
         
The FILL_DB User’s Guide 

  
 

Steve Scott 
March, 2005 

 
 

Last updated April 12, 2006 
 
New features (4/12/2006) 
 

• Two new extraction keywords:  ‘stddev’ and ‘sdom’.  These return the standard 
deviation of the variable over the defined measurement interval and the standard 
deviation of the mean.   

 
FILL_DB is a utility that provide a convenient way to generate a table of plasma parameters 
from the C-Mod MDSPlus data system. It is patterned after the MINGL utilities developed 
about twenty years ago on TFTR by Dick Wieland.     
 
To construct a database table using FILL_DB, you need to construct two files:  one file 
contains a list of MDSPlus signals whose data are to be entered into the table, and  
and the other file contains a list of shots and times.   
 
 
Table of Contents 
 

 Usage Overview of how to use FILL_DB and LOCUS. 
   

 Shot list file Format of the shot-list file. 
  

 Parameter list file Format of the parameter-list file. 
 

 Special waveform names Generally, FILL_DB is designed to read data from  
 standard MDSPlus signals, e.g. \spectroscopy::prad_2pi. 

There are a handful of common straightforward but nontrivial 
calculations, such as τE, that aren’t stored directly in the 
MDSPlus tree.  FILL_DB makes available a few such 
calculations as ‘special’ waveform names. 

 
 Extraction keywords Used in the parameter list file. Extraction keywords define  

how FILL_DB should extract a value from the time window 
that is defined in the shot list file.  Typically the user wants 
the average value, but a number of other options are 
available, including time derivatives, minimum, maximum, 
etc. 

 
Page 1 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



 
 Event times ‘Event times’ serve two purposes.  When used in the shot-list  

file, they allow you to choose record data at the time of some 
specific event in the plasma such as the time of peak stored 
energy or the time that RF heating starts.  When used in the 
parameter list file, they allow you to store the time itself, e.g. 
the time of maximum stored energy, or the disruption time.  

 
 

 Optional keywords A variety of optional keywords are available for use in the  
parameter-list file.  These provide additional control over 
how the data is processed before being inserted into the 
database table.   
 

 Examples A sample session with FILL_DB. 
 
 Fields in database table Describes the structure of the tables that FILL_DB creates. 

 
 External waveforms (Advanced) If you have data that isn’t stored in the  

 MDSPLus tree, shame on you.  Nevertheless, 
 FILL_DB provides a mechanism to enter this data 
 into your table.  You merely need to write an IDL 
 procedure that fetches the data. 
 

 MSE analyzed data This section describes special procedures to read data from  
 the tree for analyzed MSE data.  
 

 EFIT pitch angles This section describes how to read the magnetic field line  
pitch angle and related quantities as computed by EFIT at a 
radius corresponding to a given MSE channel. 
 

 MFLUX pitch angles This section describes how to read the magnetic field line  
pitch angle and related quantities as computed by MFLUX at 
a radius corresponding to a given MSE channel.  
  

 Existing external waveforms This section lists the external waveforms that are 
 defined as of July 20, 2005. 
 

 Remote mds server This feature allows you to connect to a remote mds server,  
e.g. you could connect to an mds server at General Atomics. 

 
 
 

 
Page 2 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



Usage 
 

To use the FILL_DB utility, type 
 

IDL 
.run /home/sscott/locus/fill_db.pro 
fill_db 
 

You will be prompted to enter: 
 

 the name of the database; 
 the name of the database table; 
 the name of a shot-list file; 
 the name of a parameter-list file; 

 
These shot-list and parameter files are simple ascii text files that may be generated with 
your favorite text editor.  The format of the shot-list file and parameter-list file are 
described below. 
 
The table must be pre-defined for you by Josh.  As described below, you can either ask 
him to create a table with ‘generic’ names or with user-specified names.  
 
FILL_DB will then loop through the shots in your shot-list file, read the data from each 
waveform defined in your parameter-list file, and write the data into the table.   
 
Execution time:  FILL_DB takes a few seconds to process each line in your shotlist file, 
assuming that you have defined a reasonable number (~100) of waveforms in the 
parameter-list file.   

 
 

 
Page 3 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



Shot List File 
 

The shot list file is a space-delimited ascii file that defines the list of shots to 
be processed and the time (and time window) at which data is to be read for 
each shot.   
 
Each line in the shotlist file defines a shot number and a time.  If you want to 
store data for multiple time points in a shot, each time point must appear on 
a separate line.   

 
Typical lines in the shot list file: 
 
 1050403027       1.54            0.020 
 1050403028       t_disrupt     0.015   offset=-0.020 
   1050403029      t_emax        0.01   offset=-0.01   agas=4.  post_boron=6. 

 
FILL_DB will extract data for shot 027 at time = 1.54 +/- 0.020 seconds.  
For shot 28, it will determine the disruption time, then extract data over a 
time period extending from 35 ms before the disruption to 5 ms before 
the disruption.   
 
Beware!  FILL_DB reads each waveform in succession, looking for data 
points in the time interval that you define.  If it doesn’t find any data 
points within your time interval, it enters NOTHING into the database.  
Currently, FILL_DB does NOT interpolate.  So for example if you set the 
time = 1.01 with a time interval of 0.001, FILL_DB will only look for data 
from 1.009 to 1.011 seconds.  With these timing parameters, it would not 
read any of the EFIT data, which is on a time axis 1.00, 1.02, 1.04 … 
seconds.  
 
