixels with green pixels:
rose2 = COLOR_EXCHANGE (rose, [255,0,0], [0,255,0])

Replace all of the pixels within a threshold of 60 from the pure
; red pixel with green pixels:

rose3 = COLOR_EXCHANGE (rose, [255,0,0], [0,255,0], S
THRESHOLD=[60,60,601])

7

; Display the images side by side:

WINDOW, XSIZE=(SIZE(rose)) [2]*3, YSIZE=(SIZE(rose)) [3]
TVSCL, rose, 0, /TRUE

TVSCL, rose2, 1, /TRUE

TVSCL, rose3, 2, /TRUE

The resulting images appear as follows:

Figure 5-4: TrueColor Rose Image: Original and Two with Color Exchange

IDL Reference Guide COLOR_EXCHANGE

292 Chapter 5: Routines: C

Note
In the first replacement (the center image), there were no exact matches for the
pixel value [255, 0, 01, SO no pixels were replaced.

Version History

6.4 Introduced

COLOR_EXCHANGE IDL Reference Guide

Chapter 5: Routines: C 293

COLOR _QUAN

The COLOR_QUAN function quantizes a TrueColor image and returns a pseudo-
color image and palette to display the image on standard pseudo-color displays. The
output image and palette can have from 2 to 256 colors.

COLOR_QUAN solves the general problem of accurately displaying decomposed,
TrueColor images, that contain a palette of up to 224 colors, on pseudo-color displays
that can only display 256 (or fewer) simultaneous colors.

Using COLOR_QUAN

One of two color quantization methods can be used:

e Method 1isa dtatistical method that attemptsto find the N colors that most
accurately represent the original color distribution. This agorithm uses a
variation of the Median Cut Algorithm, described in “Color Image
Quantization for Frame Buffer Display”, from Computer Graphics, Volume
16, Number 3 (July, 1982), Page 297. It repeatedly subdivides the color space
into smaller and smaller rectangular boxes, until the requested number of
colors are obtained.

The original colors are then mapped to the nearest output color, and the
original image is resampled to the new palette with optional Floyd-Steinberg
color dithering. The resulting pseudo-color image and palette are usually a
good approximation of the original image.

The number of colorsin the output palette defaults to the number of colors
supported by the currently-selected graphics output device. The number of
colors can aso be specified by the COLOR keyword parameter.

» Method 2, selected by setting the keyword parameter CUBE, divides the three-
dimensional color space into equal-volume cubes. Each color axisis divided
into CUBE segments, resulting in CUBE? volumes. The original input image
is sampled to this color space using Floyd-Steinberg dithering, which
distributes the quantization error to adjacent pixels.

The CUBE method has the advantage that the color tables it produces are
independent of the input image, so that multiple quantized images can be
viewed simultaneously. The statistical method usually provides a better-
looking result and a smaller global error.

COLOR_QUAN can use the same color mapping for a series of images. See the
descriptions of the GET_TRANSLATION, MAP_ALL, and TRANSLATION
keywords, below.

IDL Reference Guide COLOR_QUAN

294 Chapter 5: Routines: C

Syntax

Result = COLOR_QUAN(Image_R, Image_G, Image B, R, G, B)
or
Result = COLOR_QUAN(Image, Dim, R, G, B)

Keywords: [, COLORS=integer{2 to 256}] [, CUBE={2|3|4|5|6} |,
GET_TRANSLATION=variable [, /MAP_ALL]] [, /DITHER]
[, ERROR=variable] [, TRANSLATION=vector]

The input image parameter can be passed as either three, separate col or-component
arrays (Image_R, Image_G, Image_B) or as athree-dimensional array containing all
three components, Image, and a scalar, Dim, indicating the dimension over which the
colors are interleaved.

Return Value

Returns a pseudo-col or image composed of 2 to 256 colors.
Arguments

Image R, Image G, Image B

Arrays containing the red, green, and blue components of the decomposed TrueColor
image. For best results, the input image(s) should be scaled to the range of 0 to 255.

Image

A three-dimensional array containing all three components of the TrueColor image.
Dim

A scalar that indicates the method of color interleaving in the Image parameter. A

value of 1 indicatesinterleaving by pixel: (3, n, m). A value of 2 indicates
interleaving by row: (n, 3, m). A value of 3 indicates interleaving by image: (n, m, 3).

R,G,B

Three output byte arrays containing the red, green, and blue components of the output
palette.

COLOR_QUAN IDL Reference Guide

Chapter 5: Routines: C 295

Keywords

COLORS

The number of colorsin the output palette. This value must be at least 2 and not
greater than 256. The default is the number of colors supported by the current
graphics output device.

CUBE

If this keyword is set, the color spaceisdivided into CU BE3 vol umes, to which the
input image is quantized. Thisresult is aways Floyd-Steinberg dithered. The value of
CUBE can range from 2 to 6; providing from 23=8,t06°= 216 output colors. If this
keyword is set, the COLORS, DITHER, and ERROR keywords are ignored.

DITHER

Set this keyword to dither the output image. Dithering can improve the appearance of
the output image, especially when using relatively few colors.

ERROR

Set this optional keyword to a named variable. A measure of the quantization error is
returned. Thiserror is proportiona to the square of the Euclidean distance, in RGB
space, between corresponding colorsin the origina and output images.

GET_TRANSLATION

Set this keyword to a named variable in which the mapping between the original
RGB triples (in the TrueColor image) and the resulting pseudo-color indicesis
returned as a vector. Do not use this keyword if CUBE is set.

MAP_ALL

Set this keyword to establish a mapping for all possible RGB triples into pseudo-
color indices. Set this keyword only if GET_TRANSLATION is also present. Note
that mapping all possible colors requires more compute time and slightly degrades
the quality of the resultant color matching.

TRANSLATION

Set this keyword to avector of translation indices obtained by a previous call to
COLOR_QUAN using the GET_TRANSLATION keyword. The resulting imageis
guantized using this vector.

IDL Reference Guide COLOR_QUAN

296 Chapter 5: Routines: C

Examples

The following code segment reads a TrueColor, row interleaved, image from adisk
file, and displays it on the current graphics display, using a palette of 128 colors:

;Open an input file:
OPENR, unit, 'XXX.DAT', /GET_LUN

;Dimensions of the input image:
a = BYTARR(512, 3, 480, /NOZERO)

;Read the image:
READU, unit, a

;Close the file:
FREE_LUN, unit

;Show the quantized image. The 2 indicates that the colors are
;interleaved by row:
TV, COLOR_QUAN(a, 2, r, g, b, COLORS=128)

;Load the new palette:
TVLCT, r, g, b

To quantize the image into 216 equal-volume color cubes, replace the call to
COLOR_QUAN with the following:

TV, COLOR_QUAN(a, 2, r, g, b, CUBE=6)
Converting RGB Images to Indexed Images

Although it isarelatively simple process to convert an RGB image to a grayscale
image, the process needed to convert an RGB image to an indexed image is more
complex. This process is more complex because the millions of possible colors
provided by an RGB image must be decomposed into the 256 colors used by an
indexed image. IDL's COLOR_QUAN function may be used to perform this process.

The following example shows how to use the COLOR_QUAN function to convert an
RGB image to an indexed image. The elev_t . jpg file contains a pixel interleaved
RGB image, which hasits own color information. This example converts theimage
to an indexed image with an associated color table. Complete the following steps for
a detailed description of the process.

Example Code
See rgbtoindexed.pro inthe examples/doc/image subdirectory of the IDL
installation directory for code that duplicates this example. Run the example

COLOR_QUAN IDL Reference Guide

Chapter 5: Routines: C 297

procedure by entering rgbtoindexed at the IDL command prompt or view thefile
in an IDL Editor window by entering . EDIT rgbtoindexed.pro.

1. Determinethe pathtotheelev_t.jpg file

elev_tFile = FILEPATH('elev_t.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import theimagefromthe elev_t.5jpg fileinto IDL:
READ_JPEG, elev_tFile, elev_tImage

3. Determine the size of the imported image:
elev_tSize = SIZE(elev_tImage, /DIMENSIONS)

4. If you arerunning IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to one before your first RGB imageis
displayed within an IDL session or program.

DEVICE, DECOMPOSED = 1
5. [Initialize the display:

WINDOW, O, TITLE = 'elev_t.jpg', $
XSIZE = elev_tSize[l], YSIZE = elev_tSize[2]

6. Display theimported image:

TV, elev_tImage, TRUE = 1

IDL Reference Guide COLOR_QUAN

javascript:doIDL("rgbtoindexed")
javascript:doIDL(".edit rgbtoindexed.pro")

298

COLOR_QUAN

Chapter 5: Routines: C

The following figure shows the original RGB image.

Figure 5-5: Example of an RGB Image

Note
If you are running I DL on a PseudoColor display, the RGB image will not be
displayed correctly. A PseudoColor display only allows the display of
indexed images. You can change the RGB image to an indexed image with
the COLOR_QUAN routine. An example of this method is shown in this
section.

The RGB image is converted to an indexed image with the COLOR_QUAN
routine, but the DECOMPOSED keyword to the DEVICE command must be
set to zero (for TrueColor displays) before using COLOR_QUAN becauseit is
acolor table related routine. See COLOR_QUAN for more information.

Note
COLOR_QUAN may result in some loss of color information since it
guanti zes the image to a fixed number of colors (stored in the color table).

If you are running IDL on a TrueColor display, set the DECOMPOSED
keyword to the DEVICE command to zero before your first color table related
routine is used within an IDL session or program.

IDL Reference Guide

Chapter 5: Routines: C 299

DEVICE, DECOMPOSED = 0
8. Convert the RGB image to an indexed image with an associated color table:

imageIndexed = COLOR_QUAN(elev_tImage, 1, red, green, $
blue)

9. Export the resulting indexed image and its associated color tableto a PNG file:

WRITE_PNG, 'elev_t.png', imagelIndexed, red, green, blue

Version History

Pre4.0 Introduced

See Also

PSEUDO

IDL Reference Guide COLOR_QUAN

300 Chapter 5: Routines: C

COLOR_RANGE_MAP

The COLOR_RANGE_MAP function maps al the pixels of an image to another set
of pixels, using source and target ranges to control the mapping. The mapping is
performed on each image channel individually. Channdl values falling within the
source range are linearly mapped to the target range. The same linear mapping is
applied to channel values falling outside the source range, and these values are
clipped to the range of theimage's data type.

Syntax

Result = COLOR_RANGE_MAP(Image, FromColor1, FromColor2, ToColor1,
ToColor2)

Return Value
Result is an array of the same dimensions and type as Image.
Arguments

Image

A 2D or 3D array of any basic type containing the input image. 2D arrays are treated
as one-channel images. 3D arrays must be of the form [N x n x m] where N isthe
number of image channels.

FromColorl

An N-element vector that specifies the starting color in the source range, where N is
the number of channels.

