
Plasma Control System Software Architecture
Guide (preliminary draft)

January 21, 2011

1

DRAFT DRAFT DRAFT DRAFT 2

Contents

1 Introduction 6

2 Limitations 6

3 The waveform server 8
3.1 Structure of the waveform server code 8
3.2 Defining the dma region . 10
3.3 Defining the install buffer . 12

4 The user interface 13
4.1 The logo window . 13

4.1.1 Creating the logo file . 13

5 Communicating PCS information and status 14
5.1 The message server (msgserver program) 14
5.2 The user interface server (uiserver program) 14

6 Accommodating a mixture of CPU types 15

7 Interprocess communication 17

8 The PCS shot cycle 19
8.1 Introduction . 19
8.2 Shot Setup . 20

8.2.1 First lockout . 20
8.2.2 Unlocking . 20
8.2.3 Final lockout . 21
8.2.4 Aborting the shot . 22

8.3 Shot Execution . 22
8.4 Shot Cleanup . 23

9 The lockout server 23

10 The host real time process 24
10.1 Structure of the host cpu code . 26
10.2 Installation-specific functions . 27

10.2.1 host install x hp . 27

DRAFT DRAFT DRAFT DRAFT 3

10.2.2 host install x p . 27
10.2.3 host install inits . 28
10.2.4 host install init rt memory . 29
10.2.5 host install preshot setups . 30
10.2.6 host install start realtime . 30
10.2.7 host install stop realtime . 31
10.2.8 host install shot cleanups . 31
10.2.9 host install get function ptr 32
10.2.10host install update the state 33
10.2.11host install software setups . 34
10.2.12host install write simserver data 34
10.2.13host install parse command line 35

10.3 Starting the shot cycle . 36
10.4 Filling the real time cpu memory . 36

10.4.1 Access to the real time cpu 36
10.4.2 Filling memory . 37

10.5 Executing the real time code . 38
10.6 Archiving data . 38

11 Management of memory on the real time computer 40

12 The watchdog timer 44

13 The real time procedure 44
13.1 Structure of the real time code . 44
13.2 Infrastructure functions . 45

13.2.1 new shot phase tick . 45
13.2.2 new continuous target c . 45
13.2.3 startup state . 46
13.2.4 update the state . 46
13.2.5 time critical . 47

13.3 Installation-specific functions . 48
13.3.1 real install init . 48
13.3.2 real install main . 48
13.3.3 set time zero . 49
13.3.4 wait for start signal . 49

13.4 Data acquisition . 50
13.5 Software testing modes . 52

DRAFT DRAFT DRAFT DRAFT 4

13.5.1 Implementing software test mode 52
13.5.2 Implementing simulation mode 53

13.6 Hardware test mode . 54

14 Accessing the S file data 55

15 Archiving and restoring PCS data 57
15.1 Overview of installation-specific database functions 57
15.2 Functions found in file pcsshotfile.c 59

15.2.1 write pcs pointname . 59
15.2.2 read shotsetup shotnum . 60
15.2.3 store data . 62
15.2.4 close shotfile . 66
15.2.5 read pointname shotnum . 67

15.3 Functions found in file close shotfile.c 67
15.3.1 close shotfile . 67
15.3.2 delete shotfile . 67

16 System Category 68

17 Data Acquisition Category 68
17.0.1 wait for new time . 69
17.0.2 get new data . 73
17.0.3 baselinedata . 78
17.0.4 operating setup data . 79
17.0.5 pass data . 80
17.0.6 get remote data . 81
17.0.7 save samples . 81

18 Access control 84

19 Command files 87

20 Change history 89

21 The current DIII-D plasma control system 90

22 Modifications 91

DRAFT DRAFT DRAFT DRAFT 5

23 Obsolete features 94
23.1 Overview of assembly language routines 94
23.2 The cycle time in the DIII-D plasma control system 95

DRAFT DRAFT DRAFT DRAFT 6

Obtaining this document

This document is available online with a WWW browser at:
http://web.gat.com/pcs/architecture/architecture.html.
The Postscript file for printing can be obtained at:
https://diii-d.gat.com/DIII-D/comp/analysis/pcs/architecture/architecture.ps.
The pdf file for printing can be obtained at:
https://diii-d.gat.com/DIII-D/comp/analysis/pcs/architecture.pdf.

1 Introduction

This manual provides information on the plasma control system (PCS) software at the
level of detail appropriate for a system programmer. Those interested in modifying
the software architecture or porting the PCS software to new computer systems will
benefit from reading this guide. Those interested only in adding control algorithms
to the system should read the Application Programmer’s Guide instead. Readers
of this manual should also be familiar with the content of the Application Program-
mer’s Guide, particularly the section “Background information for application code
authors” because the necessary background given there is not repeated here.

The reader will detect quickly that this manual is far from complete. Sections will
be added and updated at what will probably be irregular intervals.

2 Limitations

The number of realtime computers is limited to a maximum of 24. This is due to the
parameter data block functions which all have an argument called flags which is of
type int so is limited to 32 bits of information. This argument is a bit mask. Eight
of the 32 bits are used for general information like whether the parameter data block
is archived or whether it is sent to the user interface. The other 24 bits are used to
indicate whether the block goes on the host cpu or realtime computers.

The original usage of these bits limited the number of realtime computers to 12
because 12 bits were used to indicate the block should go on a host cpu computer and
the other 12 bits were used to indicate the block should go on a realtime computer.
This is modified for installations where the number of computers is greater than 12
by using two of the eight general bits, one to indicate a host cpu computer and one to
indicate a realtime computer, so that the 24 other bits can indicate which computer.
This means that a parameter data block cannot be put only on virtual host cpu

DRAFT DRAFT DRAFT DRAFT 7

computer A and only on virtual realtime computer B. If the block must go on both
types of computers, it must go on the same virtual ones, in this case, both A and B.

DRAFT DRAFT DRAFT DRAFT 8

3 The waveform server

3.1 Structure of the waveform server code

The code for the waveform server is divided into three portions: infrastructure,
installation-specific, and application specific.

1. The following files are part of the infrastructure:

(a) wavemain.c contains the main routine for the waveform server process. It
includes control.h.

(b) control.h is the file that “gathers” all the installation code together into
the waveform server process. It also defines some global variables used in
the waveform server.

(c) waveserver.c contains the core routines for the waveform server.

(d) get vector maps.c contains routines used to print out information about
data compiled into the waveform server. For instance, the indices of ele-
ments of the target vector or point names used for the data archived in
the shot file.

(e) return data.c contains routines that are used to return data from the
database maintained by the waveform server to a requesting process.

(f) waverestore.c contains routines used to “restore” a shot setup. That is,
these routines read a shot setup from either a future shot file or from an
archived setup from a previous shot. Either all or part of a shot setup can
be restored.

(g) targetvectors.c contains the routines that manage the database of “pro-
cessed” data within the waveform server. Processed data are created from
raw data and are usually copied to a real time cpu for use during a shot.

(h) rtmemory.c contains the routines that precalculate the arrangement of the
memory in the real time cpu according to what will be required by the shot
setup held in the waveform server database.

(i) parameterdata.c and waveparams.c contain the standard routines used
to manage the block structured “parameter” data (also called “static”
data) defined for a given shot phase.

(j) A group of files contains the low level code that manages the structure of
the file (or shot database entry) that records the setup for a given shot.

DRAFT DRAFT DRAFT DRAFT 9

These files handle both archiving and restoring of a shot setup. These
routines are called by the routines in waverestore.c. (This group of files
also contains routines used to archive data acquired and calculated during
a shot. These routines are used by the host cpu processes.) The files in
this group are:

• ckstatus.c

• clear setup data.c

• cstring to field.c

• parcel setup data.c

• read shotsetup.c

• rstcom.c

• setup driver.c

• setup read handler.c

• setup write handler.c

• unparcel setup data.c

Note that there is an even lower level set of files containing the installation-
specific routines for writing into the shot database file. For DIII-D, these
routines are part of the general library libd3.

2. The following files are installation specific. These files provide the various def-
initions that are specific to a particular control system installation but which
are not specific to any control algorithm.

(a) installdefs.h contains macro definitions needed by both the infrastruc-
ture and the installation. The demo version of this file contains all the
required definitions. This file is included in control.h.

(b) input data.h contains macro definitions used for raw data. By conven-
tion, this file is used for the raw data and digital data pointnames. It is
usually included in installdefs.h.

(c) pcsshotfile.c contains low level routines for archiving the shot setup,
archiving data after the shot, and restoring data for the simserver. These
routines are the direct interface to the local shot database routines.

(d) categories.h is the starting place for including categories. This file must
exist and is included multiple times in control.h.

DRAFT DRAFT DRAFT DRAFT 10

(e) cpus.h is the starting place for including the real time cpu information.
This file must exist and is included multiple times in control.h. It in-
cludes the definitions necessary for each real time cpu used in the PCS.
If the program common/config.c is used (highly recommended), then the
file it creates definitions.h gets included here.

(f) waveinstall.h contains installation-specific code for the waveserver pro-
gram. Currently, only the function waverestore install which handles
specific restore issues is required. This file must exist and is included in
wavemain.c.

3. All files with a name ending in algorithms.h are files that include the algo-
rithm master files for a particular category.

4. All files with a name ending in master.h are files that define either a real time
cpu, a control category, or a control algorithm. Some of these master files will
include code from other category or algorithm specific files. There may be a
few other files containing code or definitions that have been separated out for
some reason. Examples are filter programs.c which contains DIII-D specific
routines and shape includes.h which contain common code that gets included
in multiple algorithms.

3.2 Defining the dma region

In general, in order to do feedback control it is necessary to acquire data from sensors
on the controlled system. The waveserver process can set aside memory in order
to store the acquired data away, and the data can also be archived by the host cpu

process after the shot.
The PCS infrastructure can handle an unlimited number of channels of data from

A/D converter modules. The digital data can be set to 1, 2, or 4 bytes per value by
defining a dma region descriptor. By default, this descriptor is defined as follows:

/*

Descriptor for a complete dma_region. The count of floats is filled

in when the descriptor is used.

*/

#define GEN_dma_region \

DSTART(D_dma_region)\

DGEN (float rawdata[dummy_NUMCHANNELS]; ,FLOATTYPE,1)\

DRAFT DRAFT DRAFT DRAFT 11

DGEN (unsigned int times[2]; ,INTTYPE, 2)\

DGEN (unsigned int diodata[1]; ,INTTYPE, 1)\

DGEN (unsigned int dummy; ,INTTYPE, 1)\

DEND

GEN_dma_region

The installation can define a different descriptor as long as it has the same three
“pieces” as above:

• rawdata: An array of NUMCHANNELS of any of 4 types: char, short, int,
or float. The value of NUMCHANNELS can be zero.

• times: Must be unsigned int and be at least 2 in size.

• diodata: An array of any of 4 types: char, short, int, or float. The descrip-
tor size can be set to zero. This field is used for digital data and each bit will
be archived as a separate pointname.

To pass this new descriptor to the infrastructure, the installation code (usually the
acquisition category) must call the function fill dma region constants(D install dma region,

rtcpu) for each real time processor (rtcpu is a value from 0 to rtcpu count-1). This
will load the sizes of these three fields into each real time processor. The installation
can add fields or times as desired, but the infrastructure will not do anything with
them.

The amount of memory set aside for the dma region for a particular real time
processor is the descriptor size (the default is 48 bytes) multiplied by the number of
samples set in the operating setup data parameter data block for that processor.
Extra space is added equal to two samples times the descriptor size plus 24 bytes
which was required by the SuperCard version of the DIII-D PCS.

The dma region exists only to make it easier for the installation code to acquire
data on the real time processors. The host cpu process will archive data if the sizes
of the rawdata and/or diodata are non-zero.

An example of an installation version of the dma region and the code needed to
set it up follows.

#ifdef CONTROLDEF

/*

Descriptor for the installation version of the dma_region.

This differs from the default structure because the rawdata

DRAFT DRAFT DRAFT DRAFT 12

and the diodata are both shorts instead of ints. The

sizes will get set later in the parameters function.

*/

#define NUM_DIODATA 4

#define GEN_install_dma_region \

DSTART(D_install_dma_region)\

DGEN (short rawdata[1]; ,SHORTTYPE,1)\

DGEN (unsigned int times[2]; ,INTTYPE, 2)\

DGEN (unsigned short diodata[NUM_DIODATA]; ,SHORTTYPE,NUM_DIODATA)\

DEND

GEN_install_dma_region

#endif

In the baselinedata_parameters function:

/*

Define the installation version of the DMA_region.

The number of channels and diodata could be different on each cpu.

*/

{

static GEN_install_dma_region /* must be declared static */

for(j=0; j<rtcpu_count; j++)

{

D_install_dma_region[0].size = NUMCHANNELS; /* number of rawdata */

D_install_dma_region[2].size = NUM_DIODATA; /* number of diodata */

fill_dma_region_constants(D_install_dma_region,j);

}

}

3.3 Defining the install buffer

In general, when multiple processors are used in the PCS, there requires some commu-
nication between them. What data needs to be sent is wholly up to the installation.
The PCS provides the communication buffer for use during the shot, but data might
need to be passed before the shot. Or the communication buffer may not suit the
needs of inter-processor communication.

Therefore, the infrastructure allows space to be set aside for a buffer that is
completely defined by the installation called the install buffer. The waveserver

DRAFT DRAFT DRAFT DRAFT 13

needs to know the descriptor for this buffer so it can set aside the required space in
the memory of each real time processor. An algorithm that is always running in the
PCS (like in the acquisition or system category) needs to define this structure. By
default, the install buffer is set to NULL.

An example of an installation version of the install buffer and the code needed to
set it up follows.

#ifdef CONTROLDEF

/*

Structure of installation buffer.

*/

#define GEN_install_buffer \

SDSTART(struct install_buffer { ,D_install_buffer)\

DGEN (int cpu_status[16]; ,INTTYPE,16)\

/* used to synchronize cpus */\

SDEND (};)

GEN_install_buffer

#endif

In the baselinedata_parameters function:

/*

Set the infrastructure descriptor for the install_buffer.

*/

{

extern STRUCT_DESCRIPTORS *install_buffer_descriptor;

static GEN_install_buffer /* must be declared static */

install_buffer_descriptor = D_install_buffer;

}

4 The user interface

4.1 The logo window

4.1.1 Creating the logo file

The PCS “logo window” has a bit map graphics widget that displays a logo image.
This image can be created specifically for each PCS installation. The image is in

DRAFT DRAFT DRAFT DRAFT 14

an X windows bit map file called logoimage.bm. This file can be created using any
convenient tool. For instance, the X windows drawing program xfig will create
output files in the correct format. The program xv is also useful. Here is a brief set
of steps for using xv.

1. Capture (or create) an image to use. A JPG format is suitable but other formats
can be used as well.

2. Start up xv. Right click on the start-up window and a GUI will come up.

3. Load the image file.

4. Modify the size of the image using xv if desired.

5. Save the image in X11 Bitmap format with the name logoimage.bm.

5 Communicating PCS information and status

5.1 The message server (msgserver program)

The message server is a program that runs in the background and gets started when
the waveform server and other PCS processes get started.

Messages are sent from each of the other PCS processes to the message server.
These messages may be error messages, information messages, or just a heartbeat to
indicate that a process is still alive and kicking.

These messages are then passed to all processes which have logged themselves as
clients. These clients would include the user interface server (uiserver) (see Sec. 5.2)
processes that are created whenever a view log is started in a PCS user interface.
Other clients could be external programs that need to know what the status is of the
PCS. Any such program would need to parse the messages to extract pertinent data.

5.2 The user interface server (uiserver program)

The user interface server (or uiserver) runs as a background process whenever a view
log is started. This program logs itself to the message server. Whenever there are
messages buffered in the message server, they are sent to each uiserver client. The
uiserver clients then pass these messages to the IDL user interface so the messages
can be put into the view log. The IDL user interface requests information from the
uiserver every two seconds.

DRAFT DRAFT DRAFT DRAFT 15

The user interface server also receives messages from the waveform server whenever
a change is made to any data items, phases, phase sequences, etc. These messages
are also passed to the IDL user interface so they can be interpreted. If the user is
affected by the change, a message specifying what the change was is written to the
plot region of the user interface. If the current data item is modified, then the ”apply”
and ”cancel” buttons will change to indicate that the current data item was modified.

The UI server has a maximum number of messages that it holds in a circular
buffer. The current size of this buffer is 600 messages.

Note that the uiserver runs on the same host as the IDL user interface so the
regular communication with IDL is not over the network.

6 Accommodating a mixture of CPU types

Here is a list of the places where customization is needed in order to allow the various
processes of the PCS to run on a mixture of processor types.

1. Conversion of data formats is done using routines in convert functions.c. All
routines should use these functions so that new processor types can be added
simply by updating these functions.

2. The data type chosen for the typedef values processor type mask and message length value

is an integer that has the same length on all processor types. Macros to con-
vert these two data types between network (big endian) and local format are
specially defined.

3. In fill sc rtheap.c, the function phase change determines whether 1 or 2
change list entries are required in order to move a pointer into a vector element.
Also, in rtmemory.c, the function phase changelist count must also deter-
mine whether 1 or 2 change list entries are required in order to move a pointer
into a vector element.

4. Variables of type int are used in coding wherever an integer is needed for
consistency of variable size. However, this isn’t required. Variables of type
long could be used as long as the possible variation in size of the variable
between the various processor types doesn’t introduce problems.

5. In several places a very large integer value is required. Presently, the macro
used is MAXINT which is the maximum possible positive value that can be held
in a signed int. This value is defined in

DRAFT DRAFT DRAFT DRAFT 16

<values.h>

. This works because presently the int is the same size on all processor types
that are used. If this is ever not the case, this macro will need to be changed
so that the large integer value is the same independent of the type of processor
on which the code executes.

6. The type of processor is given by the bit mask data type processor type mask.
The value for this mask is determined by the routine get processor in get processor.c.

