

DbAccess
The Manual

Version 1.1

D. M. Mastrovito
Princeton Plasma Physics Laboratory

Princeton University
P.O. Box 451

Princeton, NJ 08543

Oct 2002

Index
Page

I. Introduction……………………………………………………………...3

II. Setting Up Environment………………………………………………...3

III. Starting DbAccess ………………………………………………………4

IV. Selecting Data from the Database ………………………………………5
A. Simple Query ………………………………………………………5
B. Complex Query………………………………………………..…....6

i) Using Functions and Arithmetic Operators……..…..………6
ii) Without Join…………………………………………………9
iii) With Join………………………………………………………12

C. Null Values…………………………………………………………..15
D. Finding Descriptions for a Particular Table (NSTXLOGS ONLY)…15
E. Resizing the Window………………………………………………...17
F. Saving the Results……………….…………...………………………17
G. Printing the Results………………..………….……………………...18

III. Creating a View (Expression Table)…………….………..…………..…18

IV. Creating a Table………………………………….……………………..19

V. Populating a Table……………………………….……………..………23

A. From a File…………………………………….……………………23
B. From a Script…………………………………….………………….25

VI. Modifying a Table………………………………………………………27

VII. Plotting………………………………………………..………………..28

VIII. Working with a Different Database………………..…………………..29

 2

I. Introduction

DbAccess is an application with a graphic user interface (GUI) that facilitates interaction
with the NSTX Microsoft SQL database. It is written in IDL and can be run from any of
the unix or linux cluster machines.

II. Setting Up DbAccess

To use DbAccess you must:

1) run ‘setup nstx’ at the command line after logging in, in order to get the correct path

variables.

2) You will require a database account, which must be created by a database
administrator. Send and email to dbadmin@pppl.gov to request a new database
account. At the time your database account is created you will also receive a database
password.

3) You must define the environment variables DBACCESS_LOGS and
DBACCESS_SOURCE. If you are working on NSTX these environment variables
should be set for you when you run setup nstx or setup idl.

setenv DBACCESS_LOGS <directory for log files>
setenv DBACCESS_SOURCE <path to dbaccess source>

4) To properly view the GUI it is necessary to put the following lines in your

.Xresources file in your home directory:

Idl*colorbuttons*blue*background:blue
Idl*colorbuttons*red*background: red
Idl*colorbuttons*lightblue*background: lightblue
Idl*colorbuttons*green*background: green
Idl*colorbuttons*purple*background: purple
Idl*colorbuttons*yellow*background: yellow
Idl*colorbuttons*white*background: white
Idl*colorbuttons*gold*background: gold
Idl*colorbuttons*black*background: black
Idl*colorbuttons*magenta*background: magenta
Idl*colorbuttons*orange*background: orange

You can copy these entries from /p/nstxusr1/util/init_files/idlcolors.Xresources
You will also need a file in your home directory called <database_name>.sybase_login
for every database you wish to use. At present most NSTX data is in the database called

 3

mailto:dbadmin@pppl.gov

nstxlogs. Therefore, in your nstxlogs.sybase_login file you should have the following
information:

eagle:8080
eagle
nstxlogs
<unix username>
<database password>

Running ‘setup nstx’ should create this file for you. However, if you wish to use any
other databases you will need to create such a file.

III. Starting DbAccess

Type IDL at the command prompt. Once inside IDL type dbaccess.

Taurus> idl
IDL> dbaccess

When the application is started you should see a list of tables that are available in the
nstxlogs database (this is the default database). These will be displayed under the
heading “Database Tables”. Selecting any one of the tables in the list will show the list
of columns available in that table, which will then be displayed under the heading
“Column Names”. You will also notice a “Help” menu on the upper right hand side of
the application window. You can use the “Help” button at any time to view a copy of
this document.

If you have difficulty bringing up the GUI please send a message to dbadmin@pppl.gov .

 4

mailto:dbadmin@pppl.gov

IV. Selecting Data From the Database

A. Simple Query

A simple query is one in which we are asking for ALL records of ONE table. If you want
to query data from more than one table or a subset of one table, see section entitled
“Complex Query”. To select all the data in a particular table:

1) Click on the name of that table in the column labeled “Database Tables”. This should

cause the columns contained in the selected table to be displayed in the column
labeled “Column Names”.