Update (11/17/2005): there is now a partial fix to this limitation.  If your 
parameter extraction keyword is ‘avg’, i.e. if you are asking that the 
average value of the waveform be recorded into the database, you can 
specify that FILL_DB take special measures if the user-specified time 
window does not include any time points in the waveform: 
 

 Interpolate:  if you choose this option (it is a prompt when you run 
FILL_DB), then the waveform will be interpolated to the midpoint 
of the user-specified time window. 

 
 Nearest:  if you choose this option, FILL_DB will take the 

waveform value from the time point closest to the midpoint of the 
user-specified time window. 

 
If you choose neither of these options, then FILL_DB will continue to put 
NOTHING into the record of waveforms which have no time points that 

 
Page 4 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



lie inside the user-specified time window.  Also, please note that this 
option currently applies only to parameters that have the keyword = 
‘avg’. 
 
T_disrupt is one of several ‘event times’ that are known to FILL_DB.  
The list of all event times supported by FILL_DB is presented below.  
 
The entries agas=4.  post_boron=6. define the values of the parameters agas 
and post_boron for this shot.  Note that you can’t define the value of an 
arbitrary waveform, i.e. you can’t override a value that is retrieved through 
mdsplus.  You can only define the value of a parameter through the shotlist if 
that parameter’s tree name is defined to be ‘user’ in the parameter list.  See 
the description under ‘parameter list file’ below.   
 
 

Alternate entry of shot numbers:  If you are content with defining a single 
time (or a single event-time) and a single averaging window that will apply to 
all shots, then you don’t need to construct a shotlist file.   
 

Instead, you define a range of run days, and FILL_DB will attempt to 
load data for all shots for all run days within the defined range.   
 
To select this option, enter ‘none’ in response to FILL_DB’s prompt for a 
shotlist filename.  You will be prompted for the necessary information. 
 
One additional feature of this option is that you can define one or more 
selection thresholds that exclude un-interesting shots from the database.  
For example, if you are building a database covering 100 run days, a 
significant number of the potential shots are uninteresting fizzles, and 
you might want to avoid cluttering your database table with such shots.  
You can define one or more waveform names and corresponding 
threshold values, e.g. you might choose to exclude shots which don’t 
reach 0.5 MA by defining \magnetics:ip as the waveform name, 0.001 as 
the scale factor, and 0.5 as the threshold.   
 
Also, you will be prompted for a list of name-value pairs.  Use this 
opportunity to define the values for any user-parameters that you defined 
in the parameter list file (i.e. those which have the tree name = ‘user’).  
For example, if you define two parameters ‘agas’ and ‘wolfe_favorite’ in 
the parameter list, you could define their values by typing 
 
       agas=4.   wolfe_favorite=3. 
 
This will cause FILL_DB to define agas=4. and wolfe_favorite=3. for ALL 
of the shots that it processes in the list.   
 

 
Page 5 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



Note that if you want to have different values for these user-defined 
parameters on a shot-by-shot basis, then you need to prepare a real 
shot-list file, i.e. you can’t use this alternate method of shot-number 
entry.   
 
 

 
Page 6 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



Parameter List File 
 

This file defines the list of waveforms whose data is to be read and stored into the 
database table.  Each waveform appears on a separate line. 
 
Examples: 
 

ip                 cmod   \magnetics::ip                  avg           f6.3   scale=-1.e-6  
prf                cmod   \rf::rf_power_net              max          f6.2   nodata=0. 
max_wtot    cmod   \analysis::efit_aeqdsk:wplasm    maxmax   f6.2  scale=0.001 
ddt_ip  cmod   \magnetics::ip   ddt           f6.2  scale=-1.e-6 
t_disr  cmod   t_disrupt    avg          f6.2    
agas              user     xxxx                                              xxxx        f6.2   nodata=2. 
 
ip column name:  this is the name by which the parameter will be known 

to LOCUS. 
 
cmod tree name: defines the MDSPLUS tree from which FILL_DB will read 

the data. 
 
user this is a special designation of the tree name.  It signifies that the 

user, rather than mdsplus, will supply a value for this parameter.   
 

The user will provide the value through the shotlist, in the format of 
name-value pairs.  For example, in the shotlist file, the user could 
append the line for shot 105061000 with the string:   ‘agas=4.’  to 
indicate that helium was used for that shot.    

 
 Note that if the tree name = ‘user’, then the name of waveform and 

the extraction keyword are superfluous.  So you should just put some 
nonsense entry such as ‘xxxx’ for the waveform name and extraction 
keyword, as shown in the example above.  

 
\magnetics::ip defines the full path name of the waveform 
 
t_disrupt FILL_DB also defines a number of specific ‘event times’ whose value 

can be written into the database table.  The complete list of event 
times is presented below.  

 
avg `extraction keyword’:  this defines how FILL_DB is to extract a value 

from the time window that is defined in the shot list file.  Typically the 
user wants the average value, but a number of other options are 
available, including time derivatives etc.  The complete list of 
extraction keywords is presented below. 

 

 
Page 7 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



f6.3 At present, this field is mandatory but is ignored by FILL_DB.  
Eventually, it will be used to (a) define whether the parameter is an 
integer or a real number; and (b) the format for printing out the 
parameter when the user asks for tabular rather than graphical output 
in LOCUS.   

 
Scale=-1.e-6 scale is an optional keyword that defines a multiplicative factor to be 

applied to the data before storage into the database table.   
 
nodata=20. nodata is an optional keyword that defines the value that will be 

stored for that parameter in the event that FILL_DB has problems 
reading the waveform. 