7. The data type char is a single byte on all machines. This is likely to stay this
way, I suppose. A redefinition of this C language data type would be required
to change this. So, the operation to convert the data format for the char data
type is a simple copy and it seems useless to insist that the convert data func-
tion be called to convert character data. Using this function, though, provides
consistency in the way data conversion is treated. We have ended up being
inconsistent about converting character data. In cases where the character data
are embedded into a structure, conversion of the structure will include con-
version of the character data. In some cases, though, messages sent between
processes include a block of character data. In this case, sometimes we follow
the formality of calling convert data and sometimes no “conversion” is done.
If we tried to change the PCS sometime in the future to use an international
character set (2 byte characters) this would require using different code for han-
dling character strings. Even if we included the call to convert data for all
character strings in the present code this wouldn’t really help in this character
set conversion task.

8. Messages sent between processes usually consist of various pieces of data which
are often first collected into one block of bytes and then transmitted. Even if
data are transmitted in several blocks, the data are always received as one big
block of bytes. This can present 2 types of problem.

(a) When copying the data into one large block of bytes, there could be a
problem with alignment. An attempt could be made to copy a data type
into a location in the message which isn’t properly aligned because of the
amount of data preceding it in the message. For instance, if a character
string is at the beginning of the message and it is followed by an integer,
this could cause an alignment problem when copying the integer if the
string has arbitrary length. This problem can be handled by defining a

DRAFT DRAFT DRAFT DRAFT 17

single structure to hold the complete message, or by ensuring that data
types with the most severe alignment are located at the beginning of the
message.

(b) When the message is received, its data format must be converted. Often
this big block of bytes isn’t converted by constructing a single descriptor
and doing the conversion with one call to convert data. For instance, if a
message consists of a few integers followed by a character string, the inte-
gers are converted separately from the character string. This problem can
be avoided by defining a single descriptor for the message and converting
the entire message with one call to convert data. Or, if the data with the
most severe alignment are located at the beginning of the message there
should be no problem.

The designs of the various message formats vary greatly and we haven’t followed
a consistent method to avoid these problems.

9. The IDL routines that are used to access the S file need definitions of the various
structures contained in the real time processor’s memory. These definitions need
to vary depending on the type of processor that created the file and the type of
processor reading the file. These IDL structure definitions should be generated
automatically in order to keep them consistent with the C code definitions, but
at present these definitions are maintained by hand.

7 Interprocess communication

The installation-specific file rtcipc.h has the functions that are required for commu-
nication between real time processors. These routines must also handle ”stand-alone”
mode. It is left up to the installation to fill in the details. For example, the DIII-D
PCS uses a Myrinet network so these functions interface to the Myrinet library of
functions. Another example would be if all real time processors were in the same
computer box, shared memory regions could be used for processor to processor com-
munication. Or if a network of computers all had reflective memory, these functions
would need to know how to map and access that memory so that one computer could
communicate with another.

The following is a brief summary of the interprocessor communication functions.

• rtcipc write: Write into a buffer on any of the PCS processors at an arbitrary
location in the PCS memory heap.

DRAFT DRAFT DRAFT DRAFT 18

• rtcipc write commbuff: Copy an array of values to a specified location in the
communication vector on any of the PCS processors.

• rtcipc write commbuff float: Copy a single value of type float to a specified
location in the communication vector on any of the PCS processors.

• rtcipc write install buffer: Copy data to a general installation-specific lo-
cation on any of the PCS processors.

• rtcipc write timetostopflag: Write a value to the timetostop flag on a given
PCS processor.

• rtcipc read timetostopflag: Read a value of the timetostop flag from a given
PCS processor. Note that this requires another processor to write into this
location.

• rtcipc write paramdata: Write data to a parameter data block on a given
PCS processor.

• rtcipc write rtmessage: This is the most general function that copies data
from one processor to another.

These functions are described more in the Application Programmer’s Guide, as is
the ”real time message facility” which is a set of higher level standardized routines
that use the first and last functions listed above.

DRAFT DRAFT DRAFT DRAFT 19

8 The PCS shot cycle

8.1 Introduction

Most of the time the PCS is idle. During this idle time it collects data on the shot
setup from the operators and waits for the signal to start a shot cycle. When this
signal is received the PCS runs through a complete procedure to execute a shot cycle.
In this section a summary of this PCS shot cycle procedure is given. Many of the
processes that make up the PCS participate in the shot cycle. This section provides an
overview of the interaction between the PCS processes. The sections on the individual
processes provide more details.

The shot cycle can be divided into three portions.

Setup: In the first part of a shot cycle, the host computer does most of the work.
Data from the waveform server are collected for each real time cpu and arranged
in the memory of the cpus.

Execution: The second part of the shot cycle is when the tokamak discharge is
actually executed and plasma is created. The real time computers do the work
in this part of the cycle except for some incidental, non-real-time work by the
host computer.

Cleanup: In the final part of the shot cycle the PCS cleans up after the discharge.
This involves, primarily, archiving the data acquired during the shot. Most of
the work here is done by the host computer.

In the first and last parts of the discharge cycle when the host computer is doing
most of the work, the PCS work is coordinated by the lockout server. The lockout
server keeps track of the progress of each of the PCS processes and indicates when
to proceed to the next step in the shot cycle. The lockout server receives notice of
“events” and uses its programmed logic to determine what to do based on the events
that occur. The lockout server receives its event information from two sources: mes-
sages from other processes and, optionally, by monitoring a set of hardware triggers.

Part of the “Execution” portion of the shot cycle is standardized by the PCS
infrastructure code. However, most of the procedures during real time are determined
by the application specific control algorithms and the way that the operator has
programmed the shot setup.

The procedure in each of the three portions of the shot cycle is described in the
following sections.

DRAFT DRAFT DRAFT DRAFT 20

8.2 Shot Setup

8.2.1 First lockout

The lockout server begins a new shot cycle either when it receives a message of type
SET FIRSTLOCK or detects that the hardware “get ready for shot” bit is set. At the
start of a new shot cycle, the waveform server is informed (by a LOCKOUT IN message
from the lockout server) that changes are “locked out” (no more changes should be
accepted for the shot setup). Then the lockout server sets its local variable that stores
the PCS state to FIRSTLOCKOUT.

The LOCKOUT IN message received by the waveform server is placed in its work
queue. The waveform server continues to process messages on the queue until the
lockout message is found. At that point the waveform server stops processing messages
from the queue, but will still add to the queue if input is received from a user interface.
These messages sitting on the queue are not processed until the waveform server
receives an “unlock” message.

The host real time processes periodically poll the lockout server to find out the
PCS state. When a change in the state to FIRSTLOCKOUT is detected the host real
time processes begin preparation for the discharge (see Sec. 10). Before the host
real time processes can begin loading data for the discharge they must wait for the
waveform server to complete processing of all messages that were received before
lockout. The host real time processes poll the waveform server to obtain its lockout
flag. When the proper lockout flag is detected, the host real time processes prepare
their associated cpus for the discharge and then notify the lockout server that shot
preparation is complete. Preparation for the discharge includes loading the memory
of the real time cpu and executing application specific initialization routines for the
control algorithms chosen by the operator.

The lockout server tracks the progress of the host real time processes. When all of
the host real time processes have completed the work for shot preparation, the PCS
is ready to move to the “final lockout” state.

8.2.2 Unlocking

Before the final lockout, the PCS operator can issue an “unlock” command by send-
ing the SET UNLOCK message to the lockout server. The lockout server sends a corre-
sponding unlock command to the waveform server. The waveform server then begins
processing messages on its work queue again. This allows all messages sent to the
waveform server to be processed until the “relock” command is received (a SET RELOCK

message to the lockout server). After an unlock/relock operation, all of the prepara-

DRAFT DRAFT DRAFT DRAFT 21

tion for the discharge by the host real time processes must be done again. In this way,
any last second changes in the shot setup that the operator needed to make can be
incorporated into the data loaded into the memory of the real time cpus. Note that
the shot setup work by the host real time processes is not interrupted by an unlock
message. An unlock message received while any of the host real time processes have
not yet completed shot setup is flagged as pending.

Because the host real time processes are only clients which receive their PCS state
information by polling the lockout server, there is an interval between polls in which
the lockout server could make several state changes, e.g. unlock/relock could occur
more than once. The host real time processes cannot track this rapid activity. Instead,
a “lockout counter” is maintained by the lockout server. This counter is used by the
host real time process to determine whether it has caught up with all of the necessary
work. When waiting for the waveform server to process all messages received prior to
the lockout, the host real time process tracks the lockout count value for the lockout
message processed by the waveform server. In this way it detects whether there are
more lockout messages yet to be processed by the waveform server (e.g. in the case
of a rapid sequence of unlock/relock commands). Also, if the lockout count increases
after the host real time process has completed shot setup, it knows that it must do
the shot setup again.

8.2.3 Final lockout

The lockout server changes to the FINALLOCKOUT state either after receiving a message
of type SET FINALLOCK or after detecting that the final lockout hardware trigger bit
has been set. In the final lockout state no more shot setup changes can be made by
the operator.

The host real time processes detect the transition to the FINALLOCKOUT state
and responds by first sending a REALTIME ROUTINE STARTING message to the lockout
server and then starting the real time code on the real time cpus. The real time cpus
can, at this point, do some application specific initialization code that is defined by
the control algorithms programmed to be used during the discharge.

At this point the lockout server checks each of the watchdog timer bits (see Sec. 12)
to be certain that the corresponding real time cpu is operating properly. The “PCS
ready for shot” hardware bit is then set to indicate to the main tokamak control
computer that the PCS is ready.

DRAFT DRAFT DRAFT DRAFT 22

8.2.4 Aborting the shot

At any time between the change to the lockout state and the start of the real time
control cycles the shot can be aborted. This means that setup for this shot is stopped
and the PCS returns to the NULL state.

The lockout server can abort the shot at any time during the FIRSTLOCKOUT state.
This occurs if either an ABORT SHOT message is received or if the hardware abort bit
is set. In either of these cases, the lockout server sets the PCS state to ABORTED.
In response, the host real time processes each send a SHOT FINISHED AND ABORTED

message to the lockout server. This message indicates that the host real time process
has recognized that the shot is complete. When all host real time processes have
indicated shot completion in this manner, the lockout server follows the shot cleanup
procedure.

This method is followed because it is possible that, depending on when the abort
command arrives, one or more of the real time cpus might have already started the
real time code. So, this allows for a mixture of shot completion status from the real
time cpus (shot completed normally or shot aborted). The lockout server treats the
shot as having been aborted if any of the real time cpus report that the shot was
aborted.

The shot may also be aborted if one or more of the host real time processes is
unable to properly complete setup for the shot. In this case, the host real time process
sends an ABORT SHOT message to the lockout server during the shot setup procedure.
The host real time process then tells the lockout server that it has completed setup.
When the lockout server responds by switching to the ABORTED state, the host real
time process follows the normal procedure for aborting the shot.

8.3 Shot Execution

Once the real time computers begin executing their real time routines, the host real
time processes and the other PCS processes have a short time during the discharge
when they don’t have much to do other than to wait for the real time computers to
report that the shot is complete. During this pause, the first steps in creating the
database archive file for the shot are taken. The file is created and the waveform
server is instructed to write its database entry with a complete description of the
setup for the shot.

When the real time code is started on the real time cpus, the first thing done is
to simply wait for a hardware trigger that indicates that the shot has started. This
trigger is synchronous with other timing signals generated by the main tokamak time

DRAFT DRAFT DRAFT DRAFT 23

system. For the DIII-D PCS this trigger is called 6A and comes at t = −10 secs. This
trigger is also used to clear the counter that the PCS uses to track the time during
a shot. Thus, after this trigger arrives the PCS knows that its time counters contain
valid values. The real time cpu then monitors the time until t = −9 s when it calls
the main routine that runs the control cycle. The 1 s pause here is simply to account
for any delays in recognizing that the synchronous trigger has arrived. Until t = −9
s the shot can be aborted.

The real time cpus then run the shot cycle routine continuously until it is rec-
ognized that the shot is over. On the DIII-D PCS, the control system simply stops
executing the control cycle at a time programmed by the operator. This is simply a
time somewhat after the plasma is programmed to end.

8.4 Shot Cleanup

At the end of the discharge, the shot cycle routine returns and the real time cpus
then execute any shot cleanup routines that are specific to the control algorithms that
were programmed to be used during the shot. The real time cpu’s routine then exits
and then the host real time routine takes over again.

The host real time routines execute any shot cleanup code that is defined by the
algorithms programmed to be used during the shot and then notifies the lockout
server that particular real time cpu is finished with the discharge.

The lockout server waits until all real time cpus have completed the shot and
then makes the transition to the WRITINGFILES state. While the PCS is in the
WRITINGFILES state it writes the data from the real time cpus into the database
archive file. One at a time, to avoid file access conflicts, the real time cpus are given
permission to write to the archive file. In addition, the real time cpus optionally write
the “s” file which contains an image of the area of the memory of the real time cpu
used to store PCS data.

After all of the host real time cpus have completed archiving data, the lockout
server returns the PCS to the NULL state and waits for the start of another shot.

9 The lockout server

Files used by the lockout server program (which is called lockserver).
Files used from the infrastructure:

• lockmain.c contains the main function which mostly just calls the lockserver
function. The installation-specific file lockinstall.h is then included. This is

DRAFT DRAFT DRAFT DRAFT 24

followed by all the default functions that are needed by the program. See below
for a description of how these default functions can be replaced by installation-
specific functions.

• lockserver.c contains the function lockserver which is the ”guts” of the
lockout server program.

Required installation-specific files:

• The file lockinstall.h contains any installation-dependent functions which
do tasks differently than the default versions found in the file lockmain.c.
Each of these default functions are compiled into the lockserver image unless
a macro of the form REPLACE routinename, e.g., REPLACE LS GET SHOT NUMBER

is defined in lockinstall.h. At least one function needs to be included in
lockinstall.h which correctly gets the shot number.

• close shotfile.c contains low level routines for the lockserver to handle the
end of shot archiving. (See 15.3).

10 The host real time process

Each of the real time computers in the PCS has, in addition to the code that runs
in real time, a set of routines that provide the interface to the remainder of the
PCS. These interface routines can run on the real time processor if the necessary
networking software is available or the interface routines can run on a host processor
that is closely coupled with the real time processor.

In the former version of the PCS, the interface routines ran on a host computer.
There was a different process and executable from the real time process and ex-
ecutable, one for each of the real time computers. The executables were called
host cpu% where % indicates the physical cpu number. These separate processes
are still used for the stand alone version of the PCS (runsa).

In the current version of the PCS, the host real time and the real time rou-
tines are compiled separately, but they are linked together into one executable called
pcs rt cpu% where % indicates the physical cpu number.

The host cpu code is written using the model that the process on the host can
directly control the real time processor. It is assumed that the host computer can:

• Write or copy data into an area of memory on the real time computer.

DRAFT DRAFT DRAFT DRAFT 25

• Determine the values for pointers to this data in the address space of the real
time computer and include these pointers as part of the data copied into the
real time computer’s memory.

• Start a function running on the real time computer with an argument that is a
pointer into the data that were written to the real time computer’s memory.

• Synchronize with the operation of the real time cpu by waiting for the real time
function to finish.

If the real time processor had the necessary networking support, then all of the
interface routines and the real time code could run on the same processor and these
conditions would be easily satisfied.

In the current version of the DIII-D system, the host process and the real time
process are linked together so as to satisfy these conditions. However, to describe
how these two parts work, we will speak separately of the host cpu process and the
realtime process.

The real time interface routines implement a client process in the client/server
architecture of the PCS. This client process has the following small number of re-
sponsibilities.

1. Most of the time the process is essentially idle. Periodically, the host cpu client
polls the lockout server to determine the current PCS processing state. When
a change in state is noted the process takes appropriate action.

2. The host cpu process detects that a shot cycle is beginning from a change
to the FIRSTLOCKOUT processing state. In response, the process communicates
with the waveform server to load all of the data required on that particular real
time cpu and arrange it in the memory of the real time processor (Sec. 10.4).
When this is complete, the host cpu process informs the lockout server that its
real time cpu is ready for the shot.

3. When the change to the FINALLOCKOUT state is detected, the host real time
process does what is necessary to start the main real time routine on the real
time cpu. In the case of separate host and real time computers, this involves
calling a host process function that can start a function running on the real
time cpu.

4. The host process then waits while the real time cpu participates in controlling
the discharge. When the real time cpu function completes the host process
assumes that the discharge is complete.

DRAFT DRAFT DRAFT DRAFT 26

5. After the discharge, each of the host cpu processes is given permission, one at
a time, to archive data in the shot database. By cycling through the processes
one at a time during data archiving, conflicts in access to a single data file are
avoided. During this phase the PCS is in the WRITINGFILES state.

6. During preparation for the discharge, there could be a transition to the ABORT

state. This indicates that either the lockout server or a real time cpu has
detected a command to terminate the shot cycle early. The host cpu process
responds by confirming recognition of the ABORT state to the lockout server.
The PCS then passes through the WRITINGFILES state, with no files actually
written, to reach the NULL state.

Each of these steps in the work of the host cpu process will be discussed in more
detail in the remainder of this section.

10.1 Structure of the host cpu code

The source code for the host cpu process is separated into 2 portions. Most of the
code is in the infrastructure file host cpu.c. Any code that is category or algorithm
specific is added to the host real time process by including the code in the category
or algorithm master file.

The file host cpu.c contains all of the generic code that implements the client
process and handles the real time cpu. The file hostmain.c contains the main function
and is compiled multiple times, once for each host cpu process that is created.

When hostmain.c is compiled, the installation-specific code is included. There is
a set of installation-specific files that is required to implement tasks that depend on
the type of real time processor in use. These functions are described in Sec. 10.2.

Also part of the host real time generic code is the infrastructure file fill sc rtheap.c

(“fill supercard real time heap”). This file contains the code that is responsible for
obtaining data from the waveform server and arranging it in the memory of the real
time computer during setup for a discharge (Sec. 10.4).

The infrastructure file writertfiles.c contains most of the code for archiving
data into the tokamak database from the real time processor.

The installation-specific file pcsshotfile.c contain additional code which is re-
quired for archiving data to the DIII-D database.

The installation-specific file filter programs.c, contains the code for program-
ming the anti-aliasing filters that are part of the DIII-D PCS.