2) Select all of the columns you wish to view in the column labeled “Column Names”

using your mouse.

3) Then click the red “>>” button located to the right of the “Column Names” so that the

selected columns appear in the column labeled “Work Area”.

4) Click the yellow button “Select” Button.

A new window will appear containing a table with the information you have selected.

 5

B. Complex Query

i) Using Functions and Arithmetic Operators

A simple select statement can be performed using a variety of Functions and Arithmetic
Operators that are supported by SQL:

These scalar functions perform a calculation, usually based on input values provided as
arguments, and return a numeric value.

ABS

Returns the absolute, positive value of the
given numeric expression.

Syntax

ABS (numeric_expression)

DEGREES

Given an angle in radians, returns the
corresponding angle in degrees.

Syntax

DEGREES (numeric_expression)

RAND

Returns a random float value from 0
through 1.

Syntax

RAND ([seed])

ACOS

Returns the angle, in radians, whose
cosine is the given float expression;
also called arccosine.

Syntax

ACOS (float_expression)

EXP

Returns the exponential value of the
given float expression.

Syntax

EXP (float_expression)

ROUND

Returns a numeric expression, rounded
to the specified length or precision.

Syntax

ROUND (numeric_expression ,
 length [, function])

ASIN

Returns the angle, in radians, whose
sine is the given float expression
(also called arcsine).

Syntax

ASIN (float_expression)

FLOOR

Returns the largest integer less than or
equal to the given numeric expression.

Syntax

FLOOR (numeric_expression)

SIGN

Returns the positive (+1), zero (0), or
negative (-1) sign of the given
expression.

Syntax

SIGN (numeric_expression)

 6

ATAN

Returns the angle in radians whose
tangent is the given float expression
(also called arctangent).

Syntax

ATAN (float_expression)

LOG

Returns the natural logarithm of the
given float expression.

Syntax

LOG (float_expression)

SIN

Returns the trigonometric sine of the
given angle (in radians) in an
approximate numeric (float) expression.

Syntax

SIN (float_expression)

ATN2

Returns the angle, in radians, whose
tangent is between the two given
float expressions (also called
arctangent).

Syntax

ATN2 (float_expression ,
float_expression)

LOG10

Returns the base-10 logarithm of the
given float expression.

Syntax

LOG10 (float_expression)

SQUARE

Returns the square of the given
expression.

Syntax

SQUARE (float_expression)

CEILING

Returns the smallest integer greater
than, or equal to, the given numeric
expression.

Syntax

CEILING (numeric_expression)

PI

Returns the constant value of PI.

Syntax

PI ()

SQRT

Returns the square root of the given
expression.

Syntax

SQRT (float_expression)

COS

A mathematic function that returns
the trigonometric cosine of the given
angle (in radians) in the given
expression.

Syntax

COS (float_expression)

POWER

Returns the value of the given
expression to the specified power.

Syntax

POWER (numeric_expression , y)

TAN

Returns the tangent of the input
expression.

Syntax

TAN (float_expression)

COT

A mathematic function that returns
the trigonometric cotangent of the
specified angle (in radians) in the
given float expression.

Syntax

COT (float_expression)

RADIANS

Returns radians when a numeric
expression, in degrees, is entered.

Syntax

RADIANS (numeric_expression)

 7

Arithmetic operators perform mathematical operations on two expressions of any of the
data types of the numeric data type category.

Operator Meaning
+ (Add) Addition.

- (Subtract) Subtraction.

* (Multiply) Multiplication.

/ (Divide) Division.

% (Modulo) Returns the integer remainder of a division.

To use a function or arithmetic operator:

1) Click on the name of that table in the column labeled “Database Tables”, which

should cause the columns contained in the selected table to be displayed in the
column labeled “Column Names”.

2) Select all of the columns you wish to view in the column labeled “Column Names”

using your mouse.

3) Then click the red “>>” button located to the right of the “Column Names” so that the

selected columns appear in the column labeled “Work Area”.

4) Double click on the column name in the work area. You will see an “Edit” window

appear.

5) Enter the function and any necessary parameters with parentheses around the column
name and click “Done”.

6) You will see that the changes you have made to the column value are shown in the

work area.

7) Click the Select Button.