FromColor2

An N-element vector that specifies the ending color in the source range, where N is
the number of channels.

ToColorl

An N-element vector that specifies the starting color in the target range, where N is
the number of channels.

COLOR_RANGE_MAP IDL Reference Guide

Chapter 5: Routines: C 301

ToColor2

An N-element vector that specifies the ending color in the target range, where N isthe
number of channels.

Keywords
None

Examples

In this example, COLOR_RANGE_MAP will tone down the first (red) channel in an
image and make a hegative of an image:

; Read a TrueColor image:
file = FILEPATH('rose.jpg', SUBDIRECTORY = ['examples', 'data'l])

READ_JPEG, file, rose

; Tone down the first (red) channel in the image:
rose2 = COLOR_RANGE_MAP (rose, [0,0,0], [255,255,255], [0,0,0],S
[200,255,255])

; Make a negative of the rose image:
rose3 = COLOR_RANGE_MAP (rose, [0,0,0], [255,255,255],$
[255,255,255], [0,0,01)

; Display the images side by side:
WINDOW, XSIZE=(SIZE(rose)) [2]*3, YSIZE=(SIZE(rose)) [3]
TVSCL, rose, 0, /TRUE

TVSCL, rose2, 1, /TRUE
TVSCL, rose3, 2

, /TRUE

Figure 5-6: Original Image and Two with COLOR_RANGE_MAP Applications

IDL Reference Guide COLOR_RANGE_MAP

302 Chapter 5: Routines: C

Version History

6.4 Introduced

COLOR_RANGE_MAP IDL Reference Guide

Chapter 5: Routines: C 303

COLORIZE_SAMPLE

The COLORIZE_SAMPLE function colorizes a grayscal e image by matching
luminance levels with an RGB sample table. Thisis done by finding any matches
between the luminance values in the source image and the luminance values of the
RGB sample color table. Matching luminance values are replaced with the RGB
values from the sample table, therefore colorizing the image.

Note
COLORIZE_SAMPLE can be an imperfect operation because the luminance value
does not completely represent the RGB color it could have. There are many RGB
values that have the same luminance value. A carefully constructed sample table
may produce reasonable resultsin certain situations.

If there is no luminance value in the sample table that matches image luminance
values, the nearest luminance value from the sample table is then used.

If more than one RGB sample color has a given luminance, the colors are distributed
in the image where that luminance is present, using the same percentage of RGB
distribution of that luminance in the sample table. For example, COLOR1 and
COLOR2 are colorsin the sample table that have the same luminance value. If
COLORL1 appearsin the sample table five times more frequently than COLOR2, then
COLOR1 will be used to replace five times more pixels than COLOR2 in the
resulting image. These multiple colors are distributed randomly to reduce clumping
of too many similar colors. COLORIZE_SAMPLE may not produce expected results
because of the location and distribution of multiple colors that all have the same
luminance val ues.

Syntax
Result = COLORIZE_SAMPLE(Image, Sample)
Return Value

Result is a 3-channel byte array of the same width and height as Image.

IDL Reference Guide COLORIZE_SAMPLE

304 Chapter 5: Routines: C

Arguments

Image

A 2D or 3D array containing the input image with range [0-255]. A 2D array is
treated asagrayscaleimage. A 3D array must contain RGB image data and be of the
form [3x mx n]. Thisimage is assumed to be grayscale and so only the first channel
isused.

Sample
A 2D or 3D array with range [0-255] containing RGB sample colors. The array must
be of theform [3 x n] or [3x mx n] and istreated asasimplelist of RGB values.

Keywords

None

Examples

This example colorizes an image with an 8-color sample table:

image = BYTSCL (DIST(400))

sample = BYTARR(3,8, /NOZERO)
sample[0,*] = BINDGEN(8) * 32
sample[l,*] = BINDGEN(8) * 32

result = COLORIZE_SAMPLE (image, sample)
TV, result, /TRUE

Version History

6.4 Introduced

COLORIZE_SAMPLE IDL Reference Guide

Chapter 5: Routines: C 305

COLORMAP_APPLICABLE

The COLORMAP_APPLICABLE function determines whether the current visual
class supports the use of acolormap, and if so, whether colormap changes affect pre-
displayed Direct Graphics or if the graphics must be redrawn to pick up colormap
changes.

Thisroutineis written in the IDL language. Its source code can be found in the file
colormap_applicable.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = COLORMAP_APPLICABLE(redrawRequired)

Return Value

The function returns along value of 1 if the current visual class allows modification
of the color table, and O otherwise.

Arguments

redrawRequired

A named variable to retrieve a value indicating whether the visual class supports
automatic updating of graphics. The valueis 0 if the graphics are updated
automatically, or 1 if the graphics must be redrawn to pick up changesto the
colormap.

Keywords
None.

Examples

To determine whether to redisplay an image after a colormap change:

result = COLORMAP_APPLICABLE (redrawRequired)

IF ((result GT 0) AND (redrawRequired GT 0)) THEN BEGIN
my_ redraw

ENDIF

IDL Reference Guide COLORMAP_APPLICABLE

306 Chapter 5: Routines: C

Version History

5.2 Introduced

COLORMAP_APPLICABLE IDL Reference Guide

Chapter 5: Routines: C

COLORMAP_GRADIENT

307

The COLORMAP_GRADIENT function maps an image into a specified luminance-
based gradient. This function can be used to apply a“false” color to an image, based
on image luminance levels.

Syntax

Result = COLORMAP_GRADIENT(Image], Gradient])

Return Value

Result is a 3-channel byte array of the same width and height as Image.

Arguments
Image

A 2D or 3D array of any basic type containing the input image with range [0-255]. A

2D array istreated as a grayscale image. A 3D array must contain RGB image data
and be of the form [3,m,n].

Gradient

An optional scalar integer or [3, 256] byte array. If not provided, Gradient maps the
image to agrayscale gradient. If a scalar integer is provided, Gradient maps the
image to a color table specified by the scalar integer (For more information, see

LOADCT). If a[3, 256] byte array is provided, Gradient maps the image into the
RGB color table stored in this array.

Keywords
None

Examples

The following example maps an entire image into a blue gradient:

; Read a TrueColor image:

file = FILEPATH('rose.jpg', SUBDIRECTORY = ['examples',K 'data'l)
READ_JPEG, file, rose

IDL Reference Guide COLORMAP_GRADIENT

308 Chapter 5: Routines: C

; map the image into a blue gradient:
rose2 = COLORMAP_GRADIENT (rose, 1)

; Display the images side by side:

WINDOW, XSIZE=(SIZE(rose))[2]1*2, YSIZE=(SIZE(rose)) [3]
TVSCL, rose, 0, /TRUE

TVSCL, rose2, 1, /TRUE

The resulting images appear as follows:

Figure 5-7: TrueColor Rose Image: Original and with Colormap Gradient

Version History

6.4 Introduced

COLORMAP_GRADIENT IDL Reference Guide

Chapter 5: Routines: C 309

COLORMAP_ROTATION

The COLORMAP_ROTATION function maps pixels within a given hue rangeto
another hue range, using the HSV hue component. The HSV color model describes
the hue component as a circular value from 0 to 360 degrees wherered islocated at O
degrees, green is 120 degrees, and blue is 240 degrees.

A huerangeis specified as apair of start and stop angles and a direction indicator.
The angles increase in a counter-clockwise direction. The default directionis
counter-clockwise, which describes the direction of the hue range as it is mapped
from the start angle to the stop angle.

The source range is linearly mapped to the destination range.

Syntax

Result = COLORMAP_ROTATION(Image, ScAngleStart, S'cAngleStop,
DstAngleStart, DstAngleStop [, /SOURCE_CW] [, /DEST_CW])

Return Value

Result is a byte array of the same dimensions as the input Array.
Arguments

Image

A 3D array of any basic type containing the input image with datain range [0-255].
The image must contain RGB data and be of the form [3,m,n].

SrcAngleStart

A floating-point value specifying the starting position of the source angle on the HSV
color wheel, in degrees. Values between SrcAngleStart and ScAngleStop will be
replaced by values from the destination range.

SrcAngleStop

A floating-point value specifying the ending position of the source angle on the HSV
color wheel, in degrees. Values between SrcAngleStart and ScAngleStop will be
replaced by values from the destination range.

IDL Reference Guide COLORMAP_ROTATION

310 Chapter 5: Routines: C

DstAngleStart

A floating-point value specifying the starting position of the destination angle on the
HSV color wheel, in degrees. Values between DstAngleStart and DstAngleStop will

replace values in the source range.

DstAngleStop

A floating-point value specifying the ending position of the destination angle on the
HSV color wheel, in degrees. Values between DstAngleStart and DstAngleStop will
replace values in the source range.

Keywords
SOURCE_CW

Set this keyword to measure the source angle clockwise from ScAngleStart. By
default, the angle is measured in the counter-clockwise direction.

DEST_CW

Set this keyword to measure the destination angle clockwise from DstAngleSart. By
default, the angle is measured in the counter-clockwise direction.

Examples

The following sequence will change the red hues in arose to cyan:

file = FILEPATH('rose.jpg', SUBDIR=['examples', 'data'l])

READ_JPEG, file, rose
result = COLORMAP_ROTATION (rose, 310, 50, 160, 185)

TV, result, /TRUE

This example applies COLORMAP_ROTATION to the rose jpeg in various ways
and then visualizes them side-by-side:

file = FILEPATH('rose.jpg', SUBDIR=['examples',6 'data'l)
READ_JPEG, file, rose

; These values map red hues to blue:
rosel = COLORMAP_ROTATION (rose, 310, 50, 160, 200)

;These values map all hues to magenta:
rose2 = colormap_rotation(rose, 0, 360, 300, 300)

; These values map green hues to brown:
rose3 = COLORMAP_ROTATION (rose, 65, 150, 25, 60)

COLORMAP_ROTATION IDL Reference Guide

Chapter 5: Routines: C 311

; These values rotate the entire spectrum "backwards"
; around the pure red hue:
rose4 = COLORMAP_ROTATION (rose, 0, 360, 360, 0, /DEST_CW)

; These values make the purple flowers look like
; green leaves:
rose5 = COLORMAP_ROTATION (rose, 130, 310, 240, 60, /DEST_CW)

; Display the images side by side:

WINDOW, XSIZE=(SIZE(rose)) [2]*3, YSIZE=(SIZE(rose)) [3]1*2
TVSCL, rose, 0, /TRUE

TVSCL, rosel, 1, /TRUE
TVSCL, rose2, 2, /TRUE
TVSCL, rose3, 3, /TRUE
TVSCL, rose4, 4, /TRUE
TVSCL, rose5, 5, /TRUE

The resulting image appears as follows:

Figure 5-8: COLORMAP_ROTATION Applied in Various Ways to Rose JPEG

Version History

6.4 I ntroduced

IDL Reference Guide COLORMAP_ROTATION

312 Chapter 5: Routines: C
COMFIT

The COMFIT function fits the paired data{xi, yi} to one of six common types of
approximating models using a gradient-expansion | east-squares method.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
comfit.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

Result = COMFIT(X, Y, A[,/DOUBLE |, /EXPONENTIAL |,/GEOMETRIC |
, IGOMPERTZ |, /[HYPERBOLIC |, ITMAX |, /LOGISTIC |, ILOGSQUARE |
, TOL=valug] [, CHISQ=variable] [, ITER=variable] [, SIGMA=variable]
[, STATUS=variable] [, WEIGHT S=vector] [, Y ERROR=variabl€]
[, YFIT=variable])

Return Value
Resultsin a vector containing the model parameters ag, a4, ay, etc.
Arguments
X

An n-dement integer, single-, or double-precision floating-point vector.
Y

An n-element integer, single-, or double-precision floating-point vector.
A

A vector of initia estimates for each model parameter. The length of this vector
depends upon the type of model sel ected.