DRAFT DRAFT DRAFT DRAFT 27

10.2 Installation-specific functions

The host cpu process requires a set of installation-specific functions that are called by
the infrastructure code described in Sec. 10.1. These are functions that know how to
perform tasks required by the infrastructure code that are specific to the particular
real time processor hardware used in the PCS. Each of these required functions is
described in this section. By convention, these functions are contained in the file
hostinstall.h in the installation-specific code area.

10.2.1 host install x hp

This function converts a pointer in the address space of a real time processor into a
pointer in the address space of the host cpu process. This task assumes that virtual
address space in the host cpu process has been mapped into memory located on the
real time processor.

Calling format:

void *host_install_x_hp(void *imemory, void *address)

Arguments:

• imemory: An installation-specific pointer that is the value of the global vari-
able imemory that is set by the initialization function host install inits

(Sec. 10.2.3). This pointer, for instance, might indicate which of several real
time processors is indicated by the address argument. If this argument isn’t
needed, it can be ignored.

• address: The pointer in the address space of the real time processor. This will
usually be a pointer into the real time heap memory area.

Return value:
The function returns the value of the pointer in address after the address space
conversion.

10.2.2 host install x p

This function converts a pointer in the address space of the host cpu process into a
pointer in the address of a real time processor. This task assumes that virtual address
space in the host cpu process has been mapped into memory located on the real time

DRAFT DRAFT DRAFT DRAFT 28

processor and that, if there are multiple real time processors to choose from, the value
of the input pointer indicates which real time processor is referred to.

Calling format:

void *host_install_x_p(void *address)

Arguments:

• address: The pointer in the address space of the host cpu process. This will
usually be a pointer into the real time heap memory area.

Return value:
The function returns the value of the pointer in address after the address space
conversion.

10.2.3 host install inits

This function performs any installation-specific initializations that are required when
the host cpu process is started. The expectation is that this function will attach
the host cpu process to a real time processor. This usually will involve mapping
some virtual address space onto the memory located on the real time processor. As
part of this mapping process, the function is required to initialize 3 global variables.
The descriptions here of these variables are taken directly from the comments in the
infrastructure file hostmain.c.

• void *RTMEMSTART: This is the pointer in the address space of the realtime
process or processor to the start of the real time memory heap. This variable
should not be accessed as a global in other functions. Routines in other files
should use the function host heap pointer to get this pointer value.

• void *HOSTRTMEMSTART: This is the pointer in the address space of the host cpu

process to the start of the real time heap. This variable should not be used
as a global in other files. Routines in other files should use the function
host host heap pointer to get this pointer value.

• void *imemory: In the stand alone mode of PCS operation or in the online
mode on self-hosted real time processors, this is NULL to serve as a flag to
indicate a self-hosted real time processor.

DRAFT DRAFT DRAFT DRAFT 29

In the online version of the PCS for real time processors located on a separate
CPU board, this pointer has a value that depends on the type of real time pro-
cessor. Its usage is strictly for real time processor-specific functions. Typically
this is as an argument to routines that convert between pointers in the address
space of the real time process or processor and pointers in the address space
of the host cpu process or to identify a particular real time processor to the
installation specific code.

If this value isn’t needed for address space conversion routines or other in-
stallation specific functions, it should be set to be the pointer in the address
space of the host cpu process to the start of the real time heap (i.e. same as
HOSTRTMEMSTART). It should never be NULL in this case.

Calling format:

void *host_install_inits()

Arguments:
None.

Return value:
The function returns the value of imemory.

10.2.4 host install init rt memory

This routine is responsible for setting all the bytes to be used in the real time memory
heap to zero. It is called just after the PCS enters the FIRSTLOCKOUT state each time
setup begins for a new shot.

Calling format:

int host_install_init_rt_memory(int *hssc_imemory,int count)

Arguments:

• hssc imemory: Pointer in the address of the host cpu process to the memory
that should be initialized.

• count: The number of bytes that should be set to 0.

Return value:
The function returns a completion status, 0 indicating good, other than 0 indicates
an error.

DRAFT DRAFT DRAFT DRAFT 30

10.2.5 host install preshot setups

This routine is called each time the PCS enters the FIRSTLOCKOUT state. This function
performs any installation-specific shot setup that is required but which isn’t configured
as part of the shot setup code for a control category or a control algorithm. This
function is called after all of the infrastructure code executes that performs the shot
setup.

Calling format:

int host_install_preshot_setups(int software_test,int hardware_test)

Arguments:

• software test: If nonzero, this flag indicates that the PCS is in software test
mode.

• hardware test:If nonzero, this flag indicates that the PCS is in hardware test
mode.

Return value:
The function returns a completion status, 0 indicating good, other than 0 indicates
an error.

10.2.6 host install start realtime

This routine is responsible for starting up the real time function on the real time
processor. This function is called when the PCS enters the FINALLOCKOUT state.

Calling format:

int host_install_start_realtime(struct rt_heap_misc *hssc_rtheap)

Arguments:

• hssc rtheap: Pointer in the address space of the host cpu process to the stan-
dard structure that describes the real time memory heap area.

Return value:
The function returns a completion status, 0 indicating good, other than 0 indicates
an error.

DRAFT DRAFT DRAFT DRAFT 31

10.2.7 host install stop realtime

This function is called after host install start realtime. It is responsible for
waiting until the real time function completes execution on the real time processor.

Calling format:

int

host_install_stop_realtime(void *imemory, struct rt_heap_misc *hssc_rtheap)

Arguments:

• imemory: The installation-specific pointer returned by the function host install inits

(Sec. 10.2.3). This argument might be used, for instance, to identify the real
time processor where the real time function is executing.

• hssc rtheap: Pointer in the address space of the host cpu process to the stan-
dard structure that describes the real time memory heap area.

Return value:
The function returns a completion status, 0 indicating good, other than 0 indicates
an error.

10.2.8 host install shot cleanups

This routine is run at the end of each shot to execute any installation specific code
that is required each time a shot is completed.

Calling format:

void host_install_shot_cleanups(struct rt_heap_misc *hssc_rtheap)

Arguments:

• hssc rtheap: Pointer in the address space of the host cpu process to the stan-
dard structure that describes the real time memory heap area.

Return value:
None.

DRAFT DRAFT DRAFT DRAFT 32

10.2.9 host install get function ptr

This function returns a pointer to a function that executes on the real time processor.
The returned pointer is to a location in the address space of the real time processor.
This function is used to obtain values that will be written in real time into the function
vector.

Normally this function would cause a routine to execute on the real time processor
to return the required pointer. This routine would take advantage of the infrastruc-
ture function get function ptr that is located in the infrastructure file realmain.c.
get function ptr has a table of names of all of the functions that could be listed
in the function vector and a corresponding table of the pointers to these functions.
get function ptr searches in the list of names for a match and returns the corre-
sponding pointer. The list of names is generated during the PCS build procedure by
executing the waveform server process in a mode that causes a list of all of the real
time functions listed by the control algorithms to be generated. The code for the
corresponding list of function pointers is also generated and the correct pointers are
filled in when the real time processor code is built.

Calling format:

void *host_install_get_function_ptr(

void *imemory,

char *input_function_name,

int SOFTWARE_TEST_MODE)

Arguments:

• imemory: The installation-specific pointer returned by the function host install inits

(Sec. 10.2.3). This argument might be used, for instance, to identify the real
time processor where the real time function is executing.

• input function name: The name of the function for which the pointer is re-
quired.

• SOFTWARE TEST MODE: This argument is set to a nonzero value when the PCS
executes in one of the software test modes. Otherwise this value is 0.

This argument can be used in an installation-specific manner to substitute one
function for another in software test mode. For example, presently in software
test mode, the PCS always makes the following function substitutions.

DRAFT DRAFT DRAFT DRAFT 33

– The function called get new data master is replaced with the function
get new data test master.

– The function called get new data slave is replaced with the function
get new data test slave.

– The function called get new data slave no dad is replaced with the func-
tion get new data test slave no dad.

These substitutions are really made for historical reasons for the DIII-D PCS.
However, this provides an example of what the SOFTWARE TEST MODE argument
might be useful for. The idea was that in software test mode, all code that
executes is identical to what would normally execute in real time except for
the few functions used to obtain the input digitizer data. These function name
substitutions replaced the functions that would obtain data directly from the
digitizers with functions that obtain data from the simulation server. Probably
a better procedure would be to simply test the software test mode flag during
execution of the standard data acquisition function and call the appropriate
code.

Return value:
The return value is the pointer to the desired function cast as a pointer to a void.
(Admittedly, the function should really return a proper pointer to a function.)

10.2.10 host install update the state

This function causes the function update the state to be executed on the real time
processor. This function returns when the execution on the real time processor is
complete. The function update the state is called multiple times after the shot in
order to reconstruct the target vector content for archiving.

Calling format:

void host_install_update_the_state(struct rt_heap_misc *hssc_rtheap)

Arguments:

• hssc rtheap: Pointer in the address space of the host cpu process to the stan-
dard structure that describes the real time memory heap area.

Return value:
None.

DRAFT DRAFT DRAFT DRAFT 34

10.2.11 host install software setups

This routine is called each time the PCS enters the FIRSTLOCKOUT state when the
PCS is executing in a software test mode. It is responsible for running any installation
specific routines to prepare the PCS for software test mode. For instance, this function
would normally do any preparation that is necessary to allow the real time processor
to request data from the simulation server.

Calling format:

int host_install_software_setups(struct rt_heap_misc *hssc_rtheap,

int software_test_mode)

Arguments:

• hssc rtheap: Pointer in the address space of the host cpu process to the stan-
dard structure that describes the real time memory heap area.

• software test mode: The value of the software test mode flag.

Return value:
The function returns a completion status, 0 indicating good, other than 0 indicates
an error.

10.2.12 host install write simserver data

This function is called by host read data set simserver, the routine that receives
data from the simulation server. The data from the simulation server come in a
standard format that must then be interpreted and written into the correct locations
on the real time processor. Writing the data to the real time processor is the job of
this function.

Calling format:

void host_install_write_simserver_data(

struct rt_heap_misc *hssc_rtheap,

struct sim_exchange_info_out *from_sim_info)

Arguments:

DRAFT DRAFT DRAFT DRAFT 35

• hssc rtheap: Pointer in the address space of the host cpu process to the stan-
dard structure that describes the real time memory heap area.

• from sim info: The structure containing the data obtained from the simulation
server.

Return value: None.

10.2.13 host install parse command line

This function parses the arguments on the command line used to start the host cpu

process. There are 7 standard values that this function would be expected to find on
the command line. Normally, this function would call an infrastructure function to
obtain these values as follows.

host_parse_command_line(argc,argv,runmode,

lockhost, lockport, wavehost, waveport, msghost, msgport);

Then, host install parse command line can obtain any installation-specific values
from the command line. These values would normally be stored in global variables de-
clared in the file hostinstall.h where the code for the installation-specific functions
for the host cpu process is located.

Calling format:

void host_install_parse_command_line(int argc,char **argv,char *runmode,

char *lockhost, int *lockport, char *wavehost, int *waveport,

char *msghost, int *msgport)

Arguments:

• argc: The standard value that passes the number of command line arguments.

• argv: The standard array of pointers to the command line argument strings.

• runmode: The PCS operations mode string obtained from the command line.

• lockhost: The name of the processor where the lockout server process is exe-
cuting.

DRAFT DRAFT DRAFT DRAFT 36

• lockport: The number of the input communications port for the lockout server
process.

• wavehost: The name of the processor where the waveform server process is
executing.

• waveport: The number of the input communications port for the waveform
server process.

• msghost: The name of the processor where the message server process is exe-
cuting.

• msgport: The number of the input communications port for the message server
process.

Return value:
None.

10.3 Starting the shot cycle

The host real time process periodically sends a message to the lockout server request-
ing the present processing state of the PCS. Between shots this state is NULL.

When the shot is started, the state becomes FIRSTLOCKOUT. Each host real time
process starts the shot by filling in the real time cpu memory, then calls any host
specific category or algorithm initialization routines. The host real time process then
sends a message back to the lockout server indicating that it is ready for the final
lockout.

10.4 Filling the real time cpu memory

One of the biggest jobs of the host real time process is to load the memory of the real
time processor in preparation for a discharge. A description of this process is given
in this section.

10.4.1 Access to the real time cpu

In the DIII-D control system, the host real time process has access to the real time cpu
because the two parts are linked together into one executable image. In a case where
the two parts are separate, the host real time must access the memory of the real
time cpu by mapping its virtual address space to the memory that is mapped to the

DRAFT DRAFT DRAFT DRAFT 37

physical memory of the real time cpu. Thereafter, the host process can transparently
access the memory of the real time cpu by using the pointer imemory which is a global
variable for the host real time process.

The memory available could vary between the real time cpus. The maximum al-
lowed amount of memory for each cpu is given by the macro definition CPU MEMORY MAX

which is automatically generated by the config.c program in its output file definitions.h.
This value is compiled into the config.c program through the macro GEN CPU CONSTANTS

which is found in the installation specific file config.h. The order in which to load
data into the real time cpu’s memory is determined by the memory management code
in the waveform server (Sec. 11). The memory management code ensures that the
host process will not try to access data memory on the real time cpu outside the
allocated area.

10.4.2 Filling memory

The process of loading the memory of the real time cpu begins with the line

hssc_rtheap = fill_sc_rtheap(cpu_num,&exfile_info,&setup_infra);

in host cpu.c. This routine returns a pointer to the rtheap (“real time heap”), a
structure which contains all of the information necessary to locate any other data on
the real time cpu. The rtheap is the key for data access in real time. The pointer to
this structure is an argument to all key real time routines.

The code that does the work of loading the memory of the real time cpu is located
in the infrastructure file fill sc rtheap.c.

The first step in loading the memory is to initialize all of the memory to be used
to hold data to 0. This ensures that there will be no uninitialized memory and that
unused data locations will default to 0.

Then, the fill sc rtheap.c code steps through each of the data structures that
are part of the real time code, obtains the required data from the waveform server,
and copies the data into locations offset from imemory.

As long as the interface between the host process and the real time cpu’s memory
can be reduced to a single pointer in imemory, the code for loading data should be
transparently portable to other real time hardware.

If it is not possible to use a single pointer to transparently access real time cpu
memory from the host, an alternate approach is to malloc sufficient memory in the
host address space, point to this location with imemory, and load all of the data
there. Then, copy this entire block of data into the real time computer’s memory
using whatever method is available.

DRAFT DRAFT DRAFT DRAFT 38

10.5 Executing the real time code

When the state becomes FINALLOCKOUT, each host real time process starts the real
time code by instructing the real time process to execute the function run realtime

found in the infrastructure file realmain.c.
This is done directly for the pcs rt cpu process since the real time code is shared

with the host real time code. In stand-alone mode, where the two are separate
programs, the host real time process communicates with the real time process through
a shared memory segment instructing it to run the function.

This function performs the following actions.

1. initializes all phase sequences for all categories.

2. executes each of the category and algorithm specific initialization functions.

3. executes the installation specific function set time zero which synchronizes all
the real time processors.

4. executes the installation specific function wait for start signal which waits
for the master trigger to begin the shot. This function would turn off interrupts
for the operating system and start toggling a watchdog if one is implemented.

5. once the trigger has arrived, executes the infrastructure function time critical

(see Sec. 13.2.5) which loops through the function vector calling each function
until the value rtheap->return status is non-zero.

6. executes the function realtime cleanup which should perform functions to
clean up after the shot such as zeroing any D/A outputs.

7. executes each of the category and algorithm specific cleanup functions.

10.6 Archiving data

When the shot is finished, each host real time process is given permission to archive
data by the lockout server. This is done in series to avoid problems with synchro-
nization that might occur if a single file is used for storage.

This behavior can be modified by specifying the full path of a file using the environ-
ment variable ARCHIVE ORDER FILE in the pcs config info file used for operations.
This file, if found, should have the count of processors that can concurrently archive

DRAFT DRAFT DRAFT DRAFT 39

on the first line. Only set this to a value greater than 1 if the system can handle si-
multaneous archiving. The second line in the file is the archiving order of the physical
cpus. The default is numerical order.

When a host real time process gets permission to archive from the lockout server,
it does the following actions.

1. executes each of the category and algorithm specific host archival functions.
These functions can archive data in a nonstandard way.

2. executes the infrastructure function write archive files found in the file
writertfiles.c. This function gathers up the data for each pointname and
then executes the installation specific function write pcs pointname which
writes the given pointname. This function is found in the installation specific
file pcs shotfile.c.

3. optionally, dumps the real time memory to the “S” file (see Sec. 14).

The saved data for the vector elements in the shape, fpcommand, intcommand,
error, and pvector vectors are archived only if pointnames are provided in the algo-
rithm code. Target vector elements are recomputed after the shot and then archived.
Raw data and any digitial data are also archived.

If a pointname is shared between algorithms and multiple phases are used during
the shot, then the data from all phases that use a pointname are combined together.
It is possible to have a gap in the data where an algorithm that doesn’t use the
pointname runs.

Time pointnames are created separately from the data pointnames. The main time
pointname for each processor is TIMEPCSA<cpu> where ¡cpu¿ is the processor number.
This time pointname is used for all the vector elements except possibly the target
vectors, as well as the raw data and digital data. The time pointname for the target
vectors can be different if multiple phases are used through the shot and a pointname
is not used in one of the phases. These time pointnames would be something like
TIMEPCS<number-1> where ¡number¿ is the processor number multiplied by 100. This
allows for 100 of these per processor.

For operations and test modes, if the file write archives.dat exists in the data
directory, then archiving can be turned off if this file contains a ”0” as the only
character. A value of ”1” in the file turns archiving on. Archiving can be turned off
while testing to speed up the shot cycle.

DRAFT DRAFT DRAFT DRAFT 40

11 Management of memory on the real time com-

puter

The memory on the PCS real time processor cannot be treated in the same way that
the memory resource is handled in a typical program executing on a multitasking,
virtual memory operating system. There are several key differences.

1. The operating system on the real time processor probably doesn’t allow for
expansion of the addressable virtual memory through paging to a swap file on a
disk. Even if this were possible, the real time application probably can’t tolerate
the processing delays that would occur during disk operations. So the memory
on the real time processor must be treated as having a fixed size.