 
 By default, if FILL_DB has some difficulty reading a parameter, it 

stores a very big number (1.5e37) into the database table for that 
parameter.  LOCUS basically ignores all numbers greater than 1.e37.  
For example, if FILL_DB couldn’t find a waveform for the RF power 
for a given shot, it would store the RF power = 1.5e37, and then 
records which have RF power greater than 1.e37 would be ignored 
by LOCUS. Specifically, 

 
 If you ask to plot the RF power, shots with RF power greater 

than 1.e37 would not be plotted. 
 

 If you use the RF power as a constraint, then any shot with RF 
power in excess of 1.e37 would be excluded from the search. 

 
This latter behavior is not necessarily appropriate for all situations.  
For example, in LOCUS suppose you want to look only at Ohmic 
shots.  If your parameter list stored the RF power under the name 
PRF, you might define “PRF<0.01” as a constraint.  But possibly 
some shots didn’t have any RF power and didn’t have any RF 
waveforms either. These shots would get excluded from your search. 
 
There are two ways to deal with this problem.  You could define a 
constraint “(PRF<0.01)or(PRF>1.e37)” – this would work, but is a 
little klugy.  Instead, in your parameter list you could define 
NODATA=0. in which case shots without RF waveforms will have 0. 
stored as the RF power.  Then your simple constraint “PRF<0.01” will 
work fine.   

   
 

 
Page 8 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



Special Waveform Names  (added May 2005) 
 

The following waveforms are derived from a dwscope: 
 
   /home/Marmar/scopes/g_confinement_plasma_w_dwdt_tauiter89.dat 
 
Note that the confinement time includes dW/dt effects, and I each of the following 
waveforms assumes that 80% of the RF power is absorbed. 
 
zz_taue   energy confinement time, sec 
zz_taue89  tauE predicted from the Lmode89 regression 
zz_taue98  tauE predicted from the Hmode98 regression 
zz_taue89_ratio  ratio of tauE to the taue89 regression 
zz_taue98_ratio  ratio of tauE to the taue98 regression 
zz_poh   Ohmic heating power 
zz_ptotal   total heating power 
zz_pthreshold_ratio ratio of heating power to the H-mode threshold power 
zz_betan   normalized beta, from /home/granetz/scopes/scope_efit_new.dat 
hmode   =1 if algorithm thinks the plasma is in H-mode, and 0 otherwise.   
    The algorithm is based on the ratio of two edge SXR channels; if  

the ratio exceeds the value set by the optional keyword  
threshold, then the plasma is defined to be in H-mode.  If the 
optional keyword ‘threshold’ is not set by the user, then a 
threshold value of 1.00 is used by the algorithm.   
 
Note: as of 6/15/2005, the algorithm to identify periods of H-mode 
is good but not great.   
 

For the following four special waveforms, please consider using the optional keywords 
threshold and min_hmode_duration.  The algorithm will ignore any H-mode it locates 
whose duration does not exceed min_hmode_duration; if this parameter is not set, then 
the algorithm imposes a minimum of 40 ms.   
 
hmode_1_duration duration, in seconds, of first hmode. 
hmode_2_duration duration, in seconds, of second hmode 
hmode_3_duration duration, in seconds, of third hmode 
hmode_4_duration duration, in seconds, of 4th hmode 

 
Other special waveform names 
 

shot_day  this will store the value of shot – 1000*(shot-1000), which effectively  
stores the shot number relative to the beginning of the day, e.g. it would 
store a value of 6 for 1050704006 
 

     shot_counter 
 

 
Page 9 of 29                                                                            http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 



 
Page 10 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

External waveforms 
 

Note:  as of July 8, 2005, this capability is untested. 
 
Despite Martin Greenwald’s finest efforts, not all C-Mod data is stored in the MDS-Plus 
tree.  Fill_DB provides a capability to interface with an IDL procedure that YOU write to 
fetch data into the database table. 
 
The main limitation of this capability is that your home-grown IDL procedure must strictly 
follow the list of input/output parameters described below.   

  
pro my_procedure, ishot,  tstart,  tend, value_type, ext_value_1, ext_value_2, value, status 

  
  
    inputs 
  
       ishot              shot number (long integer) 
       tstart              starting time of the averaging interval (sec) 
       tend               ending time of the averaging interval (sec) 
  
       value_type     this is a character string, which you will probably just ignore.   

It has values such as ‘avg’, ‘min’, ‘max’, ‘ddt’, etc which for standard signals 
allow the user to ask that the code return the average value of the signal over 
the [tstart,tend] time window, or the minimum value, or the maximum value, 
etc.  You may or may not want to provide similar support via your procedure.   

  
      ext_value_1     this is an arbitrary input parameter (float) is specified by the optional 

parameter ‘ext_value_1’ in the parameter table.  See below for an example.  
You might use this to define a channel number, for example.   

  
      ext_value_2    another arbitrary input parameter.  
  
   outputs 
  
      value          the value of whatever it is you want stored in the database table 
      status         0 for success, 1 for any problem  (status is an integer).   
  
Your procedure must include all of these parameters, even if you don’t use them internally.  So 
you may either need to rewrite your existing procedure so that it has these parameters, or, more 
likely, write an interface procedure that has the list of parameters that I want to see, and then 
internally it can make a call to your existing procedure with the parameter list that it wants to see. 
  
In your ‘parameter list’ file, you would then have lines like 
  
     prad          cmod         \spectroscopy::twopi_foil                       avg       f6.2   scale=1.e-6 
     prad_3      cmod         \spectroscopy::prad_2pi                        avg       f6.2  
     my_val_1    external     my_procedure_name_1                       avg       f6.2     ext_value_1=35.   