Keywords

Note

One of the following keywords specifying atype of model must be set when using

COMFIT. If you do not specify amodel, IDL will display awarning message when
COMFIT iscalled.

COMFIT IDL Reference Guide

Chapter 5: Routines: C 313

CHISQ

Set this keyword to a named variable that will contain the value of the reduced chi-
sguare goodness-of-fit statistic.

EXPONENTIAL
Set this keyword to compute the parameters of the exponential model.

— X
Yy = *ta

DOUBLE
Set this keyword to force the computation to be done in double-precision arithmetic.
GEOMETRIC

Set this keyword to compute the parameters of the geometric model.

—_ a
y = gx*+a,

GOMPERTZ
Set this keyword to compute the parameters of the Gompertz model.

_ A, X
Yy = " t 35

HYPERBOLIC

Set this keyword to compute the parameters of the hyperbolic model.

1
y =
ag+ a;x

ITER

Set this keyword equal to a named variable that will contain the number of iterations

performed.
ITMAX

Set this keyword to specify the maximum number of iterations. The default valueis
20.

IDL Reference Guide COMFIT

314

LOGISTIC

Chapter 5: Routines: C

Set this keyword to compute the parameters of the logistic model.

LOGSQUARE

1

X
a1 + &

Set this keyword to compute the parameters of the logsquare model.
y = ay+alog(x) + a,log(x)>?

SIGMA

Set this keyword to anamed variable that will contain a vector of standard deviations

for the computed model parameters.

STATUS

Set this keyword to a named variable that will contain an integer indicating the status
of the computation. Possible return values are:

0

The computation was
successful.

The computation failed.
Chi-sguare was
increasing without
bounds.

Thecomputation failed to
convergein ITMAX
iterations.

TOL

Set this keyword to specify the desired convergence tolerance. The routine returns
when the relative decrease in chi-squared is less than TOL in oneiteration. The

default valueis 1 x 1073

COMFIT

IDL Reference Guide

Chapter 5: Routines: C 315

WEIGHTS

Set this keyword equal to a vector of weights for Y. This vector should be the same
length as X and Y. The error for each term is weighted by WEIGHTS; when
computing the fit. Frequently, WEIGHTS; = 1.0/csi2, where o is the measurement
error or standard deviation of Y; (Gaussian or instrumental weighting), or
WEIGHTS = 1/Y (Poisson or statistical weighting). If WEIGHTS is not specified,
WEIGHTS; is assumed to be 1.0.

YERROR

Set this keyword to a named variable that will contain the standard error between
YFITand .

YFIT

Set this keyword to a named variable that will contain an n-element vector of y-data
corresponding to the computed model parameters.

Examples
; Define two n-element vectors of paired data:
X =[2.27, 15.01, 34.74, 36.01, 43.65, 50.02, 53.84, 58.30, $
62.12, 64.66, 71.66, 79.94, 85.67, 114.95]
Y = [5.16, 22.63, 34.36, 34.92, 37.98, 40.22, 41.46, 42.81, $

43.91, 44.62, 46.44, 48.43, 49.70, 55.31]

; Define a 3-element vector of initial estimates for the logsquare
; model:
A = [1.5, 1.5, 1.5]

; Compute the model parameters of the logsquare model, A[0], A[1l],

;& Al2]:
result = COMFIT(X, Y, A, /LOGSQUARE)

The result should be the 3-element vector: [1.42494, 7.21900, 9.18794].

Version History

4.0 Introduced
6.4 Added CHISQ, DOUBLE, ITER, ITMAX, STATUS, TOL, and
Y ERROR keywords.

IDL Reference Guide COMFIT

316 Chapter 5: Routines: C

See Also

CURVEFIT, LADFIT, LINFIT, LMFIT, POLY_FIT, SVDFIT, “Curve and Surface
Fitting” (Chapter 9, Using IDL)

COMFIT IDL Reference Guide

Chapter 5: Routines: C 317

COMMAND _LINE_ARGS

The COMMAND_LINE_ARGS function returns strings supplied by the user when
IDL was started with the -arg or -~args command line options. If either of these
optionsis specified at the command linewhen IDL is started, IDL savesthem without
examining their values or attaching any special meaning to them.

Note
The shell performsits normal interpretation of wildcards and shell metacharacters
before the values of the -~arg or ~args command line options are passed to IDL.

Strings specified at the command line can be retrieved at any time within the IDL
session viathe COMMAND_LINE_ARGS function. This mechanism can be used to
pass specia application-defined values to a program written in the IDL language.

Syntax
Result = COMMAND_LINE_ARGS([COUNT=variable])

Return Value
If any -arg or ~args options were specified at the command line when IDL was
started, COMMAND_LINE_ARGS returns a string array containing the specified
values, one value per element. The values are returned in the order specified by the

user on the command line. If no such options were specified, aNULL scalar string is
returned.

Keywords
COUNT

Set this keyword equal to a named variable that will contain the number of retrieved
arguments. If no arguments were specified, the variable will contain O.

Version History

6.2 Introduced

IDL Reference Guide COMMAND_LINE_ARGS

318 Chapter 5: Routines: C

See Also

“Command Line Optionsfor IDL Startup” (Chapter 1, Using IDL)

COMMAND_LINE_ARGS IDL Reference Guide

Chapter 5: Routines: C 319

COMMON

The COMMON statement creates or references a common block. Common blocks
are useful when there are variables that need to be accessed by several DL
procedures or when the value of avariable within a procedure must be preserved
across calls. Once a common block has been defined, any program unit referencing
that common block can access variables in the block as though they were local
variables. Variables in a common statement have a global scope within procedures
defining the same common block. Unlikelocal variables, variablesin common blocks
are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and reference
statements. See the Examples section for details.

Note on Common Block Variable Names

Variablesin IDL COMMON blocks do not actually have names. Rather, IDL
represents COMMON blocks internally as an array of variables, and these variables
arereferenced by their positional index. Hence, the first variableis at position 0, the
second at position 1, and so forth. When you specify a COMMON block declaration
inan IDL routine, you specify names to be used for these variables within the scope
of that routine.

Thefirst routine in which a COMMON block is defined is remembered by IDL as
part of the state of that block. When another routine defines the same COMMON
block, it is alowed to omit the variable names. In this case, IDL uses the same names
used in the original defining routine. Since good programming practice dictates that
the same names be used everywhere, this result usually causes no confusion.
However, different routines are allowed to use entirely different namesto refer to a
given variable. For example, the DIV routine above could have been written like this:

PRO DIV2, D
COMMON SHAREZ2, X, Y, Z
D=X/Y
PRINT, D, X, Y, Z
RETURN

END

In this scenario, the variable referred to by the name E in the MULT routine is
referred to by the name X in the DIV 2 routine. Similarly, the variable name F is
replaced by Y, and the name G is replaced by Z. Note that only the names by which
the variables are called has changed — the underlying variables are the same. While
thistype of COMMON block referenceislegal, it can quickly become confusing, and
most programmers use the same namesin every case.

IDL Reference Guide COMMON

320

Chapter 5: Routines: C

Syntax

COMMON Block_Name, Variabley, ..., Variable,

Examples

Common Block Definition Statements

COMMON

The common block definition statement creates acommon block with the designated
name and places the variables whose names follow into that block. Variables defined
in acommon block can be referenced by any program unit that declares that common
block. The general form of the COMMON block definition statement is as follows:

COMMON Block_Name, Variable;, Variable,, ..., Variable,

The number of variables appearing in the common block cannot change after the
common block has been defined. The first program unit (main program, function, or
procedure) to define the common block sets the number of included variables; other
program units can reference the common block with any number of variables up to
the number originally specified. Different program units can give the variables
different names, as shown in the example below.

Common blocks share the same space for all procedures. In IDL, common block
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variable in agiven IDL common block will always
be the same as the third variablein all declarations of the common block regardless of
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define are
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same manner
as normal variables. Variables appearing as parameters cannot be used in common
blocks. There are no restrictions on the number of common blocks used, although
each common block uses dynamic memory.

Example

The two procedures in the following example show how variables defined in
common blocks are shared.

PRO ADD, A
COMMON SHARELl, X, Y, Z, Q, R
A=X+Y+7Z+ Q + R
PRINT, X, Y, Z, Q, R, A
RETURN

IDL Reference Guide

Chapter 5: Routines: C 321

END

PRO SUB, T
COMMON SHARE1l, A, B, C, D
T=A-B-C-0D
PRINT, A, B, C, D, T
RETURN

END

Thevariables X, Y, Z, and Q in the procedure ADD are the same asthe variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD isnot used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an error
would occur when the COMMON definition in ADD was compiled. Thisis because
SUB has aready declared the size of the COMMON block, SHAREL, which cannot
be extended.

Common Block Reference Statements

The common block reference statement duplicates the COMMON block and variable
names from a previous definition. The COMMON block need only be defined in the
first routine to be compiled that references the block.

Example

The two procedures in the following exampl e share the COMMON block SHARE2
and all its variables.

PRO MULT, M
COMMON SHAREZ2, E, F, G
M=E?*F*G
PRINT, M, E, F, G
RETURN

END

PRO DIV, D
COMMON SHARE2
D=E/F
PRINT, D, E, F, G
RETURN

END

The MULT procedure uses a common block definition statement to define the block
SHARE2. The DIV procedure then usesa COMMON block reference statement to
gain access to all the variables defined in SHARE2. (Note that MULT must be
defined before DIV in order for the COMMON block reference to succeed.)

IDL Reference Guide COMMON

322 Chapter 5: Routines: C

Version History

Original Introduced

COMMON IDL Reference Guide

Chapter 5: Routines: C 323

COMPILE_OPT

The COMPILE_OPT statement allows you to give the IDL compiler information that
changes some of the default rules for compiling the function or procedure within
which the COMPILE_OPT statement appears.

We recommend the use of
COMPILE_OPT IDL2

in all new code intended for use in areusable library. We further recommend the use
of

COMPILE_OPT idl2, HIDDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of alarger package).