2. The physical memory available on the real time processor could be limited to a
relatively small amount.

3. It isn’t practical to have the real time code simply allocate (e.g. with malloc)
additional memory when it is required. The memory resource is limited on the
real time processor and it is difficult to predict the maximum amount of memory
that might be required when malloc is used in multiple locations in a program.
So, the real time application could run out of memory in an unpredictable way.
This would likely result in the failure of the real time task.

4. The amount of memory allocated for the stack will probably also be limited and
fixed. So, if functions in the real time code make extensive use of local variables
(which are usually placed on the stack), the real time application could fail in
an unpredictable way because it runs out of stack space.

5. Depending on the particular real time processor system, the memory available
for global and static variables could be limited.

In the PCS, all memory required by a control algorithm must be preallocated and
the malloc function is never used in real time. This avoids the first three problems
listed above. Preallocation of memory by a control algorithm is done by creating
parameter data blocks to hold precalculated data and scratch parameter data blocks
for temporary storage.

The last 2 problems in the list above are difficult to avoid except by careful
programming practice. It is advisable to avoid the use of local variables that require
significant amounts of storage space. Storage space in parameter data blocks should

DRAFT DRAFT DRAFT DRAFT 41

be used instead. It is also advisable to avoid the use of global and static variables
which introduce problems in addition to the amount of memory required. There is
further discussion of this in the section “Global and static variables on the real time
processor” in the “Application Programmer’s Guide.”

On each real time processor the PCS uses a single contiguous block of memory
called the “PCS memory heap.” This memory area holds all of the PCS real time
data structures. The size of each data structure within the PCS memory heap is fixed
during each discharge. There is no adjustment of data structure size or allocation of
memory in real time. The PCS data structures in this memory heap area are accessed
by code on the real time processor through the structure of type rt heap misc, com-
monly called rtheap, that is an argument to the real time functions as discussed in
the “Application Programmer’s Guide.”

During setup for a discharge, the waveform server determines the layout and
required size of the PCS memory heap for each of the real time processors. The
required size will depend on the PCS setup, e.g. which algorithms are in use and how
much memory is required for data archival.

The maximum amount of memory available on each real time processor for the
PCS memory heap is set to a maximum value. (see Sec. 10.4) After the required
size for the memory heap for the next discharge is determined, it is compared to the
maximum available memory. If the required size of the heap is too large, a fatal raw
data problem is registered. The PCS will not execute a discharge if a fatal raw data
problem exists.

The method actually used to make available the maximum available memory for
the PCS memory heap on the real time processor is installation dependent. This func-
tionality is implemented in routines in hostinstall.h. Usually the location of the
memory for the PCS memory heap is determined in the function host install inits

that is called to initialize the host cpu process. This function initializes three global
variables in order to point the PCS to the appropriate memory area.

1. void *RTMEMSTART: This is the pointer in the address space of the realtime pro-
cess or processor to the start of the PCS memory heap. This variable should not
be accessed as a global in functions other than host install inits. Functions
requiring this pointer call the function host heap pointer.

2. void *HOSTRTMEMSTART: This is the pointer in the address space of the host cpu

process to the start of the PCS memory heap. This variable should not be
accessed as a global in functions other than host install inits. Functions
requiring this pointer call the function host host heap pointer.

DRAFT DRAFT DRAFT DRAFT 42

3. void *imemory: In the stand alone mode of the PCS or in the online mode on
self-hosted real time processors, this is NULL to serve as a flag to indicate a
self-hosted real time processor.

In the online version of the PCS for real time processors located on a separate
CPU board, this pointer has a value that depends on the type of real time pro-
cessor. Its usage is strictly for real time processor-specific functions. Typically
this is used as an argument to routines that convert between pointers in the
address space of the real time process or processor and pointers in the address
space of the host cpu process or to identify a particular real time processor
to the installation specific code. If this value isn’t needed for address space
conversion routines or other installation specific functions, it should be set to
be the pointer in the address space of the host cpu process to the start of the
real time heap (i.e. same as HOSTRTMEMSTART). It should never be NULL in this
case.

In this description of these 3 variables, there is reference to a “self-hosted” real time
processor versus a processor located on a separate CPU board. A self-hosted pro-
cessor is one where the host cpu process and the real time process run on the same
processor. An example is the current DIII-D system with real time processors run-
ning Linux. The alternative is a system with a host processor and one or more real
time processors attached by some expansion bus such as VME. An example is a Sky
system. In both cases the assumption is made by the PCS infrastructure code that
the address space on the real time processor holding the PCS memory heap is mapped
into the address space of the host cpu process. (This mapping would usually be done
during the initialization performed by the function host install inits.) Code in
the functions in fill sc rtheap.c that perform the preshot initialization of the PCS
memory heap access it directly through pointers in the address space of the host cpu

process. It may be necessary to convert between pointers in the address space of
the host cpu process and the address space of the real time processor. Usually
installation-specific functions will be available for this purpose. The PCS functions
host install x hp and host install x p (defined in hostinstall.h) are generic
interfaces to the installation-specific functions.

In stand alone mode operation of the PCS the memory heap for all of the proces-
sors is located in one large shareable memory area on the processor hosting the stand
alone operation. The size of the shareable memory region is the sum of the maximum
memory values for each processor.

A layout of the memory heap is actually calculated each time the work queue in
the waveform server becomes empty. This preliminary memory heap size and layout

DRAFT DRAFT DRAFT DRAFT 43

result can be listed at any time using the options in the user interface “diagnostics”
menu. The option “memory usage summary” brings up a window with a listing of
the size of the memory heap on each real time processor. Also listed is a breakdown
of the total required memory into the amount of memory used for various purposes.
The option “RT processor memory layout” brings up a window with a listing of the
size and location of each of the blocks of memory allocated within the PCS memory
heap. Note that the “preliminary” memory layout will be identical to the final layout
used during the discharge if no PCS changes are made.

In the waveform server, the PCS memory heap layout is calculated in terms of byte
offsets from the beginning of the PCS memory heap. The “RT processor memory lay-
out” window shows the calculated offset and size for each PCS data structure. These
calculations are performed by the functions in the infrastructure file rtmemory.c.
The main function there is fill rtheap. This function places most of the infor-
mation about offsets into the PCS memory heap of the various structures into a
structure of type rt heap misc offsets. During setup for a discharge this structure
is copied to the host cpu process. This process converts the offset values into point-
ers during the process of loading the data into the memory heap on the real time
processor. This memory initialization is performed by functions in the infrastructure
file fill sc rtheap.

The PCS memory heap is divided into 2 portions: “cacheable” and “noncacheable.”
This attribute is specified by the code in rtmemory.c and is indicated for each data
structure on the “RT processor memory layout” window. This attribute is some-
what historical but still may possibly be useful in some systems. Memory that is
“cacheable” is intended to contain data that can be usefully brought into the real
time processor’s cache memory. Memory that is “noncacheable” contains data that
is not desirable to have in cache. These are data that, for instance, are known to be
needed only briefly when accessed or data in a large structure that is read completely
and would overwrite everything in the cache. In some systems it may also be neces-
sary to take care that the content of memory that can be written by more than one
processor is never brought into cache. Some processors (e.g. the i860 used originally
for the DIII-D PCS) have capability to control whether a data access is copied to cache
and so can take advantage of this memory organization. The rtmemory.c functions
don’t do anything specifically to have a particular affect on the cache functionality.
These routines simply divide the PCS memory heap into 2 portions and group the
cacheable structures together in one portion and the other structures together in the
other portion. Separating the 2 memory areas ensures that when cacheable memory is
accessed, adjacent noncacheable memory is not accessed simultaneously by accident.

DRAFT DRAFT DRAFT DRAFT 44

In order to set the cacheable preference the routine set cache preference can be
called from a function in any algorithm which is always running (like the parameters
function in the system algorithm). This function takes two arguments: a macro
representing the section (like PIDLOOKUP PREFERENCE) and an argument giving either
the macro NONCACHEABLE or the macro CACHEABLE. All these macros can be found in
the file infra/serverdefs.h. The only three sections that are NONCACHEABLE
by default are ADCOMBUFFER, DMABUFFER, and the TIMETOSTOP FLAG.

12 The watchdog timer

13 The real time procedure

The code that executes on the real time processor is compiled in an installation-
specific manner. The basic methods to get code to execute on the real time processor
will be strongly dependent on the real time platform and its associated software.

There is actually very little code for the real time processor that is part of the
infrastructure.

13.1 Structure of the real time code

The main file for the real time code is the infrastructure file realmain.c. This
file is compiled when the installation-specific code is built. realmain.c has include
statements that bring in all of the real time code that is part of the control algorithms.

realmain.c can be compiled with or without the macro NOMAIN defined. This
macro determines whether a function main() is created. This function is required for
the executable used in the PCS stand alone mode. Depending on the type of real
time processor, it may or may not be required for the code that actually executes on
the real time processor.

realmain.c includes a function called time critical which contains the main func-
tion that is executed during the real time control portion of the discharge. There
are also other functions like startup state and update the state and a number
of others. All of these functions can be replaced by installation-specific code in the
file realinstall.h by setting a macro beginning with REPLACE routinename, e.g.,
REPLACE UPDATE THE STATE.

The infrastructure file phasetick c.c contains the code that executes at the end
of each control cycle to determine whether a phase clock tick has elapsed and, if so,

DRAFT DRAFT DRAFT DRAFT 45

to update the target vector and associated other real time data structures that are
handled by the infrastructure.

13.2 Infrastructure functions

13.2.1 new shot phase tick

The PCS uses two time intervals during the real time control: a “fine scale clock
tick” which is usually 1 microsecond and is the units of rtheap->currenttime and
rtheap->update time and a “shot phase clock tick” which is the smallest interval
between vertices and is set by the installation (1 millisecond is a good value). The
shot phase clock tick should not be any smaller than the cycle time of the fastest
processor.

This function is called whenever rtheap->update time is greater than or equal to
the next shot phase clock tick. Its purpose is to switch phase sequences if necessary,
switch phases if necessary, and make changes to non-continuous target vector elements
using the change list. If a phase switch is found to be neccessary, the phasebegin or
phaseenter function is called.

13.2.2 new continuous target c

The purpose of this function is to compute the new values of the continuous target
vector elements from the values in the mb and deltat arrays. The values in deltat

are then incremented.
Each of the ”continuous” target vector elements is specified by a series of connected

line segments. Each line segment is defined by specifying the slope and intercept of
the line segment so that:

new target vector value = slope * deltat + intercept

(or y = m * x + b in shorthand, thus the slope/intercept pair

is an mb pair).

Here, deltat is the delta time from the vertex that defines the start of a line
segment in units of shot phase clock ticks. intercept is, then, the Y value at that
vertex.

This method of defining the line segment avoids having unreasonably large or
small values for the intercept since the Y value of the vertex will always be a value

DRAFT DRAFT DRAFT DRAFT 46

on the target vector waveform. The slope will never be exceptionally large since the
time step is, at the least, one shot phase clock tick.

The slope/intercept (mb) array contains a pair of slope,intercept values for each
continuous target vector element. The deltat array contains the time in shot phase
clock ticks (e.g. 1 ms) since the previous vertex for each target vector element. The
deltat array element is initialized to zero when a new vertex is reached. This routine
increments deltat by 1.0 when a new target vector element is calculated. This method
avoids having to subtract two possibly large numbers as would happen if deltat =
(current time) - (time of vertex) was used in the computation.

13.2.3 startup state

This function is called once before the real time control portion begins. It initializes
data structures to their correct states. It then executes the new shot phase tick

function which sets the phase sequence for each category and initializes the first phase
that is active in each phase sequence. Initial values for all target vector elements are
also set and the phasebegin function for each phase is called.

13.2.4 update the state

The PCS uses two time intervals during the real time control: a “fine scale clock
tick” which is usually 1 microsecond and is the units of rtheap->currenttime and
rtheap->update time and a “shot phase clock tick” which is the smallest interval
between vertices and is set by the installation (1 millisecond is a good value). The
shot phase clock tick should not be any smaller than the cycle time of the fastest
processor.

This function determines whether the time has reached the time of the next shot
phase clock tick. If so, then the new shot phase tick function is called to make any
necessary phase sequence changes, phase changes, and non-continuous target changes.

This function also determines whether new target values need to be computed by
calling the new continuous target c function. The target vector is recomputed at
intervals of one shot phase tick, on the half-tick. The target vector is also recomputed
if any phase changes were made.

Its possible that it is necessary to execute these two tasks more than once if the the
value of rtheap->update time is greater than one shot phase clock tick later than the
last time this function was called. In that case, this function will loop, incrementing
the next shot phase tick, until this value is greater than rtheap->update time.

DRAFT DRAFT DRAFT DRAFT 47

13.2.5 time critical

This function does the real time control during the plasma discharge. It starts exe-
cuting when the primary start time has been reached.

It first calls the startup state function to initialize phase sequences, phases, and
the target vector elements. It then calls the function which starts data acquisition if
such a function is defined (this was needed for the Supercard hardware).

This function then goes into a while loop until either an error occurs or the time
to stop has been reached. This loop executes the functions in the function vector.

After each function executes, the values of rtheap->currenttime and rtheap->update time

are compared. If the current time is greater, then the update the state function
is called to make any phase sequence or phase changes, and to update the tar-
get vector. After all the functions in the function vector have been executed, the
value of rtheap->update time is compared to the value of rtheap->currenttime

and if less, then rtheap->update time is set equal to rtheap->currenttime. The
update the state function is then called.

The time at which the call to update the state is made is important. It was
originally called only after all functions in the the function vector were executed.
This assumed that the value of rtheap->currenttime was being set to the next
expected value in the last function. The update the state function then looked at
the current time to make its updates.

But with the move away from the Supercards, the function that sets the current
time was moved to a different location in the function vector. The desire was to
get the state updated at the end of the function vector when processors have time
leftover before the next set of data are available. A new value rtheap->update time

was added which could be set to the next expected time. Then the state could be
updated to this new time while the processor is expected to be waiting to start the
next cycle.

Then, if the value of rtheap->currenttime is set to a value that is later than
the expected time, rtheap->update time, the state must be updated again. Thus,
the check of these two times after each function is executed. This check would be
sufficient in itself, but the computation time needed to get the state updated would
delay the execution of the rest of the functions. So the most efficient method is to set
rtheap->update time to the expected next time in the last function in the function
vector so the computational time needed to update the state does not delay the real
time control.

If SAVE TIMING is used, then this function saves the number of processor clock
ticks before and after each function and puts these values in a scratch parameter data

DRAFT DRAFT DRAFT DRAFT 48

block pointed to by the global variable save timing ptr.

13.3 Installation-specific functions

The real time code requires a set of installation-specific functions that are called by
the infrastructure code described in Sec. 13.1. These are functions that know how to
perform tasks required by the infrastructure code that are specific to the particular
real time processor hardware used in the PCS. Each of these required functions is
described in this section. By convention, these functions are contained in the file
realinstall.h in the installation-specific code area.

13.3.1 real install init

This routine contains any initializations code which is needed at the time the realtime
process starts up. This code is called only once upon the start up of a PCS real-time
process. This function is called only if a main() function is compiled (see Sec. 13.1).

Calling format:

int real_install_init(int argc, char **argv)

Arguments:

• argc: The standard value that passes the number of command line arguments.

• argv: The standard array of pointers to the command line argument strings.

Return value:
Any value returned is ignored.

13.3.2 real install main

This routine contains any initialization code which is needed at the time the realtime
process starts up. This code is called only once upon the start up of a PCS real-
time process. This function is called only if a main() function is not compiled (see
Sec. 13.1).

Calling format:

int real_install_main(int argc, char **argv)

DRAFT DRAFT DRAFT DRAFT 49

Arguments:

• argc: The standard value that passes the number of command line arguments.

• argv: The standard array of pointers to the command line argument strings.

Return value:
Any value returned is ignored.

13.3.3 set time zero

In a multi-CPU PCS configuration this routine synchronizes all CPUs and sets the
value in rtheap->timezero to a reference start time.

In a single CPU PCS configuration this routine simply sets the value of rtheap->timezero
to 0.

Calling format:

void set_time_zero(struct rt_heap_misc *rtheap,int cpu_num)

Arguments:

• rtheap: Pointer to the standard structure that describes the real time memory
heap area.

• cpu num: The PCS physical CPU number of the real time processor on which
the code is executing.

Return value:
None.

13.3.4 wait for start signal

This function is called after a real-time process has finished all of it’s preshot initializa-
tions and is at the point where it is ready to begin the shot. The function should wait
until an installation specific event indicating the time of the start of shot has arrived.
When this function returns the time should be approximately PRIMARY START TIME.
The function time critical that executes all of the real time control algorithms
during the discharge is called immediately after this function returns.

Calling format:

DRAFT DRAFT DRAFT DRAFT 50

int wait_for_start_signal(struct rt_heap_misc *rtheap)

Arguments:

• rtheap: Pointer to the standard structure that describes the real time memory
heap area.

Return value:
If the function completes without error, the function should return 0. If there is an
error, an installation-specific, positive, error code should be returned. If the return
value isn’t 0, the time critical code is not executed and the PCS completes the shot
immediately.

13.4 Data acquisition

In general, in order to do feedback control it is necessary to acquire data from sensors
on the controlled system. These data can be either analog values that have been
converted to digital form with a digital to analog converter module or the data can
come from digital input/output boards directly in digital format.

The PCS infrastructure handles an unlimited number of channels of data from
A/D converter modules as well as digital bit data. See Sec. 3.2 for details of the
dma region.

The infrastructure makes a few assumptions about how the digitizer data will
be handled, but most of the data acquisition functions are performed by installation
specific code.

This section describes how the installation specific code and the infrastructure
combine to acquire the digitizer and digital i/o data.

NOTE: THIS IS AN EXPLANATION OF OLDER VME BASED HARDWARE.
SEE Sec. 17 FOR NEWER LINUX BASED SYSTEMS.

The data acquisition is divided into two portions.

• The “start acquisition” routine, normally placed near the end of the function
vector, is used to set up the data acquisition and, possibly, trigger the digitizers.
The assumption is that there will be a delay after the digitizers are triggered
before the data are available. During this delay the PCS can finish the work of
the current cycle. So, acquisition of data for a control cycle is started near the
end of the previous cycle.