 
Page 11 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

     my_val_2    external     my_procedure_name_2                       avg       f6.2     ext_value_1=35.  ext_value_2=4.73 
     my_val_3    external     my_procedure_name_3                       avg       f6.2    scale=1.e-3 
  
where the first two lines are standard reads from the cmod tree, and the last three lines use the 
tree name ‘external’ to tell fill_db that it should make calls to the procedures 
‘my_procedure_name_1’ or ‘my_procedure_name_2’ to fetch the data.   
  

 My_procedure_name_1.pro actually makes use of the input parameter ext_value_1, so 
you have provided a value for it in the parameter table.   

 
 My_procedure_name_2.pro uses both optional parameters, so you need to provide two 

values in the parameter table.   
 

 My_procedure_name_3.pro doesn’t use any of the optional parameters.   
  
Note the use of the optional scale factor in the last line … after you fill_db fetches a value from 
say my_procedure_name_1, I would multiply it by 1000. before putting it into the database 
table.   
  

  



 
Page 12 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

Existing external waveforms 
 
 

Name      Returns  ext_value_1 ext_value_2 
 
/home/sscott/locus/get_br.pro  radial field    rmajor (m)     z (m) 
/home/sscott/locus/get_bz.pro  vertical field    rmajor (m)     z (m) 
/home/sscott/locus/get_bt.pro  toroidal field    rmajor (m)     z (m) 
 
 
These routines are simply shells around /home/wolfe/vms-idl/idl/cmod/big_fields.pro.  
They are designed to return the radial and vertical fields well outside the plasma.  If you 
specify a location close to the plasma, e.g. rmajor=1.1, z=0., you will get lots of warning 
messages reminding you that you should use a different routine. 
 
If rmajor < 1.15 meters, the procedure for toroidal field (get_bt.pro) simply returns 
0.66*(\magnetics::btor)/rmajor, i.e. if the user-specified position lies inside the major 
radius of the outer leg of the TF coil. If rmajor is greater than 1.15 m, it applies a crude TF 
ripple model.  This model assumes that the location is exactly mid-way between two TF 
coils.   

 
 



 
Page 13 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

Extraction keywords 
 

avg average value during the time window 
max maximum value during time window 
min minimum value during time window 
first value at start of time window 
last value at end of time window 
after average value over a time period 5-15 ms after end of time window 
before average value over a time period 5-15 ms before start of time window 
max_delta difference between maximum value and minimum value during time 

window 
max_ratio ratio of maximum value to minimum value during time window 
delta difference between value at end and start of time window 
ratio ratio of parameter value at end of time window to value at start of time 

window 
ddt we define the time derivative entirely by the values at the start and end 

of the time window, i.e. ddt = (ylast-ystart)/(time_last-time-time_start)  
deriv use the built-in IDL procedure “derive” to compute the time derivative.  

Note that you may want to smooth the data with the keyword 
“dt_smooth” in conjunction with this routine.   

scalar This extraction keyword informs FILL_DB that the waveform in question 
is a scalar, i.e. it has no time dependence.   

stddev standard deviation of the data during the time window.  If there is only a 
single data point in the time window, the value of zero is returned. 

sdom standard deviation of the mean of the data during the time window, 
which is just the standard deviation divided by sqrt(nn-1) where nn is 
the number of measurements.  If there is only a single measurement in 
the time window, a value of zero is returned. 

     
The following extraction keywords will cause FILL_DB to search the waveform throughout 

the entire shot rather than just at the time window specified in the shot list.  
 
time_at_max time at which parameter reaches a maximum throughout the entire shot 
minmin minimum value throughout the entire shot 
maxmax   maximum value throughout the entire shot 
maxmax_ddt maximum value of time derivative throughout entire shot 
minmin_ddt minimum value of time derivative throughout entire shot 
max_sustained  maximum value that is sustained continuously for a defined period. The 

period is defined by the optional keyword ‘threshold’.  For example, if 
threshold = 0.050, then this would return e.g. the maximum RF power 
that is sustained for a period of at least 50 msec.    

  
 Warning:  using this keyword is considerably more cpu-intensive than 

other keywords. 
 



 
Page 14 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

t_start earliest time throughout the entire shot at which the waveform exceeds a 
threshold value.  This threshold value is specified with the keyword 
“threshold”, e.g.   For example, the following line in the parameter list file 

 
                         tstart_ip   cmod   \magnetics::ip    t_start    f6.3   scale=-1.e-6     threshold = 0.02 

 
will store the time at which the plasma current first exceeds 0.02 MA into 
the column name ‘tstart_ip’.   Note that the order of the two keywords 
“scale” and “threshold” at the end of the line can be in any order.  
 
Note:  ‘t_start’ and ‘tend’ allow the user to define on and off times for any 
waveform. But this new functionality is limited to storing values of the 
corresponding on/off times – it does not provide the capability to define 
new ‘event times’ at which FILL_DB can be asked to extract other 
waveforms.   
 
For example, you could define a column ‘tstart_nl4’ with reference to the 
waveform for TCI channel 4 with threshold value, say, 1.2e20.  This would 
populate a column that stores the time at which the two-color 
interferometer reports the NeL first rises above 1.2e20.  But at present 
there is no way you can ask FILL_DB to extract data for all of the other 
waveforms at this time.   
 

t_end latest time throughout the entire shot at which the waveform exceeds a 
threshold value.  This threshold value is specified with the keyword 
“threshold”.  See t_start above for details.   

 
integrate_from_t0   integrates the value of the waveform over time, from t=0 to the 

time of interest as specified in the shotlist file. For example, this 
might be useful if want the total number of joules injected by the 
RF system at the time of interest.   

 
integrate_from_start   integrates the value of the waveform over time, starting from 

whenever the waveform starts (which may or may not be at t=0.)  
to the time of interest as specified in the shotlist file.  For example, 
this might be useful if you wanted to know the total amount of gas 
injected prior to the time of interest.  

 
rfstart_ddt This allows you to take time derivatives starting at the time that 

RF heating starts.  The best way to illustrate its use is with an 
example.  The following entry in the parameter file would create a 
variable rfddt_200_prad, which stores the time derivative of the 
radiated power in the first 200 ms of RF heating.   