Syntax
COMPILE_OPT opt, [, opty, ..., opty]

Arguments

opt,
This argument can be any of the following:
e |IDL2— A shorthand way of saying:
COMPILE_OPT DEFINT32, STRICTARR

e« DEFINT32 — IDL should assume that lexical integer constants default to the
32-bit type rather than the usual default of 16-bit integers. This takes effect
from the point where the COMPILE_OPT statement appears in the routine
being compiled and remainsin effect until the end of the routine. The
following table illustrates how the DEFINT32 argument changes the
interpretation of integer constants.

IDL Reference Guide COMPILE_OPT

324

COMPILE_OPT

Chapter 5: Routines: C

Constant Normal Type DEFINT32 Type
Without type specifier:
42 INT LONG
'2a'x INT LONG
42u UINT ULONG
'2a'xu UINT ULONG
With type specifier:
0b BYTE BYTE
Os INT INT
01 LONG LONG
42.0 FLOAT FLOAT
424 DOUBLE DOUBLE
42us UINT UINT
42ul ULONG ULONG
4211 LONG64 LONG64
42ull ULONG64 ULONG64

Table 5-4: Examples of the Effect of the DEFINT32 Argument

HIDDEN — This routine should not be displayed by HELP, unless the FULL
keyword to HEL P is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side-effect of making aroutine hidden isthat IDL will not print a“Compile
module” message for it when it is compiled from the library to satisfy a call to
it. This makes hidden routines appear built-in to the user.

LOGICAL_PREDICATE — When running this routine, from the point
wherethe COMPILE_OPT statement appears until the end of the routine, treat
any non-zero or non-NULL predicate value as “true,” and any zero or NULL
predicate value as “false.”

IDL Reference Guide

Chapter 5: Routines: C 325

Background

A predicate expression is an expression that is evaluated as being “true” or
“false” as part of a statement that controls program execution. |DL evaluates
such expressionsin the following contexts:

e TIF...THEN...ELSE Stalements
* 2 :inlineconditional expressions
* WHILE...DO Statements

* REPEAT...UNTIL Statements

« when evaluating the result from an INIT function method to determineif a
call to OBJ_ NEW successfully created a new object

By default, IDL uses the following rules to determine whether an expression is
true or false:

e Integer — Aninteger is considered trueif itsleast significant bitis 1, and
false otherwise. Hence, odd integers are true and even integers (including
zero) are false. Thisinterpretation of integer truth values is sometimes
referred to as “bitwise,” reflecting the fact that the value of the least
significant bit determines the result.

e Other — Non-integer numeric types are true if they are non-zero, and
false otherwise. String and heap variables (pointers and object references)
aretrueif they are non-NULL, and fa se otherwise.

The LOGICAL_PREDICATE option aters the way IDL eva uates predicate
expressions. When LOGICAL_PREDICATE is set for aroutine, IDL usesthe
following rules to determine whether an expression istrue or false:

e Numeric Types— A number is considered true if its value is non-zero,
and false otherwise.

e Other Types — Strings and heap variables (pointers and object
references) are considered true if they are non-NULL, or false otherwise.

Note on the NOT Operator

When using the LOGICAL_PREDICATE compile option, you must be aware
of the fact that applying the IDL NOT operator to integer data computes a
bitwise negation (1's complement), and is generally not applicable for usein
logical computations. Consider the common construction:

WHILE (NOT EOF (lun)) DO BEGIN

ENDWHILE

IDL Reference Guide COMPILE_OPT

326 Chapter 5: Routines: C

The EOF function returns 0 while the file specified by LUN has data | eft, and
returns 1 when hits the end of file. However, the expression “NOT 1" has the
numeric value -2. When the LOGICAL_PREDICATE option is not in use, the
WHILE statement sees-2 asfalse; if the LOGICAL_PREDICATE isinuse, -2
isatrue value and the above loop will not terminate as desired.

The proper way to write the above loop uses the ~ logical negation operator:
WHILE (~ EOF(lun)) DO BEGIN
ﬁﬁbWHILE
It isworth noting that this version will work properly whether or not the
LOGICAL_PREDICATE compile option isin use. Logical negation

operations should always use the ~ operator in preference to the NOT operator,
reserving NOT exclusively for bitwise computations.

* OBSOLETE — If the user has'WARN.OBS_ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
thisroutine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

* STRICTARR — While compiling this routine, IDL will not allow the use of
parentheses to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good ideafor library functions.

Use of STRICTARR can eliminate many uses of the
FORWARD_FUNCTION definition.

Note
STRICTARR has no effect on the use of parentheses to reference structure tags
using the tag index, which is not an array indexing operation. For example, no
syntax error will occur when compiling the following code:

COMPILE_OPT STRICTARR
mystruct = {a:0, b:1}
byindex_0 = mystruct. (0)

For more on referencing structure tags by index, see “Advanced Structure Usage’
(Chapter 16, Application Programming).

COMPILE_OPT IDL Reference Guide

Chapter 5: Routines: C 327

e STRICTARRSUBS— When IDL subscripts one array using another array as
the source of array indices, the default behavior isto clip any out-of-range
indices into range and then quietly use the resulting data without error. This
behavior is described in “Understanding Array Subscripts’ (Chapter 15,
Application Programming). Specifying STRICTARRSUBS will instead cause
IDL to treat such out-of-range array subscripts within the body of the routine
containing the COMPILE_OPT statement as an error. The position of the
STRICTARRSUBS option within the module is not important: All
subscripting operations within the entire body of the specified routine will be
treated this way.

Version History

53 Introduced
5.6 Added STRICTARRSUBS option
6.0 Added LOGICAL_PREDICATE option

IDL Reference Guide COMPILE_OPT

328 Chapter 5: Routines: C

COMPLEX

The COMPLEX function returns complex scalars or arrays given one or two scalars
or arrays.

Syntax

Result = COMPLEX(Real [, Imaginary] [, /DOUBLE])

or
Result = COMPLEX (Expression, Offset, Dy [, ..., Dg [, /DOUBLE])

Return Value

Returns a single-precision complex value or array given one or two scalars or arrays.
If only one parameter is supplied, the imaginary part of theresult is zero, otherwise it
is set to the value of the Imaginary parameter. If either or both of the parameters are
arrays, the result is an array, following the same rules as standard I DL operators. If
three or more parameters are supplied, COMPLEX extracts fields of data from

Expression.
Arguments

Real

Scalar or array to be used as the real part of the complex result.
Imaginary

Scalar or array to be used as the imaginary part of the complex result.
Expression

The expression from which datais to be extracted.

Offset

Offset from beginning of the Expression data area. Specifying this argument allows
fields of data extracted from Expression to be treated as complex data. See the
description in Chapter 13, “Working with Datain IDL” (Application Programming)

for details.

COMPLEX IDL Reference Guide

Chapter 5: Routines: C 329
D

When extracting fields of data, the D; arguments specify the dimensions of the result.
If no dimension arguments are given, the result is taken to be scalar.

The D; arguments can be either an array or a series of scalar expressions specifying
the dimensions of the result. If asingle argument is specified, it can be either ascalar
expression or an array of up to eight elements. If multiple arguments are specified,
they must all be scalar expressions. Up to eight dimensions can be specified.

When converting from a string argument, it is possi bl e that the string does not contain
avalid floating-point value and no conversion is possible. The default action in such

casesisto print awarning message and return 0. The ON_IOERROR procedure can

be used to establish a statement to be jumped to in case of such errors.

Keywords
DOUBLE

Set this keyword to return a double-precision complex result. Setting this keyword is
equivalent to using the DCOMPLEX function, and is provided as a programming
convenience.

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Create acomplex array from two integer arrays by entering the following commands:

; Create the first integer array:
A= [1,2,3]

; Create the second integer array:
B = [4,5,6]

IDL Reference Guide COMPLEX

330 Chapter 5: Routines: C

; Make A the real parts and B the imaginary parts of the new
; complex array:
C = COMPLEX (A, B)

; See how the two arrays were combined:
PRINT, C

IDL prints:

(1.00000, 4.00000) (2.00000, 5.00000)
(3.00000, 6.00000)

Thereal and imaginary parts of the complex array can be extracted as follows:

; Print the real part of the complex array C:
PRINT, 'Real Part: ', REAL_PART(C)

; Print the imaginary part of the complex array C:

PRINT, 'Imaginary Part: ', IMAGINARY (C)

IDL prints:
Real Part: 1.00000 2.00000 3.00000
Imaginary Part: 4.00000 5.00000 6.00000

Version History

Original Introduced

See Also

BYTE, CONJ, DCOMPLEX, DOUBLE, FIX, FLOAT, IMAGINARY, LONG,
LONG64, REAL_PART, STRING, UINT, ULONG, ULONG64

COMPLEX IDL Reference Guide

Chapter 5: Routines: C 331

COMPLEXARR

The COMPLEXARR function returns a complex, single-precision, floating-point
vector or array.

Syntax
Result = COMPLEXARR(Dq[, ..., Dg] [, INOZERO])
Return Value
Returns a complex, single-precision, floating-point vector or array.
Arguments
Di
Either an array or a series of scalar expressions specifying the dimensions of the
result. If asingle argument is specified, it can be either a scalar expression or an array
of up to eight elements. If multiple arguments are specified, they must al be scalar
expressions. Up to eight dimensions can be specified.
Keywords
NOZERO

Normally, COMPLEXARR sets every element of the result to zero. If the NOZERO
keyword is set, this zeroing is not performed, and COMPLEXARR executes faster.

Examples

To create an empty, 5-element by 5-element, complex array C, enter:

C = COMPLEXARR(5, 5)

Version History

Original Introduced

IDL Reference Guide COMPLEXARR

332 Chapter 5: Routines: C

See Also

DBLARR, DCOMPLEXARR, FLTARR, INTARR, LON64ARR, LONARR,
MAKE_ARRAY, STRARR, UINTARR, ULONG64ARR, ULONARR

COMPLEXARR IDL Reference Guide

Chapter 5: Routines: C 333

COMPLEXROUND

The COMPLEXROUND function rounds real and imaginary components of a
complex array.

Thisroutineis written in the IDL language. Its source code can be found in the file
complexround.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = COM PLEX ROUND(Input)
Return Value
Returns the result of rounding the real and imaginary components of the input array.

If the array is double-precision complex, then the result is also double-precision
complex.

Arguments

Input

The complex array to be rounded.
Keywords
None.

Examples

X = [COMPLEX(1.245, 3.88), COMPLEX(9.1, 0.3345)]
PRINT, COMPLEXROUND (X)
IDL prints:

(1.00000, 4.00000) (9.00000, 0.00000)

Version History

Pre 4.0 I ntroduced

IDL Reference Guide COMPLEXROUND

334 Chapter 5: Routines: C

See Also

ROUND

COMPLEXROUND IDL Reference Guide

Chapter 5: Routines: C 335

COMPUTE_MESH_NORMALS

The COMPUTE_MESH_NORMALS function computes normal vectors for a set of
polygons described by the input array.

