Guide to Using Records with CAMAC

P. Sichta (PPPL)

Rev. 0 17JUN99
Rev. 1 13JAN00

Introduction

This document provides insight about using records with the device type (DTYP) selected to 'Camac'. Note there is a separate Generic CAMAC record, see reference 1.

Also, there is a section to describe how to get a IOC report of all PV that are connected to CAMAC.
References

1. -----------

2. EPICS Generic CAMAC Record Document, hyperlink : http://cars.uchicago.edu/software/recCamac.html
3. Comments in source code (LANL/Eric Bjorklund)

Record Definition for a Record with DTYP=Camac

* Generic CAMAC device support for EPICS. Record types supported are:

 * o Analog input and output (ai, ao)

 * o Binary input and output (bi, bo)

 * o Longword input and output (longin, longout)

· * o Multi-bit binary input and output (mbbi, mbbo)

· o Waveform (wf)

For each of these record types the DTYP field must be set to Camac. When Camac is selected, the INP field shows “#B0 C0 N0 A0 F0 @”. Use the following guidelines, all values are entered in decimal :

· B
This is the CAMAC 'branch'. Valid values are 0 - 7. For NSTX, use a value of '1' for the EPICS_1 CAMAC link.

· C
This is the CAMAC 'crate'. Valid values are 1 - 62.

· N
This is the CAMAC 'slot'. Valid values are 1 - 23, and 30 for the L-2 Serial Crate Controller in slots 24/25.

· A
This is the CAMAC 'slot'. Valid values are 0 - 7.

· F
This is the CAMAC 'slot'. Valid values are 0 - 31.

· @ The "@" symbol is the hardware-word mask parameter. Its application to different record types is shown below:

/*

 *********** start of @ parameter definitions ****************************

 *

 *

 *

 * MODULE DESCRIPTION:

 *

 * Generic CAMAC device support for EPICS. Record types supported are:

 * o Analog input and output (ai, ao)

 * o Binary input and output (bi, bo)

 * o Longword input and output (longin, longout)

 * o Multi-bit binary input and output (mbbi, mbbo)

 * o Waveform (wf)

 *

 * The generic CAMAC device support routines can be used for cards that

 * only require a single BCNAF sequence to read or command (but see allowances

 * for bo and mbbo records below) and that do not require LAMs or any special

 * conversion.

 *

 * The routines in this module are all globally accessible so that they may

 * be invoked if desired by device-support routines for more specialized

 * CAMAC cards. See the header file, devCamac.h, for further information.

 *

 *--

 * RECORD FIELDS OF INTEREST:

 *

 * The following fields should be set during database configuration:

 * DTYP = Camac

 * INP/OUT = B -> Branch number of card

 * C -> Crate number of card

 * N -> Slot number of card

 * A -> Subaddress to access

 * F -> CAMAC Function code

 * PARM -> Other information, e.g. range values, bit number,

 * readback function code, etc.

 *

 * The contents and format of the PARM field depend on the record type as

 * follows:

 *

 *---------------------

 * Analog and Longword Input (AI, LI) --

 *

 * F = Function code to read raw value

 *

 *

 * PARM = Expected range of input value.

 * For unipolar devices, the PARM field is a single number representing

 * how many bits of precision are contained in the incomming word. This

 * number may be in either decimal or hexidecimal notation. For example,

 * the PARM field for a 12-bit unipolar card may be specified as either

 * "4095" or "0xfff". A 16-bit value may be either "0xffff" or "65535".

 *

 * For bipolar devices, the PARM field has two values representing the

 * positive and negative limits of the input value. Alternatively, one

 * of the PARM values may be the word "Bipolar", indicating that the

 * second range parameter is the negative of the first. Twos-compliment

 * format is assumed for bipolar devices.

 *

 * The PARM values may be separated by a commas, colons, semi-colons, or

 * white space. Values may be specified in any order. The following

 * examples are all valid ways to specify a 12-bit bipolar input:

 * -2048,2047

 * 0x7ff -0x7ff

 * 2047:bipolar

 * Bipolar,-2048

 *

 *---------------------

 * Analog and Longword Output (AO, LO) --

 *

 * F = Function code to write raw value

 *

 * PARM = Expected range of output value, plus (optional) readback function

 * code. The range parameters are the same as for analog or longword

 * input records. If the card has a readback function code (and the

 * readback uses the same subaddress as the write), it should be specified

 * in the PARM field as "Rn", where "n" is the readback function code.

 *

 * Specifying a readback function code will enable the device-support

 * software to read the current state of the hardware at record

 * initialization time and store it in the RVAL field (VAL field for

 * longword records). This aids in performing "bumpless" reboots of the

 * IOC. In addition, for AO records, the readback is issued after every

 * write and stored in the RBV field.

 *

 * Following are examples of valid PARM fields for AO and LO records:

 * 0xffffff:R0 (24-bit, unipolar, readback is F0)

 * R1:Bipolar:2047 (12-bit, bipolar, readback is F1)

 * 0xffff bipolar (16-bit, unipolar, no readback)

 *

*

 *---------------------

 * Binary and Multi-Bit Binary Input (BI, MBBI) --

 *

 * F = Function code to read raw value. Note that if the function code

 * does not use the R/W dataway lines (e.g. F27), device-support will

 * return the Q response.