 
 



 
Page 15 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

rfddt_200_prad     cmod   \spectroscopy::twopi_foil                              
rfstart_ddt      f6.2   scale=1.e-6   event_time_or=t_rfon  
time_offset_or=0.2 

 
    Note that, although the keyword is called “rfstart_ddt”, you actually  

define  the event using the event_time_or=t_rfon.  So for example, 
if you had selected event_time=t_rfoff in the example above, then 
Fill_db would fill the variable with the time derivative of the 
radiated power in the first 200 ms after the end of RF heating.    
 
The actual computation of the time derivative is the same as the 
“ddt” extraction keyword. 
 

rstart_deriv  works exactly the same as rfstart_ddt, except that the algorithm to  
compute the derivative is taken from the “derive” keyword.   



 
Page 16 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

Event times 
  

`Event times’ have two distinct purposes.   
 
 
First, in the shot-list file, an event time (e.g.t_disrupt) can be substituted in place of a fixed 
time (e.g. 1.54 sec).  If an event-time is defined for a given shot in the shot list file, then 
FILL_DB will retrieve and store plasma parameters at the time at which the chosen event 
occurs.  If the event does not occur, for example if the user chooses `t_disrupt’ in the shot 
list file but there is no disruption in a given shot, then no data is stored for that shot.  
 

1040509026        t_disrupt       0.02      offset=-0.030 
 
In this example, FILL_DB would find the disruption time for shot 026, and then 
extract and store plasma data from a time window 50-10 ms before the disruption, 
i.e. at a time 30 ms before the disruption with an averaging window +/-20 ms.   

 
A lot of the power and convenience of FILL_DB derives from its ability to extract and store 
data at these ‘event times’.  The user is spared the drudgery of looking over shots 
manually to identify appropriate times to extract the data.   
 
 
Second, in the parameter file, an event time can be substituted for a waveform name.  For 
example, the line below would cause FILL_DB to fetch the disruption time for each shot 
and store it under the column name ‘t_disr’.   
 

t_disr      cmod  t_disrupt       avg  f6.3 
 

Note that when an event-time is defined in this way, FILL_DB ignores the extraction 
keyword ‘avg’ – it would make no difference if the extraction keyword had been ‘max’ 
or ‘min’. 

 
 
 The following event times are currently supported 
 

t_ipflat_start start of  `flattop’ on Ip.  This is the earliest time that the plasma 
current reaches 97% of its maximum value + 20 ms.  To be 
considered a flattop,  the duration over which Ip remains within 
3% of its maximum value must exceed 200 ms.   

 
t_ipflat_end end of flattop on Ip:  latest time at which Ip remains above 97% of 

its maximum value, minus 20 ms.   
 
t_btflat_start start of Bt flattop: earliest time at which Bt remains above 98% of 

its maximum value, plus 50ms.  
 



 
Page 17 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

t_btflat_end end of Bt flattop: latest time at which Bt remains above 98% of its 
maximum value, minus 70 ms.  

 
t_disrupt earliest time at which d(ip)/dt exceeds 100 MA /second 
 
t_emax time at which energy content in plasma is maximum (as measured 

by \analysis::efit_aeqdsk:wplasm’ 
 
t_rfon   earliest time at which RF power exceeds 0.05 MW 
t_rfoff   latest time at which RF power exceeds 0.05 MW 
t_ohmic if there is some auxiliary power in the plasma, this time will be 

defined as occurring shortly (30ms) before the start of the auxiliary 
power.  If there is no auxiliary power, it will be defined as being 
shortly before the end of the earlier of the Ip flattop or the BT 
flattop.  We’ll have to deal with the case of no flattops separately.  

 
t_dnbon  starting time of DNB 
t_dnboff  ending time of DNB 
 
t_wrf   time at which the total number of megajoules injected by the RF  

system exceeds a threshold value.  The threshold value must be 
defined by the optional keyword wrf_threshold.  If you ask for the 
event time t_wrf but fail to define the threshold value 
wrf_threshold, FILL_DB will issue an error and will stop.  

 
Note:  the following three event-times are untested as of 6/15/2005.  There is a good 
chance that they will have some problems with spurious data, i.e. the various values of 
beta may reach a maximum at very early or late in the discharge when the magnetic 
field is very small.   
 
t_betat_max  time of maximum toroidal beta  
t_betap_max time of maximum poloidal beta 
t_betan_max time of maximum normalized toroidal beta 
 
Note:  for the following event times related to the start and end of the H-modes, you 
should define the optional keyword min_hmode_duration.  If you set 
min_hmode_duration=0.060 for example, the code will ignore all H-modes which do 
not persist for at least 60 ms.  If you do not set this parameter, the code defaults to a 
minimum H-mode duration of 40 ms.  
 
Also, you might want to define the value of optional keyword threshold when working 
with the event times that are tied to the H-mode timing. In the algorithm that looks for 
H-modes, threshold controls the ratio of the two edge soft x-ray channels that must be 
exceeded for the algorithm to regard the plasma as being in an H-mode state.  If you 
do not specify a value for threshold, the code uses a value of unity.   
 