Syntax
Result = COMPUTE_MESH_NORMALS(f\erts], iConn])
Return Value
Returnsa 3 x M array containing a unit normal for each vertex in the input array.
Arguments
fVerts
A 3x M array of vertices.

iConn

A connectivity array (seethe POLY GONS keyword to IDLgrPolygon::Init). If no
iConn array is provided, it is assumed that the vertices in f\Verts constitute asingle

polygon.
Keywords

None.

Version History

51 Introduced

IDL Reference Guide COMPUTE_MESH_NORMALS

336 Chapter 5: Routines: C

COND

The COND function returns the condition number of areal or complex two-
dimensional array A.

By default, COND usesthe L, horm to compute the condition number. You may use
the LNORM keyword to specify thelL 4, L, or L., norm.

For the L, and L., norms, the condition number is computed from
NORM(A)-NORM(INVERT(A)). If theinverse of A isinvalid (due to the singularity
of A or floating-point errorsin the INVERT function), COND returns -1.

For the L, norm, the condition number is defined as the ratio of the largest singular
value to the smallest. The singular values are computed using LA_SVD.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
cond.pro inthe 1ib subdirectory of the IDL distribution.

Syntax
Result = COND(A [, /DOUBLE] [, LNORM={0]1]|2}])

Return Value
Returns the condition number of an n by n real or complex array A by explicitly
computing NORM(A)-NORM(A™Y). If Atisinvalid (due to the singularity of A or
floating-point errors in the INVERT function), COND returns -1.

Arguments

A

The two-dimensional array. For LNORM = 0 or 1, the array A must be a square and
can be either real or complex. For LNORM = 2, the array A may be rectangular and
can only bereal.

Keywords

DOUBLE

Set this keyword to force the result to be returned as double-precision. The default is
to return asingle-precision result if the input is single precision, or adouble-precision

COND IDL Reference Guide

Chapter 5: Routines: C 337

result otherwise. Internally, IDL performs all computations using double-precision
arithmetic.

LNORM

Set this keyword to an integer value to indicate which norm to use for the
computation. The possible values of this keyword are:

Value Description
0 Usethe L., norm (the maximum absol ute row sum norm). This
isthe default.
1 Use the L, norm (the maximum absol ute column sum norm).
2 Use the L, norm (the spectral norm).

Table 5-5: LNORM Keyword Values

Examples

; Define a complex array A:

A = [[COMPLEX(1, 0), COMPLEX(2,-2), COMPLEX(-3, 1)1, $
[COMPLEX (1,-2), COMPLEX(2, 2), COMPLEX(1, 0)1, S
[COMPLEX (1, 1), COMPLEX(0, 1), COMPLEX (1, 5)1]

; Compute the condition number of the array using internal
; double-precision arithmetic:
PRINT, COND (A, /DOUBLE)

IDL prints:

5.93773

Version History

Pre4.0 Introduced

See Also

DETERM, INVERT, NORM, LA_SVD

IDL Reference Guide COND

338 Chapter 5: Routines: C

CONGRID

The CONGRID function shrinks or expands the size of an array by an arbitrary
amount. CONGRID issimilar to REBIN in that it can resize a one, two, or three
dimensional array, but where REBIN requires that the new array size must be an
integer multiple of the original size, CONGRID will resize an array to any arbitrary
size. (REBIN is somewhat faster, however.) REBIN averages multiple points when
shrinking an array, while CONGRID just resamples the array.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
congrid.pro inthe 1ib subdirectory of the IDL distribution.

Syntax

Result = CONGRID(Array, X, Y, Z [, ICENTER] [, CUBIC=valug{-1 to 0}]
[, INTERP] [, /MINUS ONE])

Return Value

Returns theresized array. The returned array has the same number of dimensions as
the original array and is of the same data type.

Arguments

Array

A 1-, 2-, or 3-dimensional array to resize. Array can be any type except string or
structure.

X

The new X-dimension of the resized array. X must be an integer or along integer, and
must be greater than or equal to 2.

Y

The new Y-dimension of theresized array. If the original array has only 1 dimension,
Yisignored. If the original array has 2 or 3 dimensions Y MUST be present.

CONGRID IDL Reference Guide

Chapter 5: Routines: C 339

Z

The new Z-dimension of the resized array. If the original array hasonly 1 or 2
dimensions, Z isignored. If the original array has 3 dimensions then Z MUST be
present.

Keywords

CENTER

Set this keyword to shift the interpolation so that pointsin the input and output arrays
are assumed to lie at the midpoint of their coordinates rather than at their lower-left
corner.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpol ation parameter. Setting
this keyword equal to avalue greater than zero specifies avalue of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.
This keyword has no effect when used with 3-dimensional arrays.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than o, and f is sampled with spacing less than or equal to 1/(2wy),
then f can be reconstructed by convolving with a sinc function: sinc(x) = sin(nx) /
(7x).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolationis
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniquesfor
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974,

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

IDL Reference Guide CONGRID

340 Chapter 5: Routines: C

INTERP

Set this keyword to force CONGRID to use linear interpolation when resizing a 1- or
2-dimensional array. CONGRID automatically uses linear interpolation if the input
array is 3-dimensional. When the input array is 1- or 2-dimensional, the default is to
employ nearest-neighbor sampling.

MINUS_ONE

Set this keyword to prevent CONGRID from extrapolating one row or column
beyond the bounds of the input array. For example, if the input array has the
dimensions (i, j) and the output array has the dimensions (X, y), then by default the
array isresampled by afactor of (i/x) in the X direction and (j/y) inthe Y direction. If
MINUS_ONE is set, the array will be resampled by the factors (i-1)/(x-1) and (j-
D/(y-1).

Examples
Given vol isa3-D array with the dimensions (80, 100, 57), resize it to be a (90, 90,
80) array
vol = CONGRID(vol, 90, 90, 80)

Note
Also see “Resizing Images’ (Chapter 2, Image Processing in IDL) for amore
extensive example.

Version History

Origina Introduced

See Also

REBIN

CONGRID IDL Reference Guide

Chapter 5: Routines: C 341

CONJ

The CONJ function returns the complex conjugate of X. The complex conjugate of
the real-imaginary pair (x, y) is (X, -y). If Xisnot complex, acomplex-valued copy of
Xisused.

Syntax
Result = CONJ(X)
Return Value
Returns the complex conjugate of X.
Arguments
X

The value for which the complex conjugateis desired. If X isan array, the result has
the same structure, with each element containing the complex conjugate of the
corresponding element of X.

Keywords

Thread Pool Keywords

This routine is written to make use of IDL’s thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for asingleinvocation of thisroutine. See Appendix C, “ Thread Pool
Keywords’ for details.

Examples

Print the conjugate of the complex pair (4.0, 5.0) by entering:
PRINT, CONJ (COMPLEX (4.0, 5.0))
IDL prints:

(4.00000, -5.00000)

IDL Reference Guide CONJ

342 Chapter 5: Routines: C

Version History

Original Introduced

See Also

CINDGEN, COMPLEX, COMPLEXARR, DCINDGEN, DCOMPLEX,
DCOMPLEXARR

CONJ IDL Reference Guide

Chapter 5: Routines: C 343

CONSTRAINED_MIN

The CONSTRAINED_MIN procedure solves nonlinear optimization problems of the
following form:

Minimize or maximize gp(X), subject to:
gl <gi(X)<gub, fori=0,..,nfuns-1,i#p

xlbj <X < xubj forj=0,...,nvars-1

Xisavector of nvarsvariables, Xg ,....Xpars-1, @nd G is avector of nfuns functions
90 s---9nfuns-L, Which all depend on X. Any of these functions may be nonlinear. Any
of the bounds may be infinite and any of the constraints may be absent. If there are no
constraints, the problem is solved as an unconstrained optimization problem. The
program solves problems of this form by the Generalized Reduced Gradient Method.
See References 1-4.

CONSTRAINED_MIN usesfirst partial derivatives of each function g; with respect
to each variable x;. These are automatically computed by finite difference
approximation (either forward or central differences).

CONSTRAINED_MIN isbased on an implementation of the GRG agorithm
supplied by Windward Technologies, Inc. See Reference 11.

Syntax
CONSTRAINED_MIN, X, Xbnd, Gbnd, Nobj, Gcomp, Inform [, EPSTOP=valug]
[, LIMSER=value] [, /IMAXIMIZE] [, NSTOP=value] [, REPORT=filename]
[, TITLE=string]
Arguments
X

An nvars-element vector. On input, X containsinitial values for the variables. On
output, X contains final values of the variable settings determined by
CONSTRAINED_MIN.

IDL Reference Guide CONSTRAINED_MIN

344 Chapter 5: Routines: C

Xbnd

Bounds on variables. Xbnd is an nvars x 2 element array.
e Xbnd[j,0] isthe lower bound for variable x[j].
+ Xbnd[j,1] isthe upper bound for variable x{j].

* Use-1.0e30 to denote no lower bound and 1.0e30 for no upper bound.
Gbnd

Bounds on constraint functions. Gbnd is an nfuns x 2 element array.
e Gbnd[i,0] isthelower bound for function gfi].
e Gbnd[i,1] isthe upper bound for function gf[i].
» use-1.0e30 to denote no lower bound and 1.0e30 for no upper bound.
Bounds on the objective function are ignored; set them to 0.
Nobj
Index of the objective function.

Gcomp

A scalar string specifying the name of a user-supplied IDL function. This function
must accept an nvars-element vector argument x of variable values and return an
nfuns-element vector G of function values.

Inform

Termination status returned from CONSTRAINED_MIN.

Inform value Message

0 Kuhn-Tucker conditions satisfied.
Thisisthe best possibleindicator that an optimal point has been
found.

1 Fractional change in objective less than EPSTOP for NSTOP
consecutive iterations. See Keywords below.
Thisisnot asgood as Inform=0, but still indicatesthe likelihood
that an optimal point has been found.

Table 5-6: Inform Argument Values

CONSTRAINED_MIN IDL Reference Guide

Chapter 5: Routines: C 345

Inform value Message

2 All remedies have failed to find a better point.
User should check functions and bounds for consistency and,
perhaps, try other starting val ues.

3 Number of completed 1-dimensional searches exceeded
LIMSER. See Keywords below.

User should check functions and bounds for consistency and,
perhaps, try other starting values. It might help to increase
LIMSER. Use LIMSER=larger_value to do this.

4 Objective function is unbounded.

CONSTRAINED_MIN has observed dramatic change in the
objective function over several steps. Thisisagood indication
that the objective function is unbounded. If thisis not the case,
the user should check functions and bounds for consistency.

5 Feasible point not found.

CONSTRAINED_MIN was not ableto find afeasible point. If
the problem is believed to be feasible, the user should check
functions and bounds for consistency and perhapstry other
starting values.