 *

 * PARM = Bit number of desired bit to read (BI) or bit number of low-order

 * bit to read (MBBI). Bit numbering is from 0 to 23.

 *

 *---------------------

 * Binary and Multi-Bit Binary Output (BO, MBBO) --

 *

 * F = Function code to either read, write, set, or clear output value.

 * Device support has two modes for writing binary values. If the

 * function code is a group one or two read or write, the desired value

 * is written using a read/modify/write sequence. The CAMAC branch

 * is locked during this sequence so that it is atomic. If the function

 * code is a group one or two set or clear, the desired value is set

 * using a single selective set or clear operation (BO only).

 *

 * Note that multi-bit selective set/clear operations are implemented

 * with two commands:

 * 1) clear all the uncleared 0 bits in the new state

 * 2) set all the unset 1 bits in the new state

 * These two commands are executed with the CAMAC branch locked so

 * that they are atomic to the software. However, they will not be

 * atomic to the hardware. An intermediate state (after the clear

 * command) is passed through before the final desired state is reached.

 * If this is a problem for your hardware, you should use the

 * read/modify/write sequence instead.

 *

 * PARM = Bit number of desired bit to write (BO) or bit number of low-order

 * bit to write (MBBO) plus optional readback function code. As with

 * BI and MBBI records, the bit numbering is from 0 to 23. The readback

 * function code has the format "Rn" where "n" is the function code.

 *

 * Specifying a readback function code will enable the device-support

 * software to read the current state of the hardware at record

 * initialization time and store it in the RVAL field. This aids in

 * performing "bumpless" reboots of the IOC. The readback function is

 * also issued after every write and the result is stored in the RBV

 * field.

 *

 * If the F parameter in a BO or MBBO record specifies a group 1 or group

 * 2 read or write, then the read (or the corresponding read) function

 * will automatically be used for the readback, without having to specify

 * it in the PARM field.

 *

*

 *---------------------

 * Waveform (WF) --

 *

 * F = Function code to read or write raw value

 * Althought the waveform record is normally used to read arrays, the

 * CAMAC device support for the waveform record also allows writing

 * data if the F value is for a CAMAC write (F=16-23).

 * On output the values are written directly from the VAL array to the

 * device. On input the values are masked for the appropriate range

 * and sign-extended if necessary.

 *

 * PARM = Expected range of input values (for CAMAC read functions), and

 * Q transfer mode for the CAMAC block transfer operation.

 * The range parameters are the same as for analog or longword

 * input records.

 * The Q transfer mode must be one of the following:

 * QSTP Q-stop, i.e. continue transfers until the transfer

 * count is reached or a Q=0 response is received.

 * QRPT Q-repeat, i.e. repeat each transfer until Q=1 is

 * response is received, or a hardware timeout occurs.

 * QSCN Q-scan, i.e. increment A and N, starting from the

 * values specifed in the B,C,N,A,F parameters, until the

 * transfer count is reached or the last station address

 * is reached

 * If no Q transfer mode is specified in the PARM field then QRPT is used.

 *

 * Following are examples of valid PARM fields for WF records:

 * 0xffffff:QSTP (24-bit, unipolar, Q-stop transfer mode)

 * Bipolar:2047 (12-bit, bipolar, Q-repeat (default)

 * transfer mode)

 *

 * Note: The waveform record permits any EPICS data type (DBF_CHAR,,

 * DBF_SHORT, DBF_DOUBLE, etc.). However, the CAMAC device support only

 * allows short and long integers, both signed and unsigned. FTVL

 * values other than DBF_SHORT, DBF_USHORT, DBF_LONG, and DBF_ULONG will

 * generate an error during record initialization.

 *

 *

 *

 *********** end of @ parameter definitions ****************************/
Hytec 2992 Board Settings

Branch 0 :

1) not used at PPPL
2) VME short I/O base address 0xDE00
3) Interrupt IRQ3
4) Interrupt Vector = 0x80

Branch 1 :

5) VME short I/O base address 0xDE10???

6) Interrupt IRQ3

7) Interrupt Vector = 0x80

PPPL Code Changes

8) -----------------
· ht2992.h 13JAN00 PS
· Changed CNAF timeout for when link is broken. Now, all CNAFS except those addressed to "slot 30 AND F16 (or higher)" have no timeout beyond the
· usual 2*Link_propogation_delay time. For CNAFS which can turn an L2 crate controller on, there is a 111 millisecond delay. If the L2 is already online or the link is operating normally the actual delay will be less.

· Changed the response of the driver initialization when the CAMAC link is broken during IOC boot time. Before, if the link was broken the driver would not complete initialization and no CNAFS would go out until the link was repaired and the IOC rebooted. Now, if the link is dead at IOC boot time, a link_propogation_delay is assumed (this is about twice the actual delay of our PPPL bit-serial highway) and initialization of the driver continues normally. CNAFS do go out, especially those that turn on the offline L2 and associated U-Port modules. At PPPL we want crate-initialization commands to go out and turn on U-Port modules following a site-wide power outage.

CNAF Listings

To get a report from the IOC about which PV/records deal with CAMAC, (and other I/O) type :

 IOC> dbhcr

To get the report into a file on the host computer :

 IOC> dbhcr > filename
To sort the file, on the host type:

 host% sort filename > filename.sorted