 8

In the results returned to you, you should see a column labeled with the function you
entered in the work area.

ii) Without a join

To execute a complex query without a join:

1) Click on the name of that table in the column labeled “Database Tables”, which

should cause the columns contained in the selected table to be displayed in the
column labeled “Column Names”.

2) Select all of the columns you wish to view in the column labeled “Column Names”

using your mouse.

3) Then click the red “>>” button located to the right of the “Column Names” so that the
selected columns appear in the column labeled “Work Area”. As in the previous
section “Using Functions and Arithmetic Operators”, you can add functions and
mathematical operators to any items placed in the “Work Area.

4) Then chose “Select Builder” from the “Edit” menu.

 9

5) Select “Use a single table select statement” (the default option) and click “OK”.

A new “Select Builder” window will appear. In the first column of the “Select Builder”
window you will see the items that you placed into the “Work Area” in the main window.
If you do not explicitly select any of these items all of them will appear in the results of
your query. You will also see that each of the drop-down boxes in the second column
contain all of the items that you placed in the “Work Area” in the main window. To limit
a column to a particular range of values you would:

6) Select the column you wish to limit from the drop down list. (for example

neut_day.shot)

7) Then select a Boolean from the third column. (“>”)

8) Enter a value in the 4th column. (107000)

Completing just these steps using the entries seen below your select statement would look
like:

Select neut_day.day, neut_day.neut,neut_day.shot from neut_day where
neut_day.shot >107000

Or continuing you could:

9) Select “And” or “Or” from the 4th column (for example “And”).

 10

10) Select a column from the second drop-down box (say for example select
neut_day.shot again)

11) Select a Boolean from the drop-down in the 3rd column (say “<”)

12) Enter another value in the 4th column. (109000)

This would result in the following select statement:

Select neut_day.day, neut_day.neut,neut_day.shot from neut_day where
neut_day.shot >107000 and neut_day.shot < 109000

13) Pressing the yellow “Select” button at the bottom of the window.

You will see that the “Select Builder” disappears and in its place another window
containing the results you requested would appear, in this case all the records in the table
neut_day having shot values between 107000 and 109000, exclusively.

To limit a column that is a string data type, such as logbook comments in the “Entries”
table or username in the logbook you must use SINGLE QUOTES. This indicates to IDL
that the value you are entering is a string.

The above example would select items from the logbook where the shot is greater than
109000 entered by Dennis Mueller and with a comment containing the word ‘fiducial’
preceded by or followed by any number of characters. The SQL statement generated
would be:

 11

Select ENTRIES.SHOT, ENTRIES.TEXT, ENTRIES.USERNAME from ENTRIES
where ENTRIES.SHOT>109000 And ENTRIES.USERNAME='mueller' And
ENTRIES.TEXT Like '%fiducial%'

iii) With a join

Creating a query with a join means that you would like to select data from more than one
table based on some criteria common to both tables. For example, selecting all records of
two tables where the shot numbers in each table are equal to one another. To execute a
complex query without a join:

To execute a complex query without a join:

1) Click on the name of that table in the column labeled “Database Tables”, which

should cause the columns contained in the selected table to be displayed in the
column labeled “Column Names”.

2) Select all of the columns you wish to view in the column labeled “Column Names”

using your mouse.

3) Then click the red “>” button located to the right of the “Column Names” so that the

selected columns appear in the column labeled “Work Area”. As in the previous
section “Using Functions and Arithmetic Operators”, you can add functions and
mathematical operators to any items placed in the “Work Area”.

4) Then chose “Select Builder” from the “Edit” menu.

5) Select “Use a join Statement” and click “OK”.

 12

A new “Select Builder” window will appear. In the first column of the “Select Builder”
window you will see the items that you placed into the “Work Area” in the main window.
If you do not explicitly select any of these items all of them will appear in the results of
your query. You will also see that in the section labeled “Join Criteria” each of the drop-
down boxes contain all of the items you placed in the “Work Area”. Additionally, all
drop-down boxes in the section labeled “Where Clause:” also contain all the items
previously placed in the “Work Area” in the main program window. To join the
neut_day table with the entries table on the shot column, for example, you would:

6) In the section labeled “Join Criteria” select from the first drop-down box

“Entries.shot”.

7) Since we are performing an equa-join leave the “=” in the second drop-down box.