6 Degeneracy has been encountered.

The point returned may be close to optimal. The user should
check functions and bounds for consistency and perhaps try
other starting values.

7 Noisy and nonsmooth function values. Possible singularity or
error in the function evaluations.
8 Optimization process terminated by user request.
9 M aximum number of function evaluations exceeded.
-1 Fatal Error. Some condition, such as nvars < 0, was

encountered. CONSTRAINED_MIN documented the condition
in the report and terminated. In this case, the user needsto
correct the input and rerun CONSTRAINED_MIN.

Table 5-6: Inform Argument Values (Continued)

IDL Reference Guide CONSTRAINED_MIN

346 Chapter 5: Routines: C

Inform value Message

-2 Fatal Error. The report file could not be opened. Check the
filename specified via the REPORT keyword, and make sure
you have write privileges to the specified path.

-3 Fatal Error. Same as Inform = —1.. In this case, the REPORT
keyword was not specified. Specify the REPORT keyword and
rerun CONSTRAINED_MIN, then check the report file for
more detail on the error.

Table 5-6: Inform Argument Values (Continued)

Keywords

EPSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional changein the objective function isless than EPSTOP for NSTOP
consecutive iterations, the program will accept the current point as optimal .
CONSTRAINED_MIN will accept the current point as optimal if the Kuhn-Tucker
optimality conditions are satisfied to EPSTOP. By default, EPSTOP = 1.0e-4.

LIMSER

If the number of completed one dimensional searches exceeds LIMSER,
CONSTRAINED_MIN terminates and returnsinform = 3. By default: LIMSER =
10000.

MAXIMIZE

By default, the CONSTRAINED_MIN procedure performs a minimization. Set the
MAXIMIZE keyword to perform a maximization instead.

NSTOP

Set this keyword to specify the CONSTRAINED_MIN convergence criteria. If the
fractional change in the objective function is less than EPSTOP for NSTOP
consecutive iterations, CONSTRAINED_MIN will accept the current point as
optimal. By default, NSTOP = 3.

CONSTRAINED_MIN IDL Reference Guide

Chapter 5: Routines: C 347

REPORT

Set this keyword to specify a name for the CONSTRAINED_MIN report file. If the
specified file does not exist, it will be created. Note that if the file cannot be created,
no error message will be generated. If the specified file already exists, it will be
overwritten. By default, CONSTRAINED_MIN does not create a report file.

TITLE

Set this keyword to specify atitle for the problem in the CONSTRAINED_MIN
report.

Examples

This example has 5 variables { X0, X1, ..., X4}, bounded above and below, a
quadratic abjective function { G3}, and three quadratic constraints { GO, G1, G2},
with both upper and lower bounds. See the Himmelblau text [7], problem 11.

Minimize:

G3 = 5.3578547X2X2 + 0.8356891X0X4 + 37.293239X0 - 40792.141
Subject to:
0 < GO = 85.334407 + 0.0056858X 1X4 + 0.0006262X 0X 3 - 0.0022053X 2X 4 < 92
90 < G1 = 80.51249 + 0.0071317X1X4 + 0.0029955X 0X 1 + 0.0021813X 2X 2 <110
20 < G2 =9.300961 + 0.0047026X 2X4 + 0.0012547X0X 2 + 0.0019085X 2X3 < 25

and,
78 < X0 < 102
33 < X1 < 45
27 < X2 < 45
27 < X3 < 45
27 < X4 < 45

This problem is solved starting from X = {78, 33, 27, 27, 27} whichisinfeasible
because constraint G2 is not satisfied at this point.

The constraint functions and objective function are evaluated by HMBL 11:

; Himmelblau Problem 11
; 5 variables and 4 functions
FUNCTION HMBL11l, x

g = DBLARR(4)

gl0] = 85.334407 + 0.0056858*x[1]*x[4] + 0.0006262*x[0] $
*x[3] - 0.0022053*x[2]*x[4]

IDL Reference Guide CONSTRAINED_MIN

348

Chapter 5: Routines: C

gll] = 80.51249 + 0.0071317*x[1]*x[4] + 0.0029955*x[0] $
*x[1] + 0.0021813*x[2]*x[2]

gl2] = 9.300961 + 0.0047026*x[2]1*x[4] + 0.0012547*x[0]1* S
x[2] + 0.0019085*x[2]*x[3]

gl3] = 5.3578547*x[2]*x[2] + 0.8356891*x[0]*x[4] $
+ 37.293239*x[0] - 40792.141

RETURN, g

END

; Example problem for CONSTRAINED_MIN

; Himmelblau Problem 11

; 5 variables and 3 constraints

; Constraints and objective defined in HMBL11
xbnd

= [[78, 33, 27, 27, 271, [102, 45, 45, 45, 45]]
gbnd = [[0, 90, 20, 0], [92, 110, 25, 0 1]
nobj =3
gcomp = 'HMBL11'
title = 'IDL: Himmelblau 11°'
report = 'hmblll.txt'
x = [78, 33, 27, 27, 27]

CONSTRAINED_MIN, x, xbnd, gbnd, nobj, gcomp, inform, $
REPORT = report, TITLE = title

g = HMBL11 (x)

; Print minimized objective function for HMBL11l problem:

PRINT, g[nobj]

References

1. Lasdon, L.S., Waren, A.D., Jain, A., and Ratner, M., “Design and Testing of a
Generalized Reduced Gradient Code for Nonlinear Programming”, ACM
Transactions on Mathematical Software, Vol. 4, No. 1, March 1978, pp. 34-50.

2. Lasdon, L.S. and Waren, A.D., “Generalized Reduced Gradient Software for
Linearly and Nonlinearly Constrained Problems’, in “Design and |mplementation of
Optimization Software”, H. Greenberg, ed., Sijthoff and Noordhoff, pubs, 1979.

3. Abadie, J. and Carpentier, J. “ Generalization of the Wolfe Reduced Gradient
Method to the Case of Nonlinear Constraints’, in Optimization, R. Fletcher (ed.),
Academic Press London; 1969, pp. 37-47.

4. Murtagh, B.A. and Saunders, M.A. “Large-scale Linearly Constrained
Optimization”, Mathematical Programming, Vol. 14, No. 1, January 1978, pp. 41-72.

5. Powell, M.J.D., “Restart Procedures for the Conjugate Gradient Method,”
Mathematical Programming, Vol. 12, No. 2, April 1977, pp. 241-255.

6. Colville, A.R., “A Comparative Study of Nonlinear Programming Codes,” 1.B.M.
T.R. no. 320-2949 (1968).

CONSTRAINED_MIN IDL Reference Guide

Chapter 5: Routines: C 349

7. Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill Book Co.,
New York, 1972.

8. Fletcher, R., “A New Approach to Variable Metric Algorithms’, Computer
Journal, Vol. 13, 1970, pp. 317-322.

9. Smith, S. and Lasdon, L.S., Solving Large Sparse Nonlinear Programs Using
GRG, ORSA Journal on Computing, Vol. 4, No. 1,Winter 1992, pp. 1-15.

10. Luenbuerger, David G., Linear and Nonlinear Programming, Second Edition,
Addison-Wesley, Reading M assachusetts, 1984.

11. Windward Technologies, GRG2 Users's Guide, 1997.

Version History

51 Introduced

IDL Reference Guide CONSTRAINED_MIN

350 Chapter 5: Routines: C

CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command. The two constructs are not related, and serve compl etely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does allow this.

For more information on using CONTINUE and other IDL program control
statements, see Chapter 7, “Program Control” (Application Programming).

Syntax
CONTINUE
Examples

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10.

FOR I = 1,10 DO BEGIN
; If odd, start next iteration:
IF (I AND 1) THEN CONTINUE
PRINT, T

ENDFOR

Version History

54 I ntroduced

CONTINUE IDL Reference Guide

Chapter 5: Routines: C 351

See Also
BEGIN...END, BREAK, CASE, FOR, GOTO, IF..THEN...ELSE,

REPEAT...UNTIL, SWITCH, WHILE...DO, Chapter 7, “Program Control”
(Application Programming)

IDL Reference Guide CONTINUE

352

Chapter 5: Routines: C

CONTOUR

The CONTOUR procedure draws a contour plot from data stored in arectangul ar
array or from aset of unstructured points. Both line contours and filled contour plots
can be created. Note that outline and fill contours cannot be drawn at the same time.
To create a contour plot with both filled contours and outlines, first create thefilled
contour plot, then add the outline contours by calling CONTOUR a second time with
the OVERPLOT keyword.

Initssimplest form, CONTOUR makes a contour plot given atwo-dimensional array
of zvalues. In more complicated forms, CONTOUR accepts, in addition to z, arrays
containing the x and y locations of each column, row, or point, plus many keyword
parameters. In more sophisticated applications, the output of CONTOUR can be
projected from three dimensions to two dimensions, superimposed over an image, or
combined with the output of SURFACE.

Using various keywords, described below, it is possible to specify contour levels,
labeling, colors, line styles, and other options. CONTOUR draws contours by
searching for each contour line and then following the line until it reaches aboundary
or closes.

Smoothing Contours

Contours can be smoothed by using the MIN_CURVE_SUREF function on the
contour data before contouring. The MIN_CURVE_SURF function can be used to
smoothly interpolate both regularly and irregularly sampled surfaces before
contouring. This function replaces the older SPLINE keyword to CONTOUR, which
was inaccurate and is no longer supported. MIN_CURVE_SURF interpolates the
entire surface to ardatively fine grid before drawing the contours.

Syntax

CONTOUR

CONTOUR, Z[, X, Y] [, C_ ANNOTATION=vector_of strings]
[, C_CHARSIZE=valu€] [, C_CHARTHICK=integer] [, C_COLORS=vector]
[, C_LABEL S=vector{each element O or 1}] [, C_LINESTY LE=vector]
[, C_ORIENTATION=degrees] [, C_SPACING=valug] [, C_THICK=vector]
[,/CELL_FILL |,/FILL][,/CLOSED] [, /DOWNHILL] [, /FOLLOW]
[, IRREGULAR] [, ISOTROPIC] [, LEVEL S=vector] [, NLEVEL S=integer{ 1
to 60}] [, MAX_VALUE=value] [, MIN_VALUE=value] [, /OVERPLOT]
[{,/PATH_DATA_COORDS, PATH_FILENAME=string,
PATH_INFO=variable, PATH_XY=variable} |, TRIANGULATION=variable]
[, /PATH_DOUBLE] [, /XLOG] [, /YLOGQ] [, ZAXIS={0|1]2|3]|4}]

IDL Reference Guide

Chapter 5: Routines: C 353

Graphics Keywords: Accepts all graphics keywords accepted by PLOT except for:
LINESTYLE, PSYM, SYMSIZE. See “Graphics Keywords Accepted” on
page 363.