DRAFT DRAFT DRAFT DRAFT 51

The digitizer data normally would be written directly to the processor memory
by the acquisition circuits using DMA hardware. The start acquisition routine
determines the location of the DMA buffer and loads the DMA hardware with
the address.

The data archiving facility of the PCS is based on the procedure that when data
in a buffer should be saved for archival, the pointer to the buffer is changed to
a new buffer leaving behind the data to be saved. All PCS buffers that contain
data for archival are saved at the same time. So, this is the procedure used for
saving the raw data from the digitizers.

The DMA buffer is reused until it is time to move to another buffer leaving a
set of data behind. Most of the work of changing buffer pointers to save data is
performed after all function vector routines are called. But, in order to decide
which DMA buffer to use for data for the next cycle, the decision about whether
it is time to archive data must be made by the start acquisition routine.

• The first routine called from the function vector is normally the “get new data”
routine that collects the new set of data to be used on the control cycle that is
just starting. Presumably, the data acquisition was started by another routine
(the start acquisition routine), so the get new data routine first waits for a
flag that the new data are available. The new data are expected in the DMA
buffer. When the data arrive, the get new data routine copies the digitizer
values, subtracts the appropriate baseline value and writes result in a buffer
with a fixed location. It is from this buffer (rtheap->datavector) that all of
the control algorithms read the data they need.

The get new data routine also copies the communication vector. The commu-
nication vector is a region of memory where other processors can write data.
Because these data are written with DMA operations, the processor doesn’t
know when the data change. The get new data routine reads the communica-
tion vector with instructions that know not to look in the cache memory for
the communication vector values. This guarantees that the correct values are
obtained directly from the processor memory. The communication vector val-
ues are copied into the “control cycle loop” copy of the communication vector
(rtheap->combufloop). This is a buffer that can be safely accessed by C code
without disturbing new DMA writes of new data into the communication vec-
tor. All algorithm code uses the control cycle loop communication vector copy
which will not change during a control cycle.

Finally, the get new data routine determines the current time. In the DIII-D

DRAFT DRAFT DRAFT DRAFT 52

PCS, the data that arrive from the digitizers are accompanied by a value giving
the time that the data were acquired. This value is written to rtheap->currenttime.
Algorithms use this value for control work, and the infrastructure code uses this
value to determine when to change target vector values.

The get new data routine compares the time value to the “time to stop” value
provided by the operator to determine if the shot should be over. If so, the
master data acquisition processor sends a flag to the slave processors telling
them to stop. Then the get new data routine causes a complete return from the
time critical routine.

13.5 Software testing modes

The PCS has 3 special modes of operation referred to as software testing modes. The
PCS operator can choose one of these modes on the “operating setup data” window in
the user interface. The real time code can detect that a software test mode has been
chosen by testing the value of rtheap->software test mode. The possible values
are the following.

• NORMAL OPERATION MODE: No software test mode has been selected.

• SOFTWARE TEST MODE: The mode called “software test mode” has been selected.
This is an installation-specific test mode. See Sec. 13.5.1 for a discussion of how
to implement this mode.

• SIMULATION TEST MODE: In this operation mode the PCS communicates with a
separate simulation server process to obtain input data. See Sec. 13.5.2 for a
discussion of how to implement this mode.

• SETUP TEST MODE: In this mode the PCS executes an entire shot cycle normally,
except that the time critical portion is not executed. That is, the function
time critical is not called. This mode is intended to be used to obtain an
image in the S file of the PCS real time memory heap as it is configured at the
start of a shot. This is useful for debugging problems that result from errors
in configuring the real time processor’s memory during shot setup. There is no
special installation-specific code required to implement this testing mode.

13.5.1 Implementing software test mode

In software test mode, the PCS acquires its input data from an installation-specific
function. A typical application of this mode is to provide 0 for all of the input data

DRAFT DRAFT DRAFT DRAFT 53

and simply step the current time value forward on each cycle. This mode is useful
for quick tests that don’t involve the actual input data.

In order to implement this mode of operation, some installation-specific “real
time” code is required. The function that normally acquires the PCS input data from
digitizers and/or other sources during the real time execution, should detect that the
PCS is operating in software test mode. When this mode is detected, an installation-
specific function is called. The function should copy the desired input data into the
appropriate locations on the real time processor in order to emulate the procedure
followed when data are acquired from digitizers.

To detect that the PCS is operating in software test mode, the data acquisition
function should test the value of rtheap->software test mode. This flag has the
value SOFTWARE TEST MODE when the PCS is operating in software test mode.

The simplest way to implement the installation-specific function to provide the
dummy data in this operation mode is to call a function that executes on the real
time processor. However, it may be desirable to have the function that provides the
data execute as part of the host cpu process on the host processor. In this case, the
same type of procedure that is discussed in Sec. 13.5.2 for implementing simulation
mode could be used.

13.5.2 Implementing simulation mode

In simulation mode, the PCS acquires its input data from the simulation server pro-
cess. Also, the PCS calculation results from each cycle are sent to the simulation
server to allow, if desired, a simulation of the plasma response to the PCS commands.

In order to implement this mode of operation, some installation-specific “real
time” code is required. The function that normally acquires the PCS input data from
digitizers and/or other sources during the real time execution, should detect that the
PCS is operating in simulation mode. When simulation mode is detected, the real
time data acquisition function should cause the function host read data set simserver

to be called instead. This function communicates with the simulation server to ex-
change the necessary data. It then calls the installation-specific function host install write simserve

(Sec. 10.2.12) which is responsible for copying the data from the simulation server
to the correct locations on the real time processor in order to emulate the procedure
followed when data are acquired from digitizers.

To detect that the PCS is operating in simulation mode, the data acquisition
function should test the value of rtheap->software test mode. This flag has the
value SIMULATION TEST MODE when the PCS is operating in simulation mode.

The functions host read data set simserver and host install write simserver data

DRAFT DRAFT DRAFT DRAFT 54

are both part of the host cpu process and are executed on the host computer.
(host read data set simserver is located in the infrastructure file hostmain.c.)
So, there must be some method available for the real time processor to cause the
host cpu process to call host read data set simserver. The real time processor
must then wait for this function to complete before it continues. If nothing more
sophisticated is available, the host cpu process and the real time processor could
simply use a couple of variables to implement handshaking flags. The host cpu

process could poll one flag as part of the code in host install start realtime or
host install stop realtime to detect when host read data set simserver should
be called. Then, the real time processor could poll the other variable to detect when
the function has completed. Since in simulation mode the PCS isn’t really executing
in real time, the speed of this handshaking process isn’t important (except for the
affect it has on the total time to run a simulation mode shot).

13.6 Hardware test mode

The PCS operator can choose on the “operating setup data” window that the operat-
ing mode should be “hardware test.” Hardware test mode is an installation-specific
mode of operation. It is intended for use in testing the PCS as it normally would be
used during tokamak operations, with all data being acquired through the standard
digitizer and digital input/output hardware. In this test mode, though, the PCS isn’t
operated in synchronization with the tokamak timing system and, because there is no
plasma, the diagnostic data are meaningless. This mode of operation simply allows
a test of the basic operation of the PCS.

A separate hardware testing mode is defined to allow this operation without syn-
chronization with the tokamak shot. Installation-specific triggering, etc. that is
monitored during normal operation of the PCS might prevent operation without
synchronization unless there is some special code to do something else during test-
ing mode. For instance, if the PCS waits for a hardware trigger before proceeding
during normal operations, this trigger wouldn’t appear during a hardware test. So,
installation-specific code is necessary to detect that hardware test mode is in effect
so that the delay for the hardware trigger can be skipped.

The PCS code can detect hardware test mode by monitoring the value of rtheap->hardware test mo

The value is 0 during normal operations and is a nonzero value during hardware test
mode.

Hardware test mode can be used to do a hardware simulation if data are loaded
before the shot and this data OVERWRITES the data from the digitizers and other
hardware. It is customary to preload the data in the data acquisition’s algorithm

DRAFT DRAFT DRAFT DRAFT 55

(usually called ”baselinedata”) in the preshot ”host init” function. The same func-
tions used in the simserver to load shot data can also be used here. Then in real time
the correct set of data can be found by matching the current time with the time of
the data set and the data values can be written to the datavector.

14 Accessing the S file data

The “S” file is optionally written after the discharge with a copy of the real time
computer’s memory used for data storage for the PCS. A separate file is written for
each real time cpu. A set of IDL routines is available for use in interactive examination
of the content of an S file. The routines know how to locate the data structures that
are particular to the PCS.

These routines are compiled into the file s file access. The first routine to call
is getrtdata. For example

IDL> getrtdata,900002,1

% Compiled module: GETRTDATA.

shotnumber = 900002

cpunumber = 1

This is the setup routine for reading data from PCS S shotfiles

For a complete set of idl routines which can be used here enter

listget

at the idl prompt

The s file search directory is: /link/ops/store_v10/

NOTE: the directory to be searched can be specified in the

environmental variable SFILEDIR.

Reading filename = /link/ops/store_v10//s900002_cpu1.dat

processor type 1

rtheap start address = 1110834688

endrtmem = 1129571680

startrtmem = 1108553728

DRAFT DRAFT DRAFT DRAFT 56

size of all memory = 21017952

size of file = 25753448

**

finished loading structure: rtheap

**

There are many routines that can look at the structures found in the real time
heap. Type the command listget to get a listing of these routines. Some of the
more useful routines are the following:

• dumpsfile[,filename] dumps everything in the S file.

• dumplayout[,filename] dumps the layout of the real time heap.

• dumprtheap[,filename] dumps the content of all the structures in the real time
heap.

• dumpextra dumps the content of the extra file info structure.

• dumphost info dumps the content of the host info offsets structure.

• getrtheap,rtheap returns the rtheap structure.

• printrtheap,rtheap prints the rtheap structure.

• getttime,times gets the times that were saved during the shot.

• dumpw,address,count[,filename] prints the content of the S file starting at the
given address as integer and float numbers. count is the number of values to
print. The address can be an offset into the S file, or a memory address given
by a pointer found in one of the real time structures. This is particularly useful
to look at parameter data.

• getphase,phases[,category] returns the phases used in real time. If category is
not given, then all phase structures are returned. Note that the category value
is 0 based.

There is a routine to read every structure that is found in the real time heap. These
routines are very useful for finding problems that appear to be related to memory
allocation.

DRAFT DRAFT DRAFT DRAFT 57

15 Archiving and restoring PCS data

The PCS produces data that should be archived into a permanent database for use
in evaluating the performance of the PCS and for reproducing previous PCS setups
for new discharges.

The PCS archives two types of data.

1. The PCS setup is archived by the waveform server process.

2. The host cpu processes archive data acquired and calculated during the dis-
charge. These data are primarily values versus time. The data values can be
either integers or floats.

The PCS restores data from the database for two purposes.

1. All or a portion of the PCS setup that was archived for a given discharge can
be restored to be used as part of the setup for another discharge.

2. Diagnostic data are restored by the simulation server.

These archiving and restoring functions are managed by code within the infras-
tructure. The infrastructure code calls several low level routines that implement the
functions required to add or restore data in the installation-specific database format.
To implement the required archive and restore capability at a new PCS installation it
is only necessary to write the required low-level installation-specific functions. These
functions are described in this section.

15.1 Overview of installation-specific database functions

The installation-specific functions for PCS archiving and restoring are located in
the files pcsshotfile.c and close shotfile.c. The functions in pcsshotfile.c

are linked into the the waveserver and the host cpu programs. The functions in
close shotfile.c are linked into the lockserver program. Each function is respon-
sible for different tasks. Here is an outline of the tasks. (The term “pointname” is
used here to represent a set of archived data for a given shot.)

Here are the functions required in the file pcsshotfile.c. Note that the function
close shotfile is found here as well as in the file close shotfile.c. This function
used to be shared between all the processes needing it, but this proved to be too
difficult to maintain. Thus, it was duplicated in both files.

DRAFT DRAFT DRAFT DRAFT 58

1. The waveserver needs to be able to read a PCS setup from a shot archive. The
function read shotsetup shotnum is used for this. This function is called by
the waveform server whenever a PCS restore is performed by the PCS operator.

2. At the start of a discharge, in response to a command from the lockout server,
the waveserver saves the PCS setup by calling the function write pcs pointname

which is responsible for writing the PCS setup data to the new shot archive.

3. After the shot, the host cpu processes write pointnames to the shot archive
using the function store data. Each host cpu process writes data in turn in
response to a command from the lockout server. The shot file would need to
be opened when the first pointname is written. A global variable could be
used to indicate the file is open and this variable could be checked before each
pointname is written.

4. When all pointnames have been written, the close shotfile function is called.
The shot file should then be closed and the global variable reset to indicate this.
Note that each host cpu process finishes writing its pointnames before the next
one starts so it is not neccessary to do any file locking.

5. The restore interface has the ability to display the phase sequence stack and the
phase stack pointnames that are archived in a shot (e.g., pointnames PHASESTK1
and SEQSTK1). In order to display this information the waveserver needs to
retrieve these pointnames. The function read pointname shotnum is used for
this task.

Here are the functions required in the file close shotfile. Note that the function
close shotfile is found here as well as in the file pcsshotfile.c. This function
used to be shared between all the processes needing it, but this proved to be too
difficult to maintain. Thus, it was duplicated in both files.

1. In the lockout server process at the time of final lockout:

• The function delete shotfile is called to delete any existing shot file for
the given shot. Deleting the existing shot file can be used to avoid problems
that arise if the same pointname is used multiple times in a given shot file.
This problem can arise, depending on the database implementation, if the
same shot number is used more than once, a common occurrence when
testing.

DRAFT DRAFT DRAFT DRAFT 59

• Also, any installation-specific preparation for a new shot archive could be
done at this time. This might involve something simple like the creation
of a shot file. Or it may involve more time-consuming tasks such as the
”registering” of a new shot (e.g. MDSplus archives require the creation of
new ”trees” for data storage).

2. After all archiving is complete, the lockserver process calls close shotfile

which is responsible for “closing out” the shot archive. The necessary work
here is defined by the installation. This might include writing a flag in the
archive indicating that the shot is “closed” to new data, or copying the file to
another location.

15.2 Functions found in file pcsshotfile.c

15.2.1 write pcs pointname

This function is called to archive the PCS setup.
Call format:

int write_pcs_pointname(

char *ptname, /* name of the data being archived */

struct pfi42 *pthead) /* a structure defined in the infrastructure

(in file pfi.h) */

The setup data are “parcelled” by the infrastructure code into separate groups
based on the data type. These groups are char (or ascii), short int (16-bit), int
(32-bit), float (32-bit), and double (64-bit). In addition, a checksum array is added
which keeps track of the counts in each group as the setup gets parcelled. The type
of data in the checksum array is specified by a flag in the function arguments. The
installation-specific function is responsible for taking these groups of data and storing
them and their sizes in an archive.

One possible way of storing this data is to store the pfi42 header structure, followed
by the data. This is how the setup is written out by the waveserver to the NextShot
and future shot archive files (see function store shotsetup in setup routines.c in
the infrastructure).

Function arguments:

DRAFT DRAFT DRAFT DRAFT 60

• ptname: The pointname to use for archiving the data. This is the same as the
definition of the macro pcs setup pointname in the infra installdefs *.h

file that is used to hold installation-specific tuning parameters for the infras-
tructure.

• pthead: The pointer to a structure that contains the pointers to the data to be
archived. The fields in the pfi42 structure that are used to pass input to this
function are the following:

– snum: the shot number.

– nwascii: the count of 16-bit words of ascii data.

– nwint16: the count of 16-bit words of 16-bit integer data.

– nwint32: the count of 16-bit words of 32-bit integer data.

– nwreal32: the count of 16-bit words of 32-bit real data.

– nwreal64: the count of 16-bit words of 64-bit real data.

– nwdata: the count of 16-bit words of checksum data.

– nbdata: the number of bits in the checksum data type. For new data this
is always 32. (For DIII-D there is some data archived where this value was
16.)

– vhascii: the pointer to the ascii data.

– vhint16: the pointer to the int16 data.

– vhint32: the pointer to the int32 data.

– vhreal32: the pointer to the real32 data.

– vhreal64: the pointer to the real64 data.

– ptdata: the pointer to the checksum data.

Note that the counts are given in 16-bit increments (for historical reasons).

15.2.2 read shotsetup shotnum

This function is called to restore the PCS setup data. It is the companion to
the function write pcs pointname (Sec. 15.2.1). The function is responsible for
finding the setup data in the location into which it was archived by the function
write pcs pointname and returning the data to the calling function. The data are re-
turned in the same parcelled out groups that were provided to write pcs pointname

DRAFT DRAFT DRAFT DRAFT 61

when the data were archived. The locations and amount of data are indicated by
filling in the same fields in the struct pfi42 function argument that are provided to
write pcs pointname. If the data are stored as suggested in Sec. 15.2.1, then it can
easily be read (see the function read shotsetup setupfile in file setup routines.c

in the infrastructure).
Calling format:

int read_shotsetup_shotnum(

int shotnum, /* shot number */

struct pfi42 *ptinit) /* a structure defined in the infrastructure

(in file pfi.h) */

Function arguments:

• shotnum: The shot number for which the PCS setup should be fetched.

• pthead: The pointer to a structure into which the information about the re-
stored setup data should be placed. The fields to fill in are the following.

– nwascii: the count of 16-bit words of ascii data.

– nwint16: the count of 16-bit words of 16-bit integer data.

– nwint32: the count of 16-bit words of 32-bit integer data.

– nwreal32: the count of 16-bit words of 32-bit real data.

– nwreal64: the count of 16-bit words of 64-bit real data.

– nwdata: the count of 16-bit words of checksum data.

– nbdata: the number of bits in the checksum data type.

– vhascii: the pointer to the ascii data.

– vhint16: the pointer to the int16 data.

– vhint32: the pointer to the int32 data.

– vhreal32: the pointer to the real32 data.

– vhreal64: the pointer to the real64 data.

– ptdata: the pointer to the checksum data.