 
Page 18 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

 
t_hmode1_start start time of the first H-mode 
t_hmode2_start start time of the second H-mode 
t_hmode3_start start time of the third H-mode 
t_hmode4_start start time of the fourth H-mode 
 
t_hmode1_end end time of the first H-mode 
t_hmode2_end end time of the second H-mode 
t_hmode3_end end time of the third H-mode 
t_hmode4_end end time of the fourth H-mode 

 
The following event times are also tied to the Hmode times, but in this case, the 
start/end times of the Hmodes are not determined by an algorithm.  Instead, a user 
has manually created an ascii file user_hmode_times.txt that lists the Hmode times for 
each shot.   
 

t_hmode1_manual_start start time of the first H-mode 
t_hmode2_manual_start start time of the second H-mode 
t_hmode3_manual_start start time of the third H-mode 
t_hmode4_manual_start start time of the fourth H-mode 
 
t_hmode1_manual_end end time of the first H-mode 
t_hmode2_manual_end end time of the second H-mode 
t_hmode3_manual_end end time of the third H-mode 
t_hmode4_manual_end end time of the fourth H-mode 

 
 As of August 23, this capability has not been implemented.   
 
The following event times may be supported in the future 

 
t_lhon   starting time of LH power  
   
t_lhoff   ending time of LH power 
 
t_nmax  time of maximum neutron emission 
 
 
t_pauxon  minimum of t_rfon and t_lhon 
 
t_pauxoff  maximum of t_rfoff and t_lhoff 
 
 



 
Page 19 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

Fields in the Database Table 
 

By default, FILL_DB always tries to write the following field names into the database table: 
 

shot  shot number (IDL long) 
dbkey  unique integer that identifies each record 
times  time in seconds (float) 
timems time in milliseconds (IDL integer) 
timeus  time in microseconds (IDL long) 
 
The integer fields timems and timeus are provided as a convenient means to constrain 
data searches.   
 
The remainder of the fields that FILL_DB tries to write will be defined in one of two 
ways.   
 
In the ‘generic’ mode of operation, FILL_DB stores all of the variables under the 
generic names xx0, xx1, xx2, …  
 
         FILL_DB         actual database 
      And LOCUS        table 
 
 shot        shot 
 dbkey        dbkey 
 times        times 
 timems       timems 
 timeus        timeus 
 ip        xx0 
 bt        xx1 
 t_disr        xx2 
 wtot        xx3 
 … 
 

This mode of operation is appropriate if you intend to use the IDL procedure 
LOCUS to plot the data.  LOCUS will prompt you for the name of the parameter list 
that created the table, so it will know the association between the convenient 
names (ip, bt, …) and the generic names (xx0, xx1, …) 
 
In LOCUS, you will always refer to the parameters only by their convenient names, 
and the fact that the parameters are stored under a different set of names in the 
actual database table will be invisible to you. 
 
The advantage of this mode of operation is that you might ask Josh to create, say, 
five generic database tables.  Each table will have the same column names, so 
Josh’s work is minimized.  But then you can control what actually goes into the 
table with FILL_DB.  You could populate the table with a parameter list 



 
Page 20 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

params_001.txt, but then erase the table and re-populate it with a different 
parameter list params_002.txt tomorrow.  From your perspective you have 
changed the list of columns in the table, but from Josh’s perspective you haven’t – 
the column names actually stored in the database remain xx0, xx1, …  so you don’t 
have to ask Josh to create a new table each time you want to add or remove a 
column from your table.   
 
The disadvantage of this mode of operation is that the column names in the table 
really are xx0, xx1, …  so unless you the IDL procedure LOCUS to plot the data, 
the column names aren’t going to be very informative.  
 
`Personal’ field names 
 
Note:  the capability to generate database tables using ‘personal’ field names, as 
described below, was removed on November 18, 2005, due to lack of use.  If you 
want this capability restored, please contact Steve Scott. 
 
If your intention is to use a utility other than LOCUS to process or plot your 
database table, you should instead store the columns under your ‘personal’ names 
as described below 
 

In the personal mode of operation, FILL_DB will attempt to write columns exactly as 
you personally define them in the parameter list file.  In the example above, the 
columns would be 

 
shot         

 dbkey         
 times         
 timems        
 timeus         
 ip        
 bt         
 t_disr         
 wtot 
 

If you select this option, then the actual column names used by the database table 
would be ‘shot, ip, …” and so the names would be meaningful even if you were to 
use a utility other than LOCUS to plot the data. 
 

The disadvantage of this mode is that Josh needs to define the column names exactly 
as you intend to use them when he creates the table.  If you want to add a new column 
name to the table, you need to ask Josh to alter the table definition.   
 



 
Page 21 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

Optional Keywords 
 

scale multiply the signal by this factor 
  
nodata store this value if data is missing 
  
dt_smooth smooth data over this time period prior to storing or processing it. 
 
 Note:  this capability was added to improve the performance of the 
 Maximum_sustained extraction keyword for the RF power.  There  
 is considerable noise on the RF signal, so it is useful to smooth it 
 by a millisecond or two prior to computing the maximum sustained 
 value. 
 
threshold used by several extraction keywords, e.g t_start, max_sustained. 
 
xdevice defines the signal to be used for the time axis, for those cases  
 where the time axis can’t be obtained through the usual dim_of( ). 
 
back_average Extends the averaging interval backwards in time.  For example, 
 suppose the event time is t_emax = 1.22 sec, the offset is -0.02  

sec, and the averaging interval is 0.01 sec.  The actual averaging 
time would then be 1.19 – 1.21 sec. 
 