Note
Many of the keyword parameters correspond directly to fieldsin the system
variables!P, IX, 1Y, or !Z. When specifying a keyword parameter name and value
inacall that value affects only the current call, the corresponding system-variable
field is not changed. Changing the value of a system-variable field changes the
default for that particular parameter and remainsin effect until explicitly changed.
The system variables involving graphics and their corresponding keywords are
detailed in “!P” in Appendix D.

Arguments

Z

Y

A one- or two-dimensional array containing the values that make up the contour
surface. If arguments X and Y are provided, the contour is plotted as a function of the
(X, Y) locations specified by their contents. Otherwise, the contour is generated as a
function of the two-dimensional array index of each element of Z.

If theIRREGULAR keywordisset, X, Y, Z areall required, and are treated as
vectors. Each point has avalue of Z[i] and alocation of (X[i], Y[i])-

This argument is converted to double-precision floating-point before plotting. Plots
created with CONTOUR are limited to the range and precision of double-precision
floating-point values.

A vector or two-dimensional array specifying the X coordinates for the contour
surface. If Xisavector, each element of X specifies the X coordinate for a column of
Z (e.g., X[Q] specifiesthe X coordinate for Z[0,*]). If X isatwo-dimensional array,
each element of X specifiesthe X coordinate of the corresponding pointin Z (i.e., X;;
specifiesthe X coordinate for Z;).

A vector or two-dimensional array specifying the Y coordinates for the contour
surface. If Y avector, each element of Y specifiesthe Y coordinate for arow of Z
(e.0., Y[O] specifiesthe Y coordinate for Z[*,0]). If Y is atwo-dimensional array,

IDL Reference Guide CONTOUR

354

Chapter 5: Routines: C

each element of Y specifiesthe Y coordinate of the corresponding point in Z (Y;;
specifiesthe Y coordinate for Z;).

Keywords

C_ANNOTATION

The label to be drawn on each contour. Usually, contours are labeled with their value.
This parameter, a vector of strings, allows any text to be specified. Thefirst label is
used for the first contour drawn, and so forth. If the LEVELS keyword is specified,
the elements of C_ANNOTATION correspond directly to the levels specified,
otherwise, they correspond to the default levels chosen by the CONTOUR procedure.
If there are more contour levels than elementsin C_ANNOTATION, the remaining
levels are | abeled with their values.

Use of this keyword implies use of the FOLLOW keyword.

Note
This keyword has no effect if the FILL or CELL_FILL keywordisset (i.e., if the
contours are drawn with solid-filled or line-filled polygons).

Example

To produce a contour plot with three levelslabeled “low”, “medium”, and “high”:

CONTOUR, Z, LEVELS = [0.0, 0.5, 1.0], s
C_ANNOTATION = ['low', 'medium', 'high']
C_CHARSIZE

The size of the characters used to annotate contour labels. Normally, contour labels
aredrawn at 3/4 of the size used for the axis labels (specified by the CHARSIZE
keyword or 'PCHARSIZE system variable. This keyword allows the contour |abel
size to be specified directly. Use of this keyword implies use of the FOLLOW
keyword.

C_CHARTHICK

CONTOUR

The thickness of the characters used to annotate contour labels. Set this keyword
equal to an integer value specifying the line thickness of the vector drawn font
characters. This keyword has no effect when used with the hardware drawn fonts.
The default valueis 1. Use of this keyword implies use of the FOLLOW keyword.

IDL Reference Guide

Chapter 5: Routines: C 355

C_COLORS

The color index used to draw each contour. This parameter is a vector, converted to
integer type if necessary. If there are more contour levels than elementsin
C_COLORS, the elements of the color vector are cyclically repeated.

Example

If C_COLORS contains three elements, and there are seven contour levelsto be
drawn, the colors ¢, ¢4, Cy, Cg, C1, Cy, Co Will be used for the seven levels. To call
CONTOUR and set the colors to [100,150,200], use the command:

CONTOUR, Z, C_COLORS = [100,150,200]
C_LABELS

Specifies which contour levels should be labeled. By default, every other contour
level islabeled. C_LABELSalowsyou to override this default and explicitly specify
the levelsto label. This parameter is avector, converted to integer type if necessary.
If the LEVELS keyword is specified, the elements of C_LABELS correspond
directly to the levels specified, otherwise, they correspond to the default levels
chosen by the CONTOUR procedure. Setting an element of the vector to zero causes
that contour label to not be labeled. A nonzero value forces labeling.

Use of this keyword implies use of the FOLLOW keyword.
Example

To produce a contour plot with four levels where all but the third level islabeled:

CONTOUR, Z, LEVELS = [0.0, 0.25, 0.75, 1.0], $
C_LABELS = [1, 1, 0, 1]
C_LINESTYLE

Theline style used to draw each contour. Aswith C_ COLORS, C LINESTYLE isa
vector of line styleindices. If there are more contour levelsthan line styles, the line
stylesare cyclically repeated. See“LINESTYLE" on page 5468 for alist of available
styles.

Note
The cell drawing contouring algorithm draws all the contours in each cell, rather
than following contours. Since an entire contour is not drawn as a single operation,
the appearance of the more complicated linestyles will suffer. Use of the contour
following method (selected with the FOLLOW keyword) will give better looking
resultsin such cases.

IDL Reference Guide CONTOUR

356 Chapter 5: Routines: C

Example

To produce a contour plot, with the contour levels directly specified in a vector V,
with all negative contours drawn with dotted lines, and with positive levelsin solid
lines:

CONTOUR, Z, LEVELS = V, C_LINESTYLE = (V LT 0.0)

C_ORIENTATION

If the FILL or CELL_FILL keyword is set, this keyword can be set to the angle, in
degrees counterclockwise from the horizontal, of the lines used to fill contours. If
neither C_ORIENTATION nor C_SPACING are specified, the contours are solid
filled.

C_SPACING

If the FILL or CELL_FILL keyword is set, this keyword can be used to control the
distance, in centimeters, between the lines used to fill the contours.

C_THICK

Theline used to draw each contour level. Aswith C_COLORS, C_THICK isavector
of line thickness values, although the values are floating point. If there are more
contours than thickness elements, elements are repeated. |If omitted, the overall line
thickness specified by the THICK keyword parameter or 'PTHICK is used for all
contours.

CELL_FILL

Set this keyword to produce afilled contour plot using a“cell filling” agorithm. Use
this keyword instead of FILL when you are drawing filled contours over amap, when
you have missing data, or when contours that extend off the edges of the contour plot.
CELL_FILL islessefficient than FILL because it makes one or more polygons for
each datacell. It also gives poor results when used with patterned (line) fills, because
each cell isassigned its own pattern. Otherwise, this keyword operates identically to
the FILL keyword, described below.

Tip
In order for CONTOUR to fill the contours properly when using a map projection,
the X and Y arrays (if supplied) must be arranged in increasing order. This ensures
that the polygons generated will be in counterclockwise order, as required by the

mapping graphics pipeline.

CONTOUR IDL Reference Guide

Chapter 5: Routines: C 357

Warning
Do not draw filled contours over the poles on Cylindrical map projections. In this
case, the polar points map to lines on the map, and the interpol ation becomes
ambiguous, causing errorsin filling. One possible work-around is to limit the
latitudes to the range of -89.9 degrees to + 89.9 degrees, avoiding the poles.

CLOSED

Set this keyword to a nonzero value to close contours that intersect the plot
boundaries. After a contour hits a boundary, it follows the plot boundary until it
connects with its other boundary intersection. Set CLOSED=0 along with
PATH_INFO and/or PATH_XY to return path information for contours that are not
closed.

DOWNHILL

Set this keyword to label each contour with short, perpendicular tick marks that point
inthe “downhill” direction, making the direction of the grade readily apparent. If this
keyword is set, the contour following method is used in drawing the contours. For
example:

CONTOUR, data, /DOWNHILL
FILL

Set this keyword to produce afilled contour plot. The contours are filled with solid or
line-filled polygons. For solid polygons, use the C_COLOR keyword to specify the
color index of the polygons for each contour level. For linefills, use
C_ORIENTATION, C_SPACING, C_COLOR, C_LINESTYLE, and/or C_THICK
to specify attributes for the lines.

If the current device is not a pen plotter, each polygon is erased to the background
color before the fill lines are drawn, to avoid superimposing one pattern over another.

Contours that are not closed cannot be filled because their interior and exterior are
undefined. Contours created from data sets with missing data may not be closed,;
many map projections can also produce contours that are not closed. You should not
use filled contours in these cases.

You should not use this keyword when you are drawing filled contours over a map,
when you have missing data, or when contours extend off the edges of the contour
plot. In these cases, you should use CELL_FILL instead.

IDL Reference Guide CONTOUR

358 Chapter 5: Routines: C

Note
If the current graphics device isthe Z-buffer, the algorithm used when the FILL

keyword is specified will not work when aZ value is also specified with the
graphics keyword ZVALUE. In thissituation, usethe CELL_FILL keyword instead
of the FILL keyword.

FOLLOW

InIDL version 5, CONTOUR always uses a line-following method. The FOLLOW
keyword remains available for compatibility with existing code, but is no longer
necessary. Asin previous versions of IDL, setting FOLLOW will cause CONTOUR
to draw contour labels.

IRREGULAR

Set this keyword to indicate that the input dataisirregularly gridded. Setting

IRREGULAR isthe same as performing an explicit triangulation. That is:
CONTOUR, Z, X, Y, /IRREGULAR

isthe same as

TRIANGULATE, X, Y, tri ;Get triangulation
CONTOUR, Z, X, Y, TRIANGULATION=tri

Note
If amapping projection is enabled when CONTOUR is called with this keyword,

the X and Y parameters areinterpreted as | atitude and longitude values. Thisimplies
that spherical triangulation should be performed, which in turn implies that the X
and Y parameters will be converted to double precision and rearranged to match the
spherical triangulation. See the SPHERE keyword to TRIANGULATE for details.

ISOTROPIC

Set this keyword to force the scaling of the X and Y axesto be equal.

Note
The X and Y axeswill be scaled isotropically and then fit within the rectangle

defined by the POSITION keyword; one of the axes may be shortened. See
“POSITION” on page 5470 for more information.

CONTOUR IDL Reference Guide

Chapter 5: Routines: C 359

LEVELS

Specifies avector containing the contour levels drawn by the CONTOUR procedure.
A contour isdrawn at each level in LEVELS.

Example
To draw a contour plot with levels at 1, 100, 1000, and 10000:
CONTOUR, 7, LEVELS = [1, 100, 1000, 10000]

To draw acontour plot with levels at 50, 60, ..., 90, 100:

CONTOUR, Z, LEVELS = FINDGEN(6) * 10 + 50
MAX_VALUE

Data points with values above this value are ignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values above
MAX_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “ Special Floating-Point
Values’ (Chapter 8, Application Programming) for more information on IEEE
floating-point values.)