DRAFT DRAFT DRAFT DRAFT 62

This function manages its own memory allocation. On the first call to the function
the pointers in pthead are NULL. On subsequent calls the pointers will be preserved
at the values written on the previous call. So, read shotsetup shotnum must handle
decisions about either freeing any memory previously allocated or reusing the same
memory.

15.2.3 store data

This is the function responsible for archiving PCS data that are obtained during the
real time processing. This function archives one set of data values versus time each
time it is called. (For DIII-D, this means that one “pointname” is written for each
call to the function.)

Calling format:

int store_data(

int chnl, /* channel index */

int shotnum, /* shot number */

char *ptname, /* pointname */

char *timebase, /* timebase pointname */

char *ptdesc, /* pointname description */

char *data_type, /* data type */

float inhnum, /* inherent number */

float phys_zero, /* physics zero or baseline */

int delta_bytes, /* bytes between time values */

int nblocks, /* contiguous data blocks */

int *nsamples, /* number of samples */

int **first_data) /* first data value */

Function arguments:

• chnl: This argument is relevant only for data of type “raw” or “dio”. It is the
index in the struct archive vector info of the pointname of the data to be
archived. See below for further discussion.

• shotnum: The number of the shot for which data are being archived.

• ptname: The pointname for the data being archived.

DRAFT DRAFT DRAFT DRAFT 63

• timebase: The name of the pointname containing the timebase data corre-
sponding to the data being archived. See below for further discussion.

• ptdesc: A character string indicating where the data originated in the PCS.

• data type: This argument indicates the type of data being archived. The
possible values are “timebase”, “raw”, “dio”, “int”, or “float”. See below for
further discussion.

• inhnum: The “inherent number” for the data. The inherent number is the value
by which the data should be multiplied to obtain a desired units conversion.
A simple example is a conversion from volts to amps. This value comes from
the vector info structure in the algorithm master file. It can optionally be
archived with the data (depending on the installation-specific requirements).

• phys zero: The “physics zero” value from the vector info structure in the
algorithm master file. This value can optionally be archived with the data
(depending on the installation-specific requirements). For “raw” data this is
the baseline value acquired by the PCS.

• delta bytes: The count of bytes separating the values to be archived in the
input array. See below for further discussion.

• nblocks: The count of blocks of values in which the input data are provided.
See below for further discussion.

• nsamples: An array giving the number of values in each block. See below for
further discussion.

• first data: An array of pointers to the first data value in each block. See
below for further discussion.

This function is used to archive all of the various types of data saved during
the real time processing. The data type argument indicates the type of data to be
archived. The meaning of the various data types is as follows.

• timebase: These are values of type double. The values are the sample times ap-
propriate for one or more pointnames. The timebase data are typically archived
in a pointname and the name of the appropriate timebase pointname is then
recorded with the actual data values. Then, software that accesses a set of data
values would read the data from the data pointname, also find the timebase

DRAFT DRAFT DRAFT DRAFT 64

pointname from the data pointname, and then read the timebase data from its
pointname.

• dio: Raw data obtained from a digital input/output source. This is always an
array of type short.

• int: An array of values of type int. For instance, these values might come
from the “intcommand” vector.

• float: An array of values of type float. For instance, these values might come
from the “shape” vector.

• raw: Values acquired from the analog digitizers. See below for further discus-
sion.

The “raw” data are contained within data structures of type dma region. The
function arguments point to the data as values of type float. However, the actual
format of the data and how it is treated during archival will be installation-specific.
For DIII-D, for instance, the original integer values obtained from the digitizer are
extracted from the data and archived as values of type short.

The chnl argument is only relevant for “raw” and “dio” data. This value is only
needed if some installation-specific values must be obtained for archival from an array
of values for each input data channel. The value of chnl is the index into the struct

archive vector info array which gives the pointnames of the data to be archived.
This structure array exists as a parameter data block in the host cpu process if any
raw data are to be archived. A second parameter data block indicating the size of
this array must also exist. Similar blocks must exist for the “dio” data if desired.
The names of all these blocks are given by definitions in the installdefs.h file.

The inhnum and phys zero arguments are the values specified in the vector info

structure initialized in the algorithm master files. The “inherent number” is the
multiplication factor to use when converting the data to physics units and the “physics
zero” is the zero offset. These values can be stored with the pointname if desired.
Also specified as arguments are the “pointname description”, which may be archived,
and the shot number.

The nsamples and first data arguments are arrays because they represent counts
and pointers, respectively, of the phases used throughout the shot. The nblocks ar-
gument indicates how many phases. So to create a one- dimensional array of data,
the total size must first be found by counting the number of samples in each block:

for(iblock=0, nstot = 0; iblock<nblocks; iblock++)

DRAFT DRAFT DRAFT DRAFT 65

nstot += nsamples[iblock];

Here is an example of how to treat data of type “float”.

int iblock; /* block index */

int isample; /* sample index */

int nstot; /* total samples in all blocks */

int nbtot; /* total bytes for all values */

int bytes_per_value; /* bytes per data value */

void *memptr = NULL; /* malloc result */

char *outptr; /* output data pointer */

char *inptr; /* input data pointer */

/*

count total samples

*/

for(iblock=0, nstot=0; iblock<nblocks; iblock++)

nstot += nsamples[iblock];

if (strcmp(data_type,"float") == 0)

bytes_per_value = sizeof(float);

nbtot = nstot * bytes_per_value;

memptr = malloc(nbtot);

/*

gather data into data buffer

*/

outptr = (char*)memptr;

for(iblock=0; iblock<nblocks; iblock++)

{

inptr = (char*)first_data[iblock];

for(isample=0; isample<nsamples[iblock]; isample++)

{

if (strcmp(data_type,"float") == 0)

*((float *) outptr) = *((float *) inptr);

DRAFT DRAFT DRAFT DRAFT 66

outptr += bytes_per_value;

inptr += delta_bytes;

}

}

free(memptr);

Here is an example for the “raw” data. It is here that the installation is allowed
to change the size of the data to be archived. For example, if the raw data are really
12 bit digitizer data, it may be desired to store it as 16 bit shorts instead of 32 bit
floats. We will do just that in the following example.

Malloc memory for the data using this total count and the size of the archive data.
Then loop through the data again moving the sample values into the data block.

bytes_per_value = delta_bytes/2; /* data comes in as 4 byte floats */

memptr = (char *) malloc(nstot * bytes_per_value);

outptr = (char *) memptr;

for(iblock=0; iblock<nblocks; iblock++) {

inptr = (char *)first_data[iblock];

for(isample=0; isample<nsamples[iblock]; isample++) {

*((short *) outptr) = *((short *) inptr);

outptr += bytes_per_value;

inptr += delta_bytes;

}

}

free(memptr);

The timebase argument is a character string indicating the pointname of the time
array. The PCS was designed to store the timebases as separate pointnames. If the
installation wishes to archive the time values with the data values, then timebases
will need to be stored in static memory, by name, so the data can be accessed when
a non-timebase pointname is archived. Note that a timebase cannot be assumed to
be a simple array of times evenly spaced apart.

15.2.4 close shotfile

void close_shotfile(

int shotnum, /* shot number */

int flag) /* installation dependent flag */

DRAFT DRAFT DRAFT DRAFT 67

The host cpu process calls this function so it can close the shot file (if one is used)
so that another host cpu process can open and write to the file.

Note that the same function exists in the file close shotfile.c. That version of
this function used to be linked into the waveserver and host cpu processes. But the
linking of three different programs needing this function proved to be too difficult to
maintain so a duplicate function was added to this file.

15.2.5 read pointname shotnum

int read_pointname_shotnum(

char *ptname, /* pointname, e.g. "PHASESTK1" */

int ishot, /* shot number */

void **data, /* data to return */

int *nbytes) /* number of bytes returned */

This function is called by the waveform server whenever a request is made through
the restore interface to display the phase sequence stacks or the phase stacks for a
given shot. This information is archived in the pointnames PHASESTK% and SEQSTK%

where % is the cpu number. These pointnames are all character strings giving names
of categories, phase sequences, and phases and the times when the phase sequences
and phases were active during the shot.

15.3 Functions found in file close shotfile.c

15.3.1 close shotfile

void close_shotfile(

int shotnum, /* shot number */

int flag) /* flag indicating the calling process */

This function is called by the lockserver program. The lockserver’s task is to
“close out” the shot. This can mean a variety of things depending on the installation.
Marking the shot as finished, copying it to another area, starting a compression
program, etc. are a few possibilities.

15.3.2 delete shotfile

void delete_shotfile(

int shotnum) /* shot number */

DRAFT DRAFT DRAFT DRAFT 68

This function is called by the lockserver to delete any existing shot files for the
given shot. This is very useful for test shots. Also, this function can be used to
”setup” for the shot (e.g. MDSplus archives require the creation of new ”trees” for
data storage).

The lockserver calls this function before it enters into its final lockout state. This
state causes the waveserver to archive its setup. So there is no need to worry about
the timing of the delete and the writing of the setup.

16 System Category

A system category is a good addition to the plasma control system and is highly
recommended. In this category a single algorithm with known default values can be
made to be active throughout the discharge. This algorithm can, for instance, always
zero out command outputs in the real time cleanup function. This algorithm can have
parameter data blocks that will always be available to algorithms in other categories
because a phase that uses the algorithm will always be active. This algorithm can pass
a mixture of category data from one processor to another to minimize communication.
In general, a system category allows features to be present in the plasma control
system which involve more than one category or are part of the overall system.

17 Data Acquisition Category

The PCS requires certain steps regarding the acquisition of raw data and its use. This
includes the acquisition of the raw data, the calculation of baselines, the saving of
raw and processed samples, the conversion from raw units to physical units, and the
passing of data from one processor to another. These steps are fairly standard and
there are infrastructure and common functions that can be used to accomplish these
tasks. The Data Acquisition category and its baselinedata algorithm are usually used
for these purposes. Some notes about this category and how it is used.

The digitizer data normally would be written directly to the processor memory
by the acquisition circuits using DMA hardware. The function wait for new time

reads the time value from a digitizer until it changes. At that point, the real “time”
is known and the system is in sync.

The function get new data copies the digitizer values, subtracts the appropriate
baseline value, and writes the result in a buffer with a fixed location. It is from this
buffer (rtheap->datavector) that all of the control algorithms read the data they

DRAFT DRAFT DRAFT DRAFT 69

need.
The function get new data then sets the current time. This value is written to

rtheap->currenttime. Algorithms use this value for control work, and the infras-
tructure code uses this value to determine when to change target vector values.

Finally, the function get new data compares the time value to the “time to stop”
value provided by the operator to determine if the shot should be over. If so, then
rtheap->return status is set to TIMETOSTOP RETURN which causes a complete
return from the time critical routine.

The get new data function also copies the communication vector. The communi-
cation vector is a region of memory where other processors can write data. Because
these data are written asynchronously, the data can change at any time. Two buffers
are provided: one to write to (rtheap->combuffer) and one to read from (the “con-
trol cycle loop” rtheap->combufloop). The data are copied from the write buffer to
the read buffer. All algorithm code uses the control cycle loop communication vector
copy which will not change during a control cycle.

The data archiving facility of the PCS is based on the procedure that when data
in a buffer should be saved for archival, the pointer to the buffer is changed to a new
buffer leaving behind the data to be saved. All PCS buffers that contain data for
archival are saved at the same time. So, this is the procedure used for saving the raw
data from the digitizers.

The DMA buffer is reused until it is time to move to another buffer leaving a set of
data behind. Most of the work of changing buffer pointers to save data is performed
by the save samples function after all other function vector routines have completed.

17.0.1 wait for new time

This real time function is always put into the function vector as the first function.
It is meant to wait until a new set of data are available, but it does not update the
real time heap. The function may repeatedly read a digitizer to get the time until
the time changes. It may read a sharable memory address that has the current time
until the value changes. It may read a memory address that another processor writes
the current time to until that value changes. Whatever this function does, it will
loop until a time value changes. It is important to always have a timeout during
the read just in case the value does not change. Also, it is important to declare any
memory address being written to from the outside as volatile so the compiler does
not eliminate the read loop (this tells the compiler that the value will change).

Note that this function keeps the processor in sync with the real time during the
shot (and thus the other processors). If, upon entering, the first read of the time

DRAFT DRAFT DRAFT DRAFT 70

gives a different value than the last read, then the true time is unknown. The true
time could be anything between the time read and the next time that will be read.
A decision must be made whether to wait until the time changes (thus, skipping a
cycle), or whether to continue and run the cycle for the current value of the time.
The danger of running the cycle is that the processor is not in sync with the other
processors in the PCS.

/*

**

SUBROUTINE: wait_for_new_time

wait for a new time - this is always the first function in the function vector

Global variables needed here (all are set in the init function):

cycle_times int array giving the cycle times for each

cpu in microseconds

number_of_digitizers the number of digitizers on this processor

minimum_cycle_time cycle time of digitizer or if no digitizer,

cycle time of fastest processor that provides

this cpu its data

**

*/

void wait_for_new_time(struct rt_heap_misc *rtheap)

{

#ifdef PCS_RT_CPU

#if defined(LINUXOS)

unsigned long long timer1, timer2, tdiff;

#endif

unsigned int new_time;

volatile unsigned int currenttime;

if(!rtheap->software_test_mode)

{

/*

If the cycle time for this cpu is 0, then wait

for a new remote time to arrive.

*/

DRAFT DRAFT DRAFT DRAFT 71

if(cycle_times[CPU_NUM-1] == 0)

{

wait_for_new_remote_time(rtheap);

if(rtheap->return_status != 0) return;

}

/*

If there are any digitizers on this processor,

then get the time value. When the time value is

different from the currenttime, then continue.

The assumption is that the time to complete a

cycle is less than the cycle time for the processor.

The value of minimum_cycle_time is the rate at

which the digitizer cycles in microseconds.

*/

if(number_of_digitizers > 0)

{

#if defined(LINUXOS)

readticks64(&timer1);

#endif

currenttime = rtheap->currenttime;

new_time = rtheap->currenttime + minimum_cycle_time;

while(currenttime < new_time)

{

currenttime = (volatile unsigned int *)<time address>[0];

#if defined(LINUXOS)

readticks64(&timer2);

tdiff = timer2 - timer1;

if(tdiff/ticks_per_usec >= timeout_in_usec)

{

rtheap->return_status = TIMEOUT_RETURN;

<cleanup>

return;

}

#endif

}

}

}

#endif /* #ifdef PCS_RT_CPU */

DRAFT DRAFT DRAFT DRAFT 72

/*

Save timing data before currenttime is changed.

*/

#ifdef SAVE_TIMING

save_timing(rtheap);

#endif

}

There are several things to point out about the above code.

• The image built to run on the real time processors can be a combination of the
host cpu and the realtime code. This was found to be the most efficient method
and avoids the necessary communication between two separate programs. A
macro PCS RT CPU indicates this combination and is used around any code
that only executes on the real time processor.

• The cycle times array is an array of ints giving the cycle times of each processor
in microseconds. A cycle time of 0 is a special case which means that the time of
the cycle varies. It is used when a cycle time is long (like the slow loop rtEFIT).
The function wait for new remote time needs to wait until the current value
of the time (wherever it comes from) changes so that the processor can get back
in sync. So it would read the time upon entering, then wait for that value to
change.

• The minimum cycle time value cannot be zero. It needs to be the actual cycle
time of any digitizer that exists. This allows the cycle time of the processor to
be zero, yet there can also be a digitizer which is cycling at a fixed rate.

• readticks64 is a LINUX function that reads the cpu’s processor clock and returns
the value as a 64-bit number. This code requires a value that gives the number
of ticks per microsecond which can be retrieved before the shot by calling the
function get cpu speed.

• The value of the current time is checked in a while loop until it changes. A
timeout needs to be specified so that the shot won’t hang up if something goes
wrong and the time is not updated.

• The SAVE TIMING macro includes a standard function (found in the file com-
mon/save timing.h) which calculates the amount of time it takes to execute

DRAFT DRAFT DRAFT DRAFT 73

each function in the function vector and the total amount of time it takes to
execute a cycle.

17.0.2 get new data

This real time function is usually the second function in the function vector. Its
purpose is to read and prepare the next set of data that is collected on the pro-
cessor. rtheap->currenttime is set to the time that was previously waited for
in wait for new time. The raw data is put into rtheap->dmabuffer, transferred
to rtheap->datavector where a baseline should be subtracted. The value from
rtheap->datavector can also be transferred to rtheap->physicsvector where it
gets converted to physics units.

/*

**

SUBROUTINE: get_new_data

Get the time and a new set of data. Subtract the baseline

and fill the datavector and the physicsvector.