8) In the third drop-down box choose “neut_day.shot”

Clicking the yellow “Select” button at this point would result in the following statement
being executed:

Select ENTRIES.SHOT, ENTRIES.TEXT, ENTRIES.XP, neut_day.day,
neut_day.neut, neut_day.shot from ENTRIES JOIN neut_day ON (ENTRIES.SHOT
= neut_day.shot)

 13

You would then see your results, the text, xp, day and the number of neutrons/day for
every shot that is listed in both the entries and neut_day tables.
Alternatively, this selection could be further limited by doing the following:

9) In the area labeled “Where Clause:” Select “Entries.shot”.

10) Then select the Boolean “>” from the second column.

11) Enter a value in the 3rd column (109000).

12) Then in the section columns to be returned select several columns. (Since it is

redundant to select both nuet_day.shot and entries.shot when joining on those
columns, I have not selected entries.shot)

After completing these steps, the following SQL statement would be executed:

Select ENTRIES.TEXT, ENTRIES.XP, neut_day.neut, neut_day.shot from
ENTRIES JOIN neut_day ON (ENTRIES.SHOT = neut_day.shot) where
ENTRIES.SHOT>109000

 14

The following results would be returned:

C. Null Values

When a column has no value for a particular record SQL stores that value as NULL. IDL
does not have an equivalent NULL value. Therefore, when data is returned to you, you
may see strange values returned when a record has a NULL value in the database.
Fortunately, these values are predictable by the datatype of the data returned:

SQL varchar/char: SQL float: 1.7000000e+38
SQL int: 2147483647 SQL datetime: Jan 01 1970 12:00:00:000AM

D. Finding Descriptions for a Particular Table

There is a special table in the “nstxlogs” database only called “Description”. This table
should contain information about every column in the “nstxlogs” database, including the
MDSplus definition, the units, and a textual description of each parameter. To find
information on the definitions of entries in the efit table, for example:

1) Click on the name “Description” in the “Database Tables” column on the main

program window. This should cause the columns of the “Description” table to be
displayed in the column labeled “Column Names”.

2) Then click the red “>>” button located to the right of the “Column Names” so that

these selected columns appear in the column labeled “Work Area”.

 15

3) Then choose “Select Builder” from the “Edit” menu.

4) Since we are only working with the “Description” table, select “Use a single table

select statement” and click “OK”.

5) In the first drop-down box select “DESCRIPTION.Table_name”.

6) Leave the “=” in the second column.

7) Then put ‘Efit’ in the field as shown above.

8) Click the yellow “Select” button at the bottom of “Select Builder” window.

After completing these steps, the following SQL statement would be executed:

Select DESCRIPTION.Column_name, DESCRIPTION.Description,
DESCRIPTION.MDSplus, DESCRIPTION.Table_name, DESCRIPTION.Units from
DESCRIPTION where DESCRIPTION.Table_name='Efit'

And the following results will be returned:

 16

Substantial effort has been put forth to keep this table up to date, however if you are
unable to find the information you are looking for please send a message to
dbadmin@pppl.gov .

E. Resizing the window

At the bottom of any window with returned results from a select statement you will
notice that there is a yellow button at the bottom labeled “Resize Window”.

 Clicking this button will cause the following window to appear:

Entering the desired size in inches and clicking the “Resize” button will cause the table
size in the results window to change.

F. Saving the Results

At the bottom of any window with returned results from a select statement you will
notice that there is a yellow button at the bottom labeled “Save As”.

 17

mailto:dbadmin@pppl.gov

Clicking this button will cause the usual “Save As” dialog box to appear. You can
choose the location and name of your file. The data will be saved in a comma delimited
file. Therefore, if you save your file as a .csv file (e.g. myfile.csv) you will be able to
open your file using Microsoft Excel and work with the results of your query using
standard spreadsheet functionalities.

G. Printing the Results

At the bottom of any window with returned results from a select statement you will
notice that there is a yellow button at the bottom labeled “Print”.

Clicking this button will cause the usual “Pick a Printer” dialog box to appear. You can
choose a printer from the list or enter the full name of another printer not in the list and
your results will be printed in labeled unformatted columns.