MIN_VALUE

Data points with values less than this value are ignored (i.e., treated as missing data)
when contouring. Cells containing one or more corners with values below
MIN_VALUE will have no contours drawn through them. Note that the IEEE
floating-point value NaN is also treated as missing data. (See “ Special Floating-Point
Values’ (Chapter 8, Application Programming) for more information on IEEE
floating-point values.)

NLEVELS

The number of equally spaced contour levels that are produced by CONTOUR. If the
LEVELS parameter, which explicitly specifies the value of the contour levels, is
present, this keyword has no effect. If neither parameter is present, approximately six
levels are drawn. NLEVELS should be a positive integer.

OVERPLOT

Set this keyword to make CONTOUR “overplot”. That is, the current graphics screen
is not erased, no axes are drawn and the previously established scaling remainsin
effect. You must explicitly specify either the values of the contour levels or the

IDL Reference Guide CONTOUR

360 Chapter 5: Routines: C

number of levels (viathe NLEVEL S keyword) when using this option, unless
geographic mapping coordinates are in effect.

Note
When specifying overplot levels with the NLEVELS keyword, keep in mind that
the levels are cal culated according to the range set by the original CONTOUR call.
If the overplot dataset has a different range, you might want to set your levels more
explicitly with the LEVELS keyword.

PATH_DATA_COORDS

Set this keyword to cause the output contour positions to be measured in data units
rather than the default normalized units. This keyword is useful only if the
PATH_XY or PATH_FILENAME keywords are set.

PATH_DOUBLE

Set this keyword to indicate that the PATH_FILENAME, PATH_INFO, and
PATH_XY keywords should return vertex and contour value information as double-
precision floating-point values. The default is to return this information as single-
precision floating-point values.

PATH_FILENAME

Specifies the name of afile to contain the contour positions. If PATH_FILENAME is
present, CONTOUR does not draw the contours, but rather, opens the specified file
and writes the coordinates of the contours, into it. The file consists of a series of
logical records containing binary data. Each record is preceded with a header
structure defining the contour as follows:

If the PATH_DOUBLE keyword is not set:
{CONTOUR_HEADER, TYPE:0B, HIGH:0B, LEVEL:0, NUM:0L, VALUE:0.0}
If the PATH_DOUBLE keyword is set:

{CONTOUR_DBL_HEADER, TYPE:0B, HIGH:0B, LEVEL:0, NUM:O0L,
VALUE:0.0D}

CONTOUR IDL Reference Guide

Chapter 5: Routines: C 361

Thefields are:
Field Description

TYPE A byte that is zero if the contour is open, and oneif it is
closed.

HIGH A bytethat is 1 if the contour is closed and above its
surroundings, and is 0 if the contour is below. Thisfield is
meaninglessiif the contour is not closed.

LEVEL A short integer with value greater or equal to zero (Itisan
index into the LEVELS array).

NUM The longword number of data pointsin the contour.

VALUE The contour value. If the PATH_DOUBLE keyword is not
set, thisis a single-precision floating-point value; if the
PATH_DOUBLE keyword is set, thisis a double-precision
floating-point value.

Table 5-7: CONTOUR Fields

Following the header in each record are NUM X-coordinate values followed by
NUM Y-coordinate values. By default, these val ues are specified in normalized
coordinates unless the PATH_DATA_COORDS keyword is set.

PATH_INFO

Set this keyword to a named variable that will return path information for the
contours. Thisinformation can be used, along with data stored in a variable named by
the PATH_XY keyword, to trace closed contours. To get PATH_INFO and
PATH_XY with contours that are not closed, set the CLOSED keyword to 0. If
PATH_INFO is present, CONTOUR does not draw the contours, but rather records
the path information in an array of structures of the following type:

If the PATH_DOUBLE keyword is not set:

{CONTOUR_PATH_STRUCTURE, TYPE:0B, HIGH_LOW:0B, $
LEVEL:0, N:0L, OFFSET:0L, VALUE:0.0}

If the PATH_DOUBLE keyword is set:

{COUNTOUR_DBL_PATH_STRUCTURE, TYPE:0B, HIGH_LOW:0B, LEVEL:O0,
N: OL, OFFSET:0L, VALUE:0.0D}

IDL Reference Guide CONTOUR

362 Chapter 5: Routines: C

Thefields are:
Field Description
TYPE A byte that is zero if the contour is open, and oneif it is

closed.

Note - If the CLOSED keyword is not explicitly set equal
to zero, all contours will be closed.

HIGH_LOW | A bytethatis1if the contour isaboveits surroundings, and
isOif the contour is below.

LEVEL A short integer indicating the index of the contour level,
from zero to the number of levels minus one.

N A long integer indicating the number of XY pairsin the
contour’s path.

OFFSET A long integer that is the offset into the array defined by
PATH_XY, representing the first XY coordinate for this
contour.

VALUE The contour value. If the PATH_DOUBLE keyword is not

set, thisisasingle-precision floating-point value; if the
PATH_DOUBLE keyword is set, thisis a double-precision
floating-point value.

Table 5-8: PATH_INFO Fields

See the exampl es section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

PATH_XY

Set this keyword to a named variabl e that returns the coordinates of a set of closed
polygons defining the closed paths of the contours. This information can be used,
along with data stored in a variable named by the PATH_INFO keyword, to trace
closed contours. To get PATH_XY and PATH_INFO with contours that are not
closed, set the CLOSED keyword to 0. If PATH_XY ispresent, CONTOUR does not
draw the contours, but rather records the path coordinates in the named array. If the
PATH_DOUBLE keyword is not set, the array will contain single-precision floating
point values; if the PATH_DOUBLE keyword is set, the array will contain double-
precision floating point values. By default, the values in the array are specified in
normalized coordinates unless the PATH_DATA_COORDS keyword is set.

CONTOUR IDL Reference Guide

Chapter 5: Routines: C 363

See the exampl es section below for an example using the PATH_INFO and
PATH_XY keywords to return contour path information.

TRIANGULATION

Set this keyword to a variable that contains an array of triangles returned from the
TRIANGULATE procedure. Providing triangul ation data allows you to contour
irregularly gridded data directly, without gridding.

XLOG

Set this keyword to specify alogarithmic X axis.
YLOG

Set this keyword to specify alogarithmic Y axis.
ZAXIS

Set this keyword to an integer value to draw a Z axis for the CONTOUR plot.
CONTOUR draws no Z axis by default. This keyword is of use only if athree-
dimensional transformation is established. Possible values are:

No Z axisis drawn (the default)

Draws Z axis from the lower right-hand corner of the plot

Draws Z axis from the lower left-hand corner of the plot

Draws Z axis from the upper left-hand corner of the plot

Al W] N| | O

Draws Z axis from the upper right-hand corner of the plot

Graphics Keywords Accepted

See Appendix B, “Graphics Keywords® for the description of the following graphics
and plotting keywords:

BACKGROUND, CHARSIZE, CHARTHICK, CLIP, COLOR, DATA, DEVICE,
FONT, NOCLIP, NODATA, NOERASE, NORMAL, POSITION, SUBTITLE, T3D,
THICK, TICKLEN, TITLE, [XYZ]CHARSIZE, [XYZ]GRIDSTYLE,
[XYZ]MARGIN, [XYZ]MINOR, [XYZ]RANGE, [XYZ]STYLE, [XYZ]THICK,
[XYZ] TICKFORMAT, [XYZ] TICKINTERVAL, [XYZ] TICKLAYOUT,
[XYZ]TICKLEN, [XYZ]TICKNAME, [XYZ]TICKS, [XYZ]TICKUNITS,
[XYZ]TICKV, [XYZ]TICK_GET, [XYZ]TITLE, ZVALUE

IDL Reference Guide CONTOUR

364

Chapter 5: Routines: C

Examples

In addition to the following examples, also see the PLOT routine “Examples’ on
page 1796 for sasmplesthat control plot position, configure axes and position multiple
plots on a page. This section includes the following information:

“Using CONTOUR” on page 364 “Contour Irregularly-gridded with
TRIANGULATE” on page 368

“Contouring Methods’ on page 365 “Contour of Digital Elevation Data’

on page 368
“Label Ten Contour Levels’ on “Labeling Contours” on page 373
page 366
“Polygon Filling and Smoothing” on “Overlaying Images and Contour
page 366 Plots’ on page 374
“Plotting Closed Contour Paths’ on “Displaying Date/Time Dataon a
page 367 Contour Display” on page 379

“Filling Contours’ on page 367

Note
Several of the following examples use batch files. See “ Running the Example
Code” on page 42 if IDL does not find the referenced batch file.

Using CONTOUR

CONTOUR

The basic call to CONTOUR is asfollows;
CONTOUR, 7Z

where Z isatwo-dimensional array. This call labels the x- and y-axes with the
subscript along each dimension. For example, when contouring a 10 x 20 array, the x-
axisranges from 0 to 9, and the y-axis ranges from 0 to 19.

You can explicitly specify the x and y locations of each cell asfollows:
CONTOUR, Z, X, Y

where the X and Y arrays can be either vectors or two-dimensional arrays of the same
sizeasZ. If they are vectors, the element z ; has a coordinate location of (X;, ¥;).
Otherwisg, if the x and y arrays are two-dimensional, the element z ; has the Iocatl on
(%ij» ¥ij)- Thus, vectors should be used if the x location of z ; does not depend upon j
and the y location of z ; does not depend upon i.

IDL Reference Guide

Chapter 5: Routines: C 365

Dimensions must be compatible. In the one-dimensional case, X must have a
dimension equal to the number of columnsin Z, and Y must have a dimension equal
to the number of rowsin Z. In the two- dimensional case, all three arrays must have
the same dimensions.

IDL uses linear interpolation to determine the x and y locations of the contour lines
that pass between grid elements. The cells must be regular in that the x and y arrays
must be monotonic over rows and columns, respectively. The lines describing the
quadrilateral enclosing each cell and whose vertices are (X j, ¥i), (Xi+1j, Yi+1,),
(Xi+1,j+1 Yi+1j+1)» @d (X j+1, ¥j j+1) must intersect only at the four corners and the
quadrilateral must not contain other nodes.

Contouring Methods

In order to provide awide range of options, CONTOUR uses one of two contouring
algorithms. The algorithm used depends on the keywords specified, and is one of the
two following methods.

Cell Drawing

Thefirst agorithm, used by default, examines each array cell and draws all contours
emanating from that cell before proceeding to the next cell. This method is efficient
in terms of computer resources, but does not allow options such as contour labeling
or smoothing.

Contour Following

The second method searches for each contour line, then follows the line until it
reaches a boundary or closes. This method gives better [ooking results with dashed
linestyles and alows contour labeling and bi-cubic spline interpolation, but requires
more computer time. The contour following method is used if any of these keywords
are specified: C_ANNOTATION, C_CHARSIZE, C_LABELS, CLOSED,
FOLLOW, PATH_FILENAME, or DOWNHILL.

Note
Dueto their differing algorithms, these