Global variables needed here (all are set in the init function):

cycle_times int array giving the cycle times for each

cpu in microseconds

number_of_digitizers the number of digitizers on this processor

digitizer_indices int array giving indices into the datavector

for each digitizer channel on this processor

baseline_scratch scratch parameter data block filled in by the

baselinedata algorithm

btop parameter data block giving the factors to

convert each channel from bits to physics units

**

*/

void get_new_data(struct rt_heap_misc *rtheap)

{

char *dma_region;

int chnl, i, offset;

unsigned int previous_cycle_time;

unsigned int convert_cycle_time;

DRAFT DRAFT DRAFT DRAFT 74

dma_region = (char *)rtheap->dmabuffer;

offset = rtheap->offset_times;

dmadata = (short *)rtheap->dmabuffer;

/*

get the time and a new set of data

*/

/*

save the previous cycle time

*/

previous_cycle_time = rtheap->currenttime;

if(rtheap->software_test_mode==SOFTWARE_TEST_MODE)

{

convert_cycle_time = previous_cycle_time + cycle_times[CPU_NUM-1];

if(cycle_times[CPU_NUM-1] == 0)

{

get_remote_time(&convert_cycle_time, rtheap);

if(rtheap->return_status != 0) return;

}

for(chnl=0;chnl<rtheap->numrawdata;chnl++)

{

dmadata[chnl] = 1000;

}

memcpy(&dma_region[offset+DMA_CONVERTCYCLETIME*sizeof(int)],

&convert_cycle_time,sizeof(int));

memcpy(&dma_region[offset+DMA_PREVIOUSCYCLETIME*sizeof(int)],

&previous_cycle_time,sizeof(int));

}

else if(rtheap->software_test_mode==SIMULATION_TEST_MODE)

/* simserver mode, executes command on host process */

/* two times in DMA region are filled in */

{

#ifdef STANDALONE

strcpy(shmctlseg->command,"GET_DATA_FROM_HOST");

sem_set(sem_id,0); sem_wait(sem_id,1);

DRAFT DRAFT DRAFT DRAFT 75

#else

host_read_data_set_simserver();

/* note: dmadata and CONVERTCYCLETIME set by simserver */

#endif

memcpy(&dma_region[offset+DMA_PREVIOUSCYCLETIME*sizeof(int)],

&previous_cycle_time,sizeof(int));

}

else /* if(rtheap->hardware_test_mode==1) or normal operations mode */

{

#ifdef PCS_RT_CPU

convert_cycle_time = previous_cycle_time + cycle_times[CPU_NUM-1];

if(cycle_times[CPU_NUM-1] == 0)

{

get_remote_time(&convert_cycle_time, rtheap);

if(rtheap->return_status != 0) return;

}

if(number_of_digitizers > 0)

{

int status = 0;

status = dtacq_read(rtheap,&convert_cycle_time,dmadata);

if(status != 0)

{

rtheap->return_status = status;

return;

}

}

#endif

memcpy(&dma_region[offset+DMA_CONVERTCYCLETIME*sizeof(int)],

&convert_cycle_time,sizeof(int));

memcpy(&dma_region[offset+DMA_PREVIOUSCYCLETIME*sizeof(int)],

&previous_cycle_time,sizeof(int));

}

/*

Set the previoustime and the currenttime in the rtheap.

*/

DRAFT DRAFT DRAFT DRAFT 76

memcpy(&rtheap->previoustime,

&dma_region[offset+DMA_PREVIOUSCYCLETIME*sizeof(int)],

sizeof(int));

memcpy(&rtheap->currenttime,

&dma_region[offset+DMA_CONVERTCYCLETIME*sizeof(int)],

sizeof(int));

(rtheap->alldata)->time = rtheap->currenttime;

/*

Subtract the baseline from the dmadata array (which has values

in raw counts) and stick the value into the datavector.

baseline_scratch is a parameter data block that has the baseline

values in raw counts for each channel.

*/

i = 0;

while(digitizer_indices[i] != -99)

{

chnl = digitizer_indices[i];

if(chnl > -1)

{

rtheap->datavector[chnl] =

dmadata[i] - baseline_scratch->sdata[i];

}

i++;

}

/*

Convert the raw data value from the datavector to physics units

and store into the physicsvector. Only locally acquired data

need to be moved since any data from other processors gets sent

already in physics units.

digitizer_indices is a parameter data block holding the indices

into the datavector for each channel collected on this processor.

btop is a parameter data block that has conversion factors

form bits to physics units for each channel.

*/

i = 0;

while(digitizer_indices[i] != -99)

{

chnl = digitizer_indices[i];

DRAFT DRAFT DRAFT DRAFT 77

if(chnl > -1)

rtheap->physicsvector[chnl] = btop[chnl]*rtheap->datavector[chnl];

i++;

}

/*

Determine offset into pid lookup table based on delta of

current and previous cycle times.

*/

default_set_pid_index(rtheap);

/*

Copy the communication buffer contents.

*/

default_copy_combuffer(rtheap);

/*

Check if another cpu has aborted the shot. When it

does, a message is sent to all cpus and the

cpu_return_status flag for this cpu will be non-zero.

*/

if(<another cpu has aborted the shot>)

{

rtheap->return_status = TIMETOSTOP_RETURN;

return;

}

}

There are several things to point out about the above code.

• The values of previoustime and currenttime in the rtheap structure are set
differently depending on what the operating mode is: software test, hardware
test, or operations.

• Functions host data set simserver and dtacq read need to put the raw data
into the dmaregion. The former also has to set DMA CONVERTCYCLETIME
in the dmaregion.

• The image built to run on the real time processors can be a combination of the
host cpu and the realtime code. This was found to be the most efficient method
and avoids the necessary communication between two separate programs. A
macro PCS RT CPU indicates this combination and is used around any code
that only executes on the real time processor.

DRAFT DRAFT DRAFT DRAFT 78

• The cycle times array is an array of ints giving the cycle times of each processor
in microseconds. A cycle time of 0 is a special case which means that the time of
the cycle varies. It is used when a cycle time is long (like the slow loop rtEFIT).
The function get remote time will return the time (wherever it comes from).
There is no waiting here since that was done previously.

• The function default set pid index is found in realmain.c. It sets the value
of rtheap->dtoffset which is used in the older and obsolete pid functions.

• The function default copy combuffer is found in realmain.c. It copies the val-
ues of rtheap->adcombuffer which may have been updated by other processors
into rtheap->adcombufloop which is where values should be read from.

17.0.3 baselinedata

This real time function follows the function get new data. Its purpose is to sum up
the raw data for each channel starting at one or more “trigger” times. These times are
usually before the discharge starts. Then when enough samples have been collected,
the average value for each channel is calculated and stored as a baseline value.

This algorithm should always be running as the default algorithm in the Data
Acquisition category. Only one phase should be used in order to avoid problems with
phase specific parameter data which is needed by the algorithm.

This algorithm is usually the location of the data item operating setup data

which is parameter data required by the infrastructure.
This algorithm is usually the location of waveforms that specify the sample interval

for each cpu over the course of the shot. The sample interval is the interval at which
raw data and processed data (errors, shape vector data, commands, etc.) are stored
for archiving after the shot. These waveforms replace the single values of sample
interval and first sample time found in the data item operating setup data. These
waveforms are useful when the cycle time of a processor is so fast that all samples
cannot be saved due to space limitiations. These waveforms allow the interval to
change so that all samples can be collected at a particularly interesting time during
the discharge.

This algorithm is usually the location of waveforms that specify the fast data
sampling interval for each cpu over the course of the shot. The fast data sampling
interval is the interval at which the fast data are stored for archiving after the shot.
These waveforms replace the single value of fast data start time found in the data
item operating setup data (all samples are then saved).

DRAFT DRAFT DRAFT DRAFT 79

This algorithm is usually the location of the save timing data items. These data
items allow for the measurement of how long each function takes and the overall time
of each cycle. The code for this is located in the file common/save timing.h and
must be included in numerous places in the algorithm. Also, the compile line option
-DSAVE TIMING must be included in the build of the PCS processes.

17.0.4 operating setup data

The Data Acquisition algorithm is usually the location of the parameter data item
operating setup data which is required by the infrastructure to specify the shot
number as well as various values for each cpu.

The installation requires two variables be defined usually in the file installdefs.h:

/*

Variables required by the infrastructure and used

by the baselinedata algorithm.

*/

#define MAX_CPUS 24

struct diagnostic_infra diagnostic_infra_default = {

0, /* hardware test mode */

0, /* software test mode */

900001, /* test shot number */

7000000 /* time to stop feedback in microseconds */

};

struct diagnostic_cpu_infra diagnostic_cpu_infra_default[MAX_CPUS] = {

/* first sample time, number of raw and processed samples to save,

sample interval, fast data start time, number of fast data samples,

routine to save fast data, flag indicating whether to save the sfile */

{-3000000, 40000, 250, -1000000, 12*1024, 0, 0}, /* cpu 1 */

{ -100000,100000, 100, -1000000, 0*1024, 0, 0}, /* cpu 2 */

{-3000000, 40000, 250, -1000000, 0*1024, 0, 0}, /* cpu 3 */

{-1000000,100000, 100, -1000000, 0*1024, 0, 0}, /* cpu 4 */

{ 100000, 40000, 250, -1000000, 0*1024, 0, 0}, /* cpu 5 */

{ 0, 0, 0, 0, 0, 0, 0},

};

DRAFT DRAFT DRAFT DRAFT 80

/*

Other variables needed by the baselinedata algorithm.

*/

int cycle_times[MAX_CPUS] = {250, 50, 250, 50, 0, }; /* in usec */

int save_timing_defaults[MAX_CPUS] = {60000, 200000, 60000, 200000, 60000, };

Note that the sample intervals for cpus 2 and 4 are 100, but the cycle times for
these cpus are 50. Thus, all data are not archived. Also, note that cpu 5 has a cycling
time of 0 which means that the cycle time varies.

The amount of space required by the save timing is given here as the number
of samples to save. This specifies the amount of space to set aside for the timing
information for each function in the function vector.

17.0.5 pass data

This real time function follows the function get new data in the function vector. Its
purpose is to send data to other processors in some manner. This is only necessary
if all data required by each processor is not available.

For DIII-D, many processors do not have access to required data and digitizers
are spread throughout the system. A general scheme was set up that requires each
algorithm to specify which channels are required in real time. These are specified in a
section of the algorithm delineated by the DATADEFS macro. Here, another macro
DATA NEEDED specifies the name of the channel and the virtual cpu that requires
it. A program then collects all this information by requesting only the DATADEFS
sections of all algorithms and creates an include file that specifies which processors
need which data.

This file is then included in the baselinedata algorithm which uses it to create
parameter data blocks giving the indices of the channels in the datavector that need
to be passed from the processor that collects the data to processors that need the
data.

This function then moves the data from the datavector to a write buffer that is
used to send this information to each processor that needs it. The currenttime is
always the last value in this block of data so that the receiver can match the time
with its own time.

DRAFT DRAFT DRAFT DRAFT 81

17.0.6 get remote data

This real time function follows the function get new data in the function vector. Its
purpose is to wait for data that other processors pass. This is only necessary if some
data required by the processor is not collected locally.

For DIII-D, many processors do not have access to required data and digitizers
are spread throughout the system. A general scheme was set up that requires each
algorithm to specify which channels are required in real time. These are specified in a
section of the algorithm delineated by the DATADEFS macro. Here, another macro
DATA NEEDED specifies the name of the channel and the virtual cpu that requires
it. A program then collects all this information by requesting only the DATADEFS
sections of all algorithms and creates an include file that specifies which processors
need which data.

This file is then included in the baselinedata algorithm which uses it to create
parameter data blocks giving the indices of the channels in the datavector that are
needed by processors which do not collect the channels. Other parameter data blocks
are created with the starting locations and lengths of the data that will be written.

The area where this data is written to is a section of the install buffer. This
function waits for this data to arrive. The time value is always the last value in the
buffer so this function waits for the time value to agree with the current time. Note
that a slower processor can wait for data from another processor whose cycle time is
faster than or equal, but a faster processor should never wait for data from a slower
processor. The faster processor can simply grab what is in the data buffer and use it.

17.0.7 save samples

This real time function MUST be the LAST function in the function vector. This
function is responsible for updating the pointers to the various data sections, (DMAre-
gion, shapevector, errorvector, etc.) in the real time heap. Most of the code required
can be found in two functions located in the file realmain.c. Here is an example of
this function which uses sample interval waveforms.

/*

**

SUBROUTINE: save_samples

Execute the steps required after all functions have been called

for each time step. Note that this MUST be the last function

in the function vector.

DRAFT DRAFT DRAFT DRAFT 82

Global variables needed here (all are set in the init function):

minimum_cycle_time cycle time of digitizer or if no digitizer,

cycle time of fastest processor that provides

this cpu its data

total_cycles counter giving number of cycles

**

*/

static int previous_interval;

void save_samples(struct rt_heap_misc *rtheap)

{

int sample_interval;

int *istargets;

/*

The time interval

between saved samples is given by an integer step target vector

element in units of fine scale clock ticks. If the sample interval

is negative, then the data are not saved. If the sample interval

is 0, every sample is saved. If the sample interval is positive,

then the data for this cycle are saved if the time is greater

than the time to save the next sample. Whenever the sample

interval changes, the data for the next cycle are always saved.

Data after that are saved at times that are as close as

possible to a multiple of the sample interval after the time

of the first sample saved for the current sample interval.

*/

istargets = (int *)rtheap->adtarget;

#define TARGET_TO_USE(CPU) CONCAT(IST_ACQ_SAMPLEINTERVAL_CPU_,CPU)

sample_interval = istargets[TARGET_TO_USE(CPU_NUM) - 1];

#undef TARGET_TO_USE

if((sample_interval == 0) || /* save every cycle */

((sample_interval != previous_interval) &&

(total_cycles != 0))) /* interval changed */

rtheap->datasample_flag = 0xfffffffb;

previous_interval = sample_interval;

/*

DRAFT DRAFT DRAFT DRAFT 83

Pass sample_interval along in the rtheap.

Note that sample_interval is signed, rtheap->sampleincrement is unsigned.

*/

if(sample_interval > 0)

rtheap->sampleincrement = sample_interval;

else

rtheap->sampleincrement = 0;

/*

The fast data sample interval is also given by an

integer step target vector element. Pass its value

along in the rtheap.

*/

#define TARGET_TO_USE(CPU) CONCAT(IST_ACQ_FASTSAMPLEINT_CPU_,CPU)

rtheap->fastdatainterval = istargets[TARGET_TO_USE(CPU_NUM) - 1];

#undef TARGET_TO_USE

/*

Call the default function to setup whether samples should be saved.

*/

default_save_samples_setup(rtheap);

/*

Call the default function that actually saves the data

by changing all the data pointers.

*/

default_save_samples(rtheap);

/*

Do any installation specific stuff here such as

toggling the watchdog timer.

*/

total_cycles++;

/*

Increment the time to update the continuous target vector.

This allows the calculations to be done at the end of the cycle

rather than when the currenttime changes.

*/

if(rtheap->software_test_mode != SIMULATION_TEST_MODE)

{

rtheap->update_time = rtheap->currenttime + minimum_cycle_time;

}

DRAFT DRAFT DRAFT DRAFT 84

return;

}

18 Access control

The plasma control system allows multiple users to make changes to the current setup
of the next shot. This allows flexability, but it also can be dangerous. For example,
someone could inadvertently make changes to the next shot while working on a future
shot setup.

Access control can be used to better control access to the next shot setup. Each
user can be granted write access to one or more categories. The user can then make
changes to data in only those categories. In addition, users are notified with messages
on the user interface when someone else makes changes to the data item being viewed.

There are two options under the ”File” menu in the next shot user interface:

• ”change access control” will bring up an editor which allows changes to the
access control. The editor allows the current ”operator” to grant or deny access
to a particular user. See the User’s Manual for more details on how to use the
editor.

• ”show access control” will display a user’s access for each category. If the user
has been denied write access to the current data item, then the normal ”apply”
button will be replaced with a ”R-only” (read only) button. This allows the
user to make changes to the display but does not allow these changes to be
applied to the waveform server’s setup.

One of the useful features of access control is the notification that another user has
made a change to the data that one is viewing or modifying. A message indicating
what item was changed and who changed it is written on the user interface at the top
of the plotting region. The color of the apply/cancel region changes and the labels
in this area change also. In addition, a message is written on the plotting region and
the color and labels change whenever someone else BEGINS to make a change to the
data item being viewed. This feature makes it easier for two or more users to make
changes to the same data items.

In general, each category grants access to individual users or ”groups” of users.
A user is identified by their computer username. A group can then be granted access
to one or more categories. For example, a group called ”beam operators” could be

DRAFT DRAFT DRAFT DRAFT 85

assigned only to the ”Neutral Beam” category. A group called ”current operators”,
which is designated as the main group, would be assigned to all categories. Then a
user could be assigned to be just a ”beam operator” or a ”current operator”.

The access control editor displays a list of categories and which users and groups
have been assigned to each. It has another section which displays the users in each
group. The term ”leader” is used to designate a single user who is in charge of op-
erations. A user can choose their username from a droplist of possible leaders and
apply this change to become the current leader. The menubar at the top of the editor
contains a single button ”Add user to group...” which contains the usernames of ev-
eryone who can be granted access. Choosing a name from this droplist automatically
adds that user to the main group. The editor also has a widget to allow a username
to be typed in and added to a group or category. And there is a widget to allow the
removal of a username from a group or category.

Access control requires a default setup file located in the data directory called
”access control.data”. This file, if it exists, is read by the waveform server at startup.
This file represents the default settings for access control. This file must be edited to
add or remove users. There are two parts to the file: the keyword part followed by
one line for each known category. Comment lines begin with an exclamation point.
Each line has the following format:

keyword=value,value,...

where "keyword" is one of the following:

• LEADER NAME: the name to designate the PCS ”leader” (”physics operator”
ar DIII-D but perhaps a different title elsewhere). The ”leader” is the person
who controls access to the PCS.

• CURRENT LEADER: username of the default leader; the waveform server will
grant this user access by default.

• CURRENT NAME: a group name used for current users, for example, ”current
operators”; if a user is in this group, then that user is allowed to become the
”current” leader.

• GROUP NAMES: list of group names; each group with default values must
then follow, one group per line. Note that the value of the LEADER NAME
must be one of the group names.

DRAFT DRAFT DRAFT DRAFT 86

• OTHERS WITH ACCESS: users who can grant themselves access without be-
coming the ”current leader”; allows for programmers to do testing.

The values to specify are computer usernames. The username is what is passed
to the waveserver when a change command is given.

The keyword section is then followed by the default access for each category in
the PCS. The category name to use is the ”major identifer” found in the ”cat alg”
definition in the category’s master file. For each category identifer specify the group(s)
that have default write access to the data items in that category.

Example of the access control.data file:

CURRENT_LEADER=hyatt

LEADER_NAME=physics operator

CURRENT_NAME=current operators

OTHERS_WITH_ACCESS=

GROUP_NAMES=current operators,physics operators,beam operators,chief operators,comput

current operators=hyatt

physics operators=ferron,hyatt,jackson

beam operators=gohil,reimerde

chief operators=holtrop,leer,nagy,taylorpl

computer operators=johnsonb,penaflor,piglowsk

others=

!

acq=current operators,ACQUSER,chief operators

alarm=current operators,chief operators

beam=current operators,TIMCON,beam operators,chief operators

bsupply=current operators,chief operators

cer=current operators,chief operators

density=current operators,chief operators

equil=current operators,chief operators

fsupply=current operators,chief operators

gas=current operators,chief operators

gyrotron=current operators,chief operators

ip=current operators,chief operators

lpellet=current operators,chief operators

mode=current operators,chief operators

n1=current operators,chief operators

ntm=current operators,chief operators

DRAFT DRAFT DRAFT DRAFT 87

rf=current operators,chief operators

shape=current operators,chief operators

system=current operators,chief operators

thomson=current operators,chief operators

For more information see the file access control editor.pro located in the infras-
tructure.