But if the user also defined back_average = 0.030, then the 
averaging time would be 1.16 – 1.21 sec. 
 
This is most useful if you want to record variables which might have 
an extended effect on the instantaneous plasma performance, such 
as the RF power or the radiated power.   
 

min_hmode_duration  This optional keyword is applicable only when you ask for an  
event time that is tied to the timing of H-modes in the shot, e.g. 
t_hmode2_end.  This keyword defines the minimum duration of an 
H-mode.  If you set this parameter to say 0.080, then the algorithm 
will ignore all H-modes whose duration is less than 80 milliseconds.   
 

The following four optional keywords can be used to override the time at which data is 
extracted from waveforms. Usually, the time at which data is extracted is controlled 
through the shot list file, or (if the same time-of-interest is desired for a long series of 
shots) through a direct prompt by Fill_DB.  For example, one might construct a 
database table containing data at 1.0 seconds, or at the time of peak stored energy. 
 
But suppose you want to correlate plasma behavior at different times in the discharge.  
For example, suppose you want to correlate the energy confinement time at time of 
peak stored energy with the impurity content in the Ohmic phase of the discharge.  To 



 
Page 22 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

do this, you need to be able to allow each record in the database table to contain data 
from different times in the discharge.  This can be done by using the following time-
override optional keywords in the parameter file: 
 
event_time_or re-defines the time at which data is extracted to be a given 

event_time.  For example, event_time_or=t_ohmic would 
cause data to be extracted at the Ohmic time. 

 
dt_or re-defines the time window over which data is extracted.  

Remember that the window is extended both forward and 
backward by this duration, i.e. dt_or=0.030 would create a 
60 ms time window, not a 30ms time window. 

 
time_offset_or  re-defines the offset time from the event_time_or.  For  

example, choosing event_time_or=t_rf_on and 
time_offset_or=0.2 would cause the new time-of-interest to 
be 200 ms after the start of RF heating.   

 
time_or re-defines the time at which data is extracted.  For 

example, time_or=1.2 seconds would cause the data to be 
extracted at 1.2 seconds for this variable.   

 
Note:  you can define a value for either event_time_or or  time_or, but not both.  It  

wouldn’t make sense to ask that data be extracted at say 1.2 seconds and 
simulataneously ask that it be extracted at the time of peak stored energy.  



 
Page 23 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

 
Examples 
 
 
The following session with FILL_DB shows its usage to record data into a table named sds4 
using a list of parameters from /home/sscott/locus/parameters_10.txt  from all shots taken 
between July 1, 2005 and July 18, 2005.  Only one time point is recorded per shot, covering a 
period 20ms before the time of peak stored energy to 0ms before the time of peak stored 
energy.   
 
Note in this example that no shot-list file is used.  The user asks that all shots from a given 
range of rundays be included in the table.   
 
Near the end of this session, the user asks that one condition be checked before data from a 
given time point is inserted into the database:  the plasma current must be greater than 0.5 
MA.  This basically prevents fizzles from being recorded into the table.  

 
This session was started from /home/sscott/locus.  User input is highlighted in blue.  
 
IDL 
IDL>  .run fill_db.pro 
IDL>  fill_db 
Enter database name:                                          [logbook]:     <cr> 
Enter table name:                                                      [sds1]:     sds4 
Enter initial value of shot counter                         [           0]:     <cr> 
Enter 1 to print detailed output:                            [           0]:     <cr> 
Enter name of shotlist file (or “none”):       [shotlist_001.txt]:    none 
 
     OK, you may now specify a range of rundays and a range of shots for each runday 
 
     Enter the starting rundate:                                                    [1020924]:  1050701 
     Enter the ending rundate:                                                     [1050701]:  1050718 
     Shall I wait for incoming shots (1=yes)                                 [            0]:  <cr> 
     Shall I look for multiple times throughout the shot (1=yes)   [            0]:  <cr> 
     Shall I look for multiple times near end of shot (1=yes)        [            0]:  <cr>  
     Shall I look for multiple times near start of shot (1=yes)       [            0]:  <cr> 
     List of space-delimited variable=value                                  [     blank]:  <cr> 
     Minimum shot number to examine on each day:                  [             1]: <cr> 
     Maximum shot number to examine on each day:                 [           50]: <cr> 
 
     Names of available event-times:  
 
         t_ipflat_start       t_ipflat_end        t_btflat_start          t_btflat_end          t_disrupt 
         t_emax               t_betap_max      t_betat_max          t_betan_max             t_rfon 
         t_rfoff                 t_dnbon              t_dnboff                 t_ipstart                   t_ipend 
         t_jog1                t_ohmic               t_hmode1_start     t_hmode1_end      …    



 
Page 24 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

 
     Enter an event time name or a fixed time (e.g. 1.57)          [t_emax]:     t_emax  
     Enter an offset time relative to this event                          [-0.01000]:     -0.010 
     Enter delta-t for time window (+/-)                                      [0.01000]:    0.01 
 
Enter name of parameter file file:                            [parameters_1.txt]:    parameters_10.txt 
Enter filename of log file:                                          [db_populate.log]:   <cr> 
Enter 1 to store data under personal field names                  [           0]:   <cr> 
 
You may now define minimum conditions for a shot to be entered into the database table 
 
     Select a condition (-1 to terminate entry)                      [            -1]:  1 
     Enter minimum threshold value:                                    [     0.300]:   0.5 
 
     Select a condition (-1 to terminate entry)                      [            -1]   <cr> 
 
Note:  the desired time window was the 20ms interval preceding the time of peak stored 
energy.  To get this, the user asked for the event-time = t_emax, then asked for a time offset 
of -10 ms relative to this event, then asked for a time window of 10ms on either side of the 
shifted time  
 



 
Page 25 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

Analyzed MSE data 
 
Analyzed MSE data needs special treatment for two reasons.  First, a total of nine different 
analyses (corresponding to different choices of analysis parameters) can be stored for each 
shot.  So the user must specify which analysis ‘try’ should be read into the database table.  
Second, MSE data is available for ten spatial channels, so the user must also specify which 
channel is to be read. 
 