V. Creating a View (Expression Table)

A view is similar in concept to the Expression Tables that were in use in the older TFTR
INGRES Database with which you may or may not be familiar. A view can be as simple
or as complex as you wish. It represents a set or subset of data contained in other tables
or views within the current database. The columns of a view can be based on any
combination of columns/views in other tables and any combination of functions and/or

 18

arithmetic operators (see section entitled “Using Functions and Arithmetic Operators”) as
long as they can be described in one SQL statement. An example of a view statement
actually in use on the NSTX database is:

CREATE VIEW dbo.haccess_charles AS SELECT shot, [time], DBkey, bt0, ip, 0.054 * POWER(nebar_ts
* 1e-14, .49) * POWER(bt0, .85) * POWER(psurfa, .84) AS pth, psurfa, rsurf, pnbi, prad, ptot, a, poh, r0,
nebar_ts, 0.65 * POWER(nebar_ts * 1e-14, .93) * POWER(bt0, .86) * POWER(rsurf, 2.15) AS pthmr, .10
* POWER(nebar_ts * 1e-14, .84) * POWER(bt0,.63) * POWER(psurfa, .95) * POWER(a / rsurf, .46) AS
pthaspect, .54 * POWER(nebar_ts * 1e-14, .49) * POWER(bt0, .85) * POWER(psurfa, .84) AS pthsurfa,
.65 * POWER(nebar_ts * 1e-14, .93) * POWER(bt0, .86) * POWER(rsurf, 2.15) AS pthmajor, 1.73 *
POWER(nebar_ts * 1e-14, .63) * POWER(bt0, .72) * POWER(a, .82) * POWER(rsurf, .99) AS pthryter,
phase, wbdot, wpdot, 0.050 * POWER(nebar_ts * 1.0E-14, 0.46) * POWER(bt0, 0.87) * POWER(psurfa,
0.84) AS pth2, 1.67 * POWER(nebar_ts * 1.0E-14, 0.61) * POWER(bt0, 0.78) * POWER(a, 0.89) *
POWER(rsurf, 0.94) AS pthryter2, (pnbi + poh - wpdot) / 1E6 AS ploss FROM dbo.haccess

You don’t need to understand the syntax of this statement, but its good to observe that
you can have a column in your view that is identical to one in another table, such as “bt0”
in the first line of the above statement. Or you can have one that is based on a
mathematical combination of several columns, such as:

0.054 * POWER(nebar_ts * 1e-14, .49) * POWER(bt0, .85) * POWER(psurfa, .84) AS pth

where “pth” is the column name in your view and is defined as a mathematical
combination of “nebar_ts”, “bt0”, and “psurfa”, which are columns in the “haccess”
table.

Notice also, that as the “CREATE VIEW dbo.haccess_charles AS SELECT” syntax indicates, the
view is nothing more than a saved database query. Every time you request data from
your view the select statement that represents your view is executed. For this reason,
your view will always have the most up to date information from the database.

The SQL statement that is used to define your view can also contain information from
multiple tables using join syntax and/or a subset of one or more tables by limiting shot
number or another parameter etc (see section entitled “Selecting Data from the
Database”). To create your own view:

1) If you want to include a join in the statement for your join or you want your join to

look at a subset of data from another table, bring the relevant column names into the
“Work Area” column on the main program window. At this point you can add any
functions or mathematical operators you wish (see section entitled “Using Functions
and Arithmetic Operators”). Click the yellow “Create View” button on the right side
of the main program window.

 19

2) Using the example above, I have named my columns “pth” and “bt0” and put in

definitions. Notice that you must specify table names as in “haccess.bt0”, which
specifies that the column “bt0” is in table “haccess”. This is important as there may
be more then one column named “bt0” in the database.

3) You should see that your UserName is already filled in for you. You need to enter a

name for your view in the field labeled “View Name”.

4) You can put in join criteria and column restraints as in the section “Selecting Data
from the Database”.

5) Click the yellow “Create View” button at the bottom of the window.

6) Click the yellow “Refresh” button at the bottom of the main program window. You
should see that your view appears in the list of tables under “Database Tables”. You
can now interact with this view as if it were a regular table.

VI. Creating a Table

The first few times you create a table you may want to familiarize yourself with the
procedure or perhaps test a few different versions of a script to load them. If so you may
want to create your table the first time in the test database. If so, see the section entitled
“Working with a Different Database”. To create a new table:

1) Click the yellow “Create Table” button on the main program window. This will

cause a new “Create a Table” window to appear.