19 Command files

It may be useful to set up files that contain commands that do useful tasks. For
example, turning gas on and off or bringing up an idl interface that allows a user to
go through a checklist. These commands can be a simple change of vertices for a
waveform, or much more complicated such as a multi-step checklist.

These commands can be put into files in the data directory which end in the file
extension ”.com”. When the interface for the next shot is initialized, the idl code
looks for these command files and, if any exist, a menu option ”Commands” will be
added to the main menu bar. The name of the file is used as the command name.

Files with the ”.com” extension are used for the operations next shot. Likewise,
those files with an extension of ”.com runsa” are used to create the ”Commands”
menu for a next shot in standalone mode. Future shots combine these files with
duplicates removed.

For example, a simple way to turn off gas puffing from the PCS is to add a
permanent phase in the GAS category called ”nogas” where all gas puffing is off.
Then choose only this phase in the Primary phase sequence. A simple command to
set the vertex for the Primary phase sequence to the nogas phase could be put into
the file ”turn gas OFF.com”:

skip message ;skip popup confirming selection of this command

SET_VERTICES,’Gas’,’’,’Primary’,[-9.0],[’NoGas’],1,-9

And another file could have a simple command to turn the gas back on in the file
”turn gas ON.com”:

skip message ;skip popup confirming selection of this command

SET_VERTICES,’Gas’,’’,’Primary’,[-9.0],[’ShotStart’],1,-9

DRAFT DRAFT DRAFT DRAFT 88

With these two files in the data directory the ”Command” menu would be created
with these two options.

A more complicated example would be the restoring of a shot in standalone mode.
In some cases, the restoring of a shot requires restoring certain items that do not
automatically get restored, such as the ”snap setups” parameter data for the rtEFIT,
because they are marked NORESTORE. To duplicate such a shot in standalone mode,
these items need to be restored. A command file can be written to handle all the
steps necessary. An example follows.

skip message - skip popup confirming selection

;

;Commands to restore a shot as it was when it was taken.

;

IDL>topbase = widget_base(title=’Restore shot’,xoffset=20,yoffset=20)

IDL>widget_control,/realize

IDL>xmanager,’restore_shot’,topbase

;

IDL>getsetup,dx,3

IDL>get_wavest,wavest

IDL>if(wavest.last_error ne 0) then widget_control,topbase,/destroy

IDL>if(wavest.last_error ne 0) then return

IDL>widget_control,/hourglass

IDL>shot=wavest.last_shot

IDL>setup=wavest.last_setup

;

;Load all categories

IDL>SEND_RESTORE_MESSAGE,dx,error,shot,setup,’load all categories’,$

’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’

;

IDL>IGNORE = 1 ; now ignore errors

;

IDL>widget_control,/hourglass

;Load the BreakDown phases

IDL>SEND_RESTORE_MESSAGE,dx,error,shot,setup,’load selected phase’,’F Power Supplies’

’ ’,’BreakDown’,’ ’,’ ’,’F Power Supplies’,’ ’,’BreakDown’,’ ’,’ ’

IDL>SEND_RESTORE_MESSAGE,dx,error,shot,setup,’load selected phase’,’Discharge Shape’,

’ ’,’BreakDown’,’ ’,’ ’,’Discharge Shape’,’ ’,’BreakDown’,’ ’,’ ’

DRAFT DRAFT DRAFT DRAFT 89

;

;Load the snap setups from the shot

;IDL>SEND_RESTORE_MESSAGE,dx,error,shot,setup,’load selected data item’,$

’Equilibrium’,’ ’,’efit’,’Switches’,’Snap setups’,$

’Equilibrium’,’ ’,’efit’,’Switches’,’Snap setups’

;

;Load the patch data from the shot

IDL>IF(shot gt 0 and shot lt 108040) then $

patch_editor_get_data,dx,error,shot else $

SEND_RESTORE_MESSAGE,dx,error,shot,setup,’load selected data item’,$

’System’,’ ’,’ShotStart’,’All Waveforms’,’patch data’,$

’System’,’ ’,’ShotStart’,’All Waveforms’,’patch data’

;

;Load the calibration data from the shot

;IDL>IF(shot gt 0 and shot lt 108040) then get_acq_data,dx,error,shot

IDL>IF(shot gt 0 and shot lt 108040) then print,’MUST LOAD CALIBRATION DATA’+string(7

IDL>IF(shot ge 108040) then SEND_RESTORE_MESSAGE,dx,error,shot,setup,$

’load selected data item’,’Data Acquisition’,’ ’,’ShotStart’,$

’Parameter Data’,’calibration data’,$

’Data Acquisition’,’ ’,’ShotStart’,’Parameter Data’,’calibration data’

;

;Correct the vertices for Ecoil_GP

IDL>IF(does_phase_exist(dx,’E coil’,’plasmaresp’)) then $

execute_command,dx,"SET_VERTICES,’E coil’,’plasmaresp’,$

’Ecoil_GP’,[-8.990],[-20.0],1,-8.99",error

;

;Set to defaults the fastloop input files

;IDL>SET_PARAMDATA_DEFAULTS,dx,error,’Equilibrium’,’efit’,’fl input file :used names’

;

IDL>widget_control,topbase,/destroy

20 Change history

When changes are made to the PCS, a record is written to the “change history” which
is part of the archived setup. This record contains the date and time of the change, the
user who made it, and the details of the change, e.g., restore information, waveform
name and vertices, or a change to a parameter data block (but with no detail about

DRAFT DRAFT DRAFT DRAFT 90

what in the block was changed). In addition, for the operations version of the PCS, a
record is written to the file found in the data directory (usually, /link/ops/data v10
which can be a link to the installation-specific directory) called “history.txt”. This
file contains all changes made and can be consulted for details without restoring
individual shot archives.

The user interface has an item under the Information menu called “list changes
in current setup” which will show the change history. In addition, the “select data
to load” window from the restore interface has an item under the Show menu called
“show changes” which will list the change history for a given archived shot or future
shot setup.

The change history is recorded in the format of an executable command. The
window that displays the change history has an “execute” button which allows the
user to click on most any line, press the execute button, and execute the highlighted
command. Parameter data history lines are not executable since the detail of the
change is not recorded.

The change history is cleared when all categories are set to their defaults or when
all categories for a shot archive or future shot setup are restored. In the latter case,
the restored change history is added to the current change history. This is seen in
the display as lines that are slightly indented. Also, in the display are buttons to
view the lines in a “brief” mode (where details are left off) and a filter box to allow
filtering of the display.

Note that an installation can turn off all change history recording by specify-
ing the compile line option -DNO ARCHIVING OF CHANGES when building the
infrastructure.

21 The current DIII-D plasma control system

Here is brief description of the current plasma control system at DIII-D (as of April,
2007). There are 19 “cpus” in today’s system. There are 3 VME based processors
which handle digital inputs (one of which is the watchdog), digital outputs, D/A
converter channels, and communication with the Thomson and CER VME-based
processors. The remaining 16 processors are all INTEL based off-the-shelf processors.
All systems run a version of the LINUX operating system.

Data acquisition is mostly accomplished using several different types of D-TACQ
digitizers. These digitizers write their data directly to DMA memory set aside by the
operating system. The “tlatch” (or time) is read in different ways, either from DMA
memory or by accessing the hardware through a PCI interface.

DRAFT DRAFT DRAFT DRAFT 91

Each real time process cycles at a given cycle rate that matches the cycle rate
of any digitizers that are local to the processor. Some processors do not have any
digitizers and must receive the time and data from other processors. They can then
cycle at the same rate as the slowest one that is passing data, or a multiple of the
slowest cycle time. Some processors have a cycle rate of 0 which means that cycles
vary depending on how long the real time code takes to execute.

The fastest processor in the system cycles at 11 µs (10 would be more desirable
but the current hardware cannot handle it as yet). Three other processors cycle at
44 µs (to be in sync with the fastest one). Still another processor cycles at 2048 µs!
Most of the other processors cycle at 250 µs.

The LINUX operating system was customized to allow for “real-time” mode. Dur-
ing real-time mode, all memory is locked in the system and all interrupts (except for
the keyboard interrupt) are turned off so that the processor can cycle in real time.
The keyboard interrupt allows for a function key to be pressed to “wake” up the sys-
tem if something should go wrong and a processor needs to be taken out of real-time
mode.

One processor is used to send data to a “real-time scope” which displays plots
during the discharge. The rtEFIT also provides data to the scope processor which
allows the boundary display to be displayed over an image of the DIII-D tokamak.

The processes that run on the real time processors are a combined image contain-
ing the host cpu code and the realtime code. These processes are given the names
pcs rt cpu% where % is the cpu number.

All the real time processors are connected in a Myrinet network. This network
can transfer data as fast as 2 Gigabits per second.

The gateway host, another LINUX processor, runs the waveform server, message
server, and lockout server. Users sign on this gateway machine to run the PCS user
interface.

22 Modifications

This section lists the dates of modifications to this document and references to the
pages where changes were made. The reader can consult this to determine where this
document has been changed since it was last referenced.

1. 9/24/98:

• Addition of the message REALTIME ROUTINE STARTING to the shot cycle
(page 21).

DRAFT DRAFT DRAFT DRAFT 92

• The host real time process can abort the shot if it cannot complete shot
setup properly (page 22).

• New section on assembly language code (Sec. 23.1, page 94).

2. 2/14/2001:

• A new section (Sec. 6) was added with some notes about how a mixture
of processor architectures is handled in the PCS. This section needs to be
expanded and will eventually be included under the topic of “interprocess
communication.”

3. 9/19/2001:

• A section describing the code for archiving data was added (Sec. 15). This
section was mostly written by Bob Johnson.

4. 1/21/2002:

• Section 11 has been filled in. This section discusses the management of
the memory on the real time processor.

• A pdf version of this document is now available. See Sec. .

5. 3/8/2002:

• Section 10.2 was added. This section describes the installation-specific
functions that must be provided to execute tasks on behalf of the host cpu

process.

• Section 13.3 was added. This section describes the installation-specific
functions that must be provided to execute tasks on behalf of the infras-
tructure on the real time processor.

• Section 13.5 was added. This section discusses how to implement the
software testing modes of operation.

• Section 13.6 was added. This section discusses how to implement the
hardware testing mode of operation.

6. 9/18/2003

• Section 3.1 was updated to remove references to files no longer used and
add references to other files.

DRAFT DRAFT DRAFT DRAFT 93

• Section 3.2 was added. This section discusses the dma region and how the
installation can define its own.

• Section 3.3 was added. This section discusses the install buffer and how
the installation can define its own.

• A very sketchy description of how to make the logo image file was added
in Sec. 4.1.1.

7. 12/03/2003

• Limitations Section 2 was added.

8. 04/03/2007 (RDJ)

• Data Acquisition Category Section 17 was added.

9. 04/04/2007 (RDJ)

• Added Section 21 “The current DIII-D plasma control system”.

• Section 23.1 “Overview of assembly language routines” was made obsolete.

• Section 23.2 “The cycle time in the DIII-D plasma control system” was
made obsolete.

10. 04/05/2007 (RDJ)

• Modified section 13.1 on the real time code.

• Added Section 13.2.1 about real time function new shot phase tick.

• Added Section 13.2.2 about real time function new continuous target c.

• Added Section 13.2.3 about real time function startup state.

• Added Section 13.2.4 about real time function update the state.

• Added Section 13.2.5 about real time function time critical.

11. 04/06/2007 (RDJ)

• System Category Section 16 was added.

• Added to the S file access routines Section 14.

• Updated the sections on the functions found in files pcshotfile.c 15.2
and close shotfile 15.3.

DRAFT DRAFT DRAFT DRAFT 94

• Added files used in the lockserver program 9.

• Added paragraph about hardware simulation 13.6.

12. 06/25/2007 (RDJ)

• Added section outlining use of access control 18.

• Added section outlining use of command files 19.

13. 08/21/2007 (RDJ)

• Changed references of host realtime to host cpu and host realtime cpu to
host cpu.

• Added section describing the change history for a setup 20.

14. 10/07/2008 (RDJ)

• Filled in section for the message server 5.1.

• Filled in section for the user interface server 5.2.

• Filled in section for interprocess communication 7.

• Filled in section for executing the real time code 10.5.

• Filled in section for archiving data 10.6.

23 Obsolete features

23.1 Overview of assembly language routines

Some of the code that runs in real time is written in assembly language. A description
of the reasons for this is given in the comments at the top of the file timecrit.s.
This section gives an overview of the assembly language files.

1. Assembly language files that contain infrastructure code.

(a) asm symbols.s: Defines symbols for the assembly language routines. Pri-
marily these are offsets into C language structures, but there are a few
installation specific definitions having to do with the Supercard and the
data acquisition.

(b) timecrit.s: This contains the main routine for executing the real time
control cycle.

DRAFT DRAFT DRAFT DRAFT 95

(c) phasetick.s: Contains the routines called each time a period equal to a
phase clock tick has elapsed.

(d) timecrit routines.s: Contains a mixture of infrastructure and installa-
tion specific routines. The data acquisition routines are here. These are
really installation specific. There are also a few infrastructure routines
that are used by the main routine in timecrit.s.

2. Assembly language files that are presently included in the infrastructure direc-
tory but which actually contain code that is really installation specific. These
files should be moved eventually to the installation specific directory.

(a) algutility.s: Routines that are used by various control algorithms. Par-
ticularly, there are routines for sending data to the D/A converters. Also,
the PID routines are here. These could be considered infrastructure.

(b) readstatus.s: Read the trigger input status board on the digital i/o
board.

(c) write beamgas enable.s: Write to the word on the digital i/o board that
drives the enable lines for the neutral beams and the gas valves.

(d) write toggle.s: Handles the watchdog toggle bit on the digital i/o board.

(e) infra utils.s: The first comment line says that this contains infrastruc-
ture code, but because much of it really depends on having a Supercard on
a VME bus, these routines should really be considered installation specific.

(f) returndata.s: Apparently an obsolete routine.

(g) setdavalue.s: Set the value of a d/a converter channel.

(h) write enable.s: Write to the watchdog bit enable word on the digital i/o
board. It isn’t clear whether this file is used anymore.

(i) beamtoggle.s: Obsolete routine.

23.2 The cycle time in the DIII-D plasma control system

Here is brief description of the factors determining the cycle time in the plasma control
system. The format here is simply an outline of what is done in a single cycle with
notes on how long each step takes.

The bottom line is that the minimum cycle times range from 13.2 µs for a small
system to 25.4 µs for a large system. During this time, about 7.5 µs of application

DRAFT DRAFT DRAFT DRAFT 96

code work could be done without extending the cycle time. So, the effective overhead
ranges from 5.7 µs to 17.9 µs.

The 25.4 µs value is in agreement with tests performed on the plasma control
system.

Examples:

1. For a system with only 16 data channels and some plasma control system-specific
features removed (no digital i/o data, no watchdog timer and no communication
buffer), the shortest cycle time is about 13.2 µs. During this time there are 7.75
µs available in which application code work could be done without extending
the cycle time. Any extra application code work would increase this time.

2. For a system which is the same as the version 10.8 of the plasma control system
(current as of 5/24/95) which has 192 data channels, the time required is about
25.4 µs. In this time, there are about 7.42 µs in which application code work
could be done without extending the cycle time.

Note that the absolute shortest cycle time is dominated by the A/D conversion
time of the digitizer, time to acquire the data and convert it to floating point and the
time to execute the application code.

In the case of a specific, well controlled, feedback control application, it is possible
to run very close to the minimum possible cycle time. However, as a practical matter,
the minimum cycle time is achieved under only the correct conditions. The actual
cycle time is most dependent on how the cache memory is used. Some routines are
tuned to run at maximum speed assuming that certain data structures are located in
the cache memory. When the actual application code executes it will strongly affect
the use of the cache memory and access to the memory bus so the cycle time actually
achieved will increase somewhat from the minimum possible value.

Here are the steps in a feedback cycle with the approximate required times:

1. Wait for the next set of data to arrive in SuperCard memory: 0.5 µs.

2. Read the digital i/o data value: about 1 µs.

3. Copy the data, subtract the baseline value and convert to floating point: time
is 40 data values per µs plus overhead (0.8 µs for 16 data values, 5.75 µs for
192 data values).

4. Copy the communication buffer (not necessary on a single cpu system): 0.6 µs
for 16 element buffer.

DRAFT DRAFT DRAFT DRAFT 97

5. Overhead: 0.5 µs.

6. Execute each application code function: 0.2 µs for each function plus time
required for the application code.

7. Start acquisition of the next set of data: optimum is 0.4 µs (if the data from
the cycle is not saved).

Then the A/D conversion is performed, requiring 8.6 µs (determined by the
model of digitizer).

8. Call more application code functions if desired. 8.6 µs of application code work
can be done between here and step 11 below with no addition to the cycle time
while the A/D conversion completes (this includes steps 9 and 10).

Note that the output to the D/A converter channels is included in the functions
of the application code. About 0.9 µs is required for each write to a D/A
converter channel.

9. Touch the watchdog timer bits: 0.33 µs.

10. Do some between cycle things that provide the flexibility of the control system
to archive data, have time varying target values, switch phases etc.

optimum is 0.85 µs. (a few µs longer if it is time to save data, a phase clock
tick has passed or it is time for target vector calculation)

11. After the A/D conversion completes the data are written to the SuperCard
memory in a dma operation. Assuming that the application code requires access
to memory, the application code is blocked during this time (if the application
code depends only on cache memory then it continues to run during this time).
DMA transfer time is 0.4+1.6∗(round up to integer)[(number of channels)/64]
µs which is 2.0 µs for a 16 channel system and 5.2 µs for a 192 channel system.

12. Finish any routines that were blocked by the dma transfer in step 11 (i.e. this
is any of the work from steps 8, 9, 10 above that didn’t finish before the dma
transfer started).

13. Loop back to step 1.