 
Example:  reading MSE time-dependent analysis data 
 

a44_sub_ch10   mse  beam:A44_sub           avg f6.3       try=4 channel=9 
 
Note that the tree=mse is what tells FILL_DB to treat this as analyzed MSE data. The 
optional keywords ‘try’ and ‘channel’ then specify the analysis try number and the 
channel number.  The actual waveform that would be read in this example is 
\dnb::top.mse_pppl.analysis2.fft4.beam:a44_sub. 
 
 

Example:  reading MSE scalars (no time dependence) 
 
A40_avg   mse  beam:a40_sub_avg      scalar   f6.3  try=2  channel=7 
 
Here, the ‘scalar’ extraction keyword directs FILL_DB to read the waveform as a set of 
scalars and to extract the data from the appropriate channel.    



 
Page 26 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

 
EFIT pitch angles          (New capability added March 2006)) 
 
You can read in the magnetic field pitch angle as computed by EFIT for the plasma radius 
corresponding to a given MSE channel location.  The tree name is ‘efit’ and the allowable 
device names are listed below.  
 
The radii corresponding to a given MSE channel are hard-wired into the source code of 
FILL_DB.PRO.  
 
   Examples: 
 
   efit_pitch_1  efit efit_pitch   avg f6.3     channel=1 
   efit_ratio_2  efit    efit_ratio    avg  f6.3   channel=2 
   efit_bz_4    efit   efit_bz    avg   f6.3   channel=4 
   efit_bt_2    efit   efit_bt  avg f6.3 channel=2 
   efit_br_7  efit efit_br  avg f6.3 channel=7 
 
   Here, ‘efit_pitch’ is the pitch angle in degrees and ‘efit_ratio’ is bz/bt 
 
A sample parameter file that includes some EFIT pitch-angle variables is 
/home/sscott/locus/mse_efit.parameters. 
 
 
 
MFLUX pitch angles          (New capability added March 2006)) 
 
You can read in the magnetic field pitch angle as computed by MFLUX for the plasma radius 
corresponding to a given MSE channel location.  The tree name is ‘mflux’ and the allowable 
device names are listed below.  
 
The radii corresponding to a given MSE channel are hard-wired into the source code of 
FILL_DB.PRO.  
 
Important note:  unlike the EFIT capability, the current support for MFLUX data allows only a 
single time-slice to be processed.  That is, the MFLUX data which is stored in the DNB tree 
was computed for a single time point only.  FILL_DB returns the MFLUX data from this 
time slice, irrespective of what time the user defined in the shotlist file.  So it is the 
user’s responsibility to make sure that the time of the MFLUX analysis is the same as the 
time of other parameters in the database table.  Also note that MFLUX must be run manually 
– it is not generated automatically on every beam-into-gas shot. 
 
For data taken before March 21, 2006, this typically isn’t a problem, since Howard typically 
ran MFLUX at the time that the DNB fired.  Once the DNB starts taking long pulses, we will 
have to upgrade this system to extract data from time-series MFLUX data.  
 



 
Page 27 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

   Examples: 
 
   mflux_pitch_1 mflux mflux_pitch    avg f6.3     channel=1 
   mflux_pitchtan_6 mflux mflux_pitchtan   avg f6.3 cahnnel=6 
   efit_ratio_2  mflux   mflux_ratio     avg  f6.3   channel=2 
   mflux_bz_4   mflux  mflux_bz     avg   f6.3   channel=4 
   mflux_bt_2   mflux   mflux_bt  avg f6.3 channel=2 
   mflux_br_7  efit mflux_br  avg f6.3 channel=7 
 
Here, ‘mflux_pitch’ is the pitch angle in degrees and ‘mflux_pitch_map’ is the pitch angle 
mapped into the MSE coordinate frame of reference.  I forget what mflux_pitchtan represents. 
 
A sample parameter file that includes some MFLUX pitch-angle variables is 
/home/sscott/locus/mse_efit.parameters. 
 
 
 
 
 
 



 
Page 28 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

 



 
Page 29 of 29                                                                             
http://www.psfc.mit.edu/~sscott/LOCUS/filldb_users_guide.doc 

Remote mdsserver (new feature added October 14, 2005) 
 

The first question that FILL_DB now asks you is whether you want to connect to 
a remote mdsserver.  If you are working at the PSFC and if you want to access 
Alcator data, the answer is NO (which you indicate by entering a 0 or a <cr>).   
 
Enter a ‘1’ in response to this prompt if you want to connect to a remote 
mdsserver, i.e. if you want to access data from GA, PPPL, JET, etc. 
 
You will then be prompted for the name of the remote mdsserver.  The following 
is a list of mdsserver names: 
 

atlas.gat.com 
alcdata.psfc.mit.edu 
 

Again, if you already at the PSFC, you do NOT need to ask for a connection to 
a remote server.  You would need to do this only if you were at a computer at 
say PPPL and you wanted to access Alcator data. 

 
 

 