 20

2) Enter a unique name for your new table in the field labeled “Table Name”.

3) You should see that your username is already in the field labeled “UserName of Table

Creator”. In future versions of dbaccess this will be used to implement database
security.

4) Enter names for the columns of your table in the column labeled “Column Name”.

5) Enter the SQL data type of each column in the column labeled Data Type. The

choices are:

char

Fixed-length non-Unicode character data with length of n bytes. n must be a value
from 1 through 8,000. Storage size is n bytes. The SQL-92 synonym for char is
character. Use char when the data values in a column are expected to be
consistently close to the same size.

varchar

Variable-length non-Unicode character data with length of n bytes. n must be a value
from 1 through 8,000. Storage size is the actual length in bytes of the data entered,
not n bytes. The data entered can be 0 characters in length. The SQL-92 synonyms for
varchar are char varying or character varying. Use varchar when the data values
in a column are expected to vary considerably in size.

datetime

Date and time data from January 1, 1753 through December 31, 9999, to an accuracy
of one three-hundredth of a second (equivalent to 3.33 milliseconds or 0.00333
seconds). Values are rounded to increments of .000, .003, or .007 seconds.
Example: 2002-06-13 08:08:07.080

 21

int

Integer (whole number) data from -2^31 (-2,147,483,648) through 2^31 - 1
(2,147,483,647). Storage size is 4 bytes. The SQL-92 synonym for int is integer.

float

Is a floating point number data from - 1.79E + 308 through 1.79E + 308. n is the
number of bits used to store the mantissa of the float number in scientific notation
and thus dictates the precision and storage size. n must be a value from 1 through 53.

6) The “Length” column is optional. If specified it will define the precision of the data
type chosen in the previous step. If not specified the default precision for each data
type will be used:

Default Precisions
Char 1
Varchar 1
Datetime Cannot be set 23
Float 53
Int Cannot be set 10

7) In the Allow Nulls column you should specify with a Y (meaning this column will
allow NULL values) or N (meaning this column will not allow NULL values). This
is an important consideration especially if you will be loading your table by an
automatic script (see section entitled “Populating a Table”). SQL will not create a
record for you if you try to create one with an empty or unspecified value for a
column that does not allow NULL values and this could result in no entry for that
particular shot. If you have a column named shot, for example, this column should
likely not allow NULL values. On the other hand, if it is possible that a particular
value will not be able to be read from MDSplus for any given shot, it is safer to allow
NULL values for that column. The default is Y (allow NULL values). If you do not
want a given column to allow NULL values you will need to change this to N for that
column.

8) Next, enter the Units for the given column. If there are no units for a column (such as
shot number) enter “N/A”. This information will be stored automatically in the
“Description Table”. (See section entitled “Finding Descriptions for a Particular
Table”)

9) Enter a textual description of what your column will represent. This is very useful for
other people who may want to make use of your table, and will also serve as a good
reminder as to the contents of a table long after its been created. Once again, this
information will automatically be stored in the “Description” table.

 22

10) Click the yellow “Create Table” button at the bottom of the window. If you have left
any items blank you will receive an error. Otherwise you should receive a message
stating that your table has been created successfully.

11) Click the yellow “Refresh” button on the main program window and you should see
the addition of the table you have just created.

In the “Create Table” window, by default, there are 20 rows, which allows you to create a
table with 20 or less columns. If your table needs more columns click the yellow “Add
another column” button at the bottom of the window, which will create more rows, giving
you room to define more columns.

All tables are created with one additional column called “dbkey” which is created as a
primary key for your table (a column that cannot have any NULL values and is always
unique). This column is mainly used for house-keeping and to allow future capability of
table value modifications from within dbaccess. For this reason, it is not necessary for
you to create a primary key for your table.

VII. Populating a Table

A. From a File

To populate an already existing table from a file:

1) Create a text file with the data you wish to enter into your table. The first line of your

file should be column headings. The columns in your file should be tab delimited.
Using the example of the table we created in the previous section, your data file might
be the following:

 23

Notice that there is one value for ip that is missing. In the column with the missing
value there must be a space “ “. Since the values are parsed by tabs, the space will
indicate to the application that this value is meant to be empty. Notice also that there
are two entries for shot 109000. This will not cause a problem, because when you
created your table a unique key was automatically created for you. Furthermore,
since we did not specify a length for the char column “toi” when we created the table,
this column was created with the default length of 1 character. Therefore you will see
when you retrieve the values from this table that only one character appears for each
entry (i.e. instead of “maxip” the database contains only “m”). To change the length
of the column “toi” or to add or remove columns from your table you will need to
modify it (see section entitled “Modifying a Table”).

2) Select the table you would like to populate from the “Database Tables” column on the
main program window. You should see the columns contained in that table listed in
the “Column Names” column.

3) Click the yellow “Populate Table” button on the right side of the main program
window. You will see the following dialog:

4) Choose “Populate manually from a file” and click “OK”.

5) The Database Name and Table Name should appear in the “Load Data From a File”

Dialog. Enter the file name and path to your text file containing your table data in the
“File Name Inclucing Path:” field. Click “OK”

 24

Note that if you change the database name in this dialog the database context will be
changed and the application will attempt to look for the NewNstxTable in a different
database. This will also effect the database context when you return to the main window.
You could confirm this by clicking the “Refresh” button. To change back to a different
database see section “Working with a Different Database”.

B. From a Script

Populating a table from a Script does not actually put any values into the database for
you. What it allows you to do is define the values that you want in the database in terms
of some calculation on a particular MDSplus node and it generates a script for you based
on those definitions that is robust and can be run on a shot by shot basis automatically to
load your data into the database. It does, however, makes an assumption about the
structure of the table you have created, namely that it has a shot number and a time of
interest, at which certain values calculated from MDSplus signals are entered. If this is
not the structure of your table you will probably need to edit the script that is generated
for you or in some cases it might be best to modify an already existing script. If you
need help you should send a message to dbadmin@pppl.gov .

To generate a script for loading your table:

1) Select the table you would like to populate from the “Database Tables” column on the

main program window. You should see the columns contained in that table listed in
the “Column Names” column.

2) Click the yellow “Populate Table” button on the right side of the main program
window. You will see the following dialog:

 25

mailto:dbadmin@pppl.gov

3) Select “Generate Code to run in Batch mode” and click “OK”.

4) This will open a new “Create a Table Batch File” window. The top part of this

window (shown below) is used to define an MDSplus node to associate with each of
the parameters or columns in your table. You will see that the names of the columns
are read from the database and filled in for you, excluding the special columns shot
and toi, since shot has a well-known meaning and the times of interest will be defined
on the bottom part of the window. It is not required that you supply an MDSplus
Node Name, and in fact if there is a complicated set of commands that will be used to
calculate a particular node you should NOT enter anything in the MDSplus Node
Name column. However if the column value is simply an MDSplus signal at a time
of interest you should enter the MDSplus node here. In this example, time is defined
by the MDSplus tdi command ‘dim_of(\efit01::aminor’. This means that every shot
your script will make one entry per time of interest like:

time=mdsvalue(‘dim_of(\efit01::aminor)’)
The value placed in the database for each record would be time[toi_index]

The code that is generated at the end of this process has built into it the ability to fully
customize these calculations.

5) The second part of the window is used to define the times of interest. These are the

times at which all the other signals in the table will be put into the database. In the
following example two times of interest have been defined. The first is called
‘maxip’ and is defined as the time point previous to where ‘\efit01::ipmhd’ was at a
maximum, since the offset is set to –1. The value put in the database for column “toi”
would be ‘maxip’ and its index would be used to calculate all other signals defined in
the previous section. The second is called ‘maxwtot’ and is defined as the time where
the signal ‘\efit::wmhd’ is closest to 220,000. The entry in the database for toi would
be ‘maxwtot’ in this case and its index would be used to calculate all the other signals
as defined in the previous section.

 26

6) Clicking the “Populate Table” button will generate an IDL script for you named

<yourtalbename>db.pro and place it in your home directory. In this case
/u/dmastrov/NewNstxTabledb.pro

This script is rather complicated as it contains error checking etc. However, the
framework is already present in the script for you to do much more complex calculations
for both your times of interest and any signals. Send a message to dbadmin@pppl.gov if
you need assistance in modifying this script. After the script is complete it will need to
be moved onto VMS where it will be run via a batch queue at the end of every shot.
Alternatively, you can run this script yourself from inside idl:

IDL>for shot=109200,11000 do NewNstxTabledb, shot

 If you want your script to run in batch mode, you should send a message to
dbadmin@pppl.gov in order to have your script put into an NSTX shot cycle queue.

VIII. Modifying a Table

Modifying a table in the context of this application involves changing the structure of a
table and not changing the values of particular records, though in the future this
functionality will be part of the functionality of dbaccess. Lets say you have created a
table and would like to add a new column or change the data type of a particular column.
Perhaps you simply want to change how the units are listed in the description table. All
these things are done using the “Modify” functionality of dbaccess. To modify a table,
start off on the main program window:

1) Select the table you would like to modify from the “Database Tables” column. Click

the yellow “Modify” button on the right side of the main program window.

2) You will see a new “Modify Table” window appear and in it you will see the relevant
information for the table you have chosen, which is read from the database.

 27

mailto:dbadmin@pppl.gov
mailto:dbadmin@pppl.gov

3) Using as an example the table we created in the section entitled “Creating a Table”,

you will see the data types and lengths of the columns you previously defined. As
pointed out the length of the toi column is indeed 1. Now is a good time to change it
to accommodate our full time of interest names. Change the 1 in the Length column
to 10 or 15. Being sure that some portion of the row for column “toi” is selected, click
the “Modify Column” button.

4) Also here, you can change a column to disallow null values. For instance, we will
never want to have an entry in the database with a NULL shot number so we should
change the Y to an N in the “Allow Nulls Y/N” column for shot. Being sure that
some portion of the row for column “shot” is selected, click the “Modify Column”
button.

5) It is also possible to add new columns here by simply typing in the information for
the new column below those already existing. Make sure you have some part of the
row containing the column you are adding selected and clicking the yellow “Add
New Columns” button at the bottom of the window. It is, however, important to
realize that if your table already contains data, the new column you create will be
filled with NULL values for all previous records and you will need to take some
course of action to fill that column for all previous records. For this reason, if your
table already contains data, it does not makes sense to add a new column with an “N”
in the “Allow NULL Y/N” column and doing so will cause and error and the column
addition will not take place. Also, if you already have a script created to load your
table on a shot-by-shot basis you will need to modify this script to accommodate the
new column you have added.

IX. Plotting

This is not yet implemented, however, plotting can be accomplished in Excel (see the
section on “Saving your Results”) or using the unix-based idl application dbplot.

 28

X. Working with a Different Database

There may be instances when you would like to work with the contents of another
database. For example if you would like to test table creation you may wish to use the
test database or you may wish to browse efit runs from the “code_rundb” database. To
begin working with another database:

1) Choose “Set Database” from the “Edit” menu on the main program window.

2) Enter the name of the database and click “Done”.

3) Click the “Refresh” Button on the main program window. You should see the table

names on the main window refresh.

As you can see you are required to know the name of the database you would like to use.
In addtion you will need a <database name>.sybase_login file in your home directory for
any database you will use of the form:

eagle:8080
eagle
<database name>
<unix username>
pfcworld

If you do not create this file before attempting to change databases you will be prompted
with a “New Database Definition" window:

 29

where MDS Host is eagle:8080
Database server Name is eagle
Database name <database name>
Username <unix username>
Database Password <database password>

The <database>.sybase_login file will then be created for you. The next time you change
to using this database you should not see this window.

If you have any problems or questions regarding the use of dbaccess or would like to see
any additional functionality added, please send a message to dbadmin@pppl.gov

 30

mailto:dbadmin@pppl.gov

	DbAccess
	I.Introduction
	II.Setting Up DbAccess
	III.Starting DbAccess
	IV. Selecting Data From the Database
	Simple Query
	Complex Query
	
	i) Using Functions and Arithmetic Operators
	ii) Without a join
	iii)With a join

	C.Null Values
	D.Finding Descriptions for a Particular Table
	E. Resizing the window
	F.Saving the Results
	G.Printing the Results

	V. Creating a View (Expression Table)
	VI. Creating a Table
	VII. Populating a Table
	A.From a File
	Choose “Populate manually from a file” and click �
	B.From a Script

	VIII. Modifying a Table
	IX. Plotting
	X. Working with a Different Database

