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The Need for Burn Control

@ For tokamak fusion power to become an economical source of energy,
reactors must operate for extended periods of time with a high power gain
@ The gain is determined by the burn condition, i.e. the plasma density and
temperature
@ Some of the more economically and technologically attractive operating
points may be unstable
e Small decreases in temperature can lead to quenching
e Small increases can cause the system to move to a stable, but undesired,
high-temperature equilibrium
@ Even when operating at stable equilibria, system performance during
transients and disturbances could be undesirable without control

@ Active burn control could enable operation at unstable operating
points and could improve overall reactor performance.
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An Unstable Equilibrium
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Approaches Used in Previous Studies
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Many previous works utilize only one of the available actuators. Most also
use linearized models to generate control laws. The stable operating range
of these controllers is therefore limited.
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Approach Used in Our Previous Work
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Our previous work combined actuation methods and used a nonlinear
control design to extend the region of attraction of the control scheme.
However, the use of impurity injection could cause accumulation of impurities
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Approach Used in This Work
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In this work we continue the use of nonlinear control design techniques,
while avoiding impurity injection by adjusting the deuterium and tritium fuel
sources separately, a technique called isotopic fueling.
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Isotopic Fueling
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By adjusting the relative density of tritium and deuterium in the plasma,
denoted as v = nr/(np + nr), the fusion power output can be modulated.
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Model Used for Controller Design

Alpha particles: dhe __ Na + S, (1)
dt Ta
Deuterium: 272 — _ 0 _ S.+Sp (2)
at ™
Tritigm: 97T _ T _ So+ St (3)
at T
dE E
Energy: — = — — + QuSs — Prag + Paux (4)
at TE
Reaction rate: S, = v (1 — ) nZ(ov) (5)
Radiation losses: Py = ApZen2V'T (6)
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Desired Equilibrium

An equilibrium can be obtained by choosing three parameters, for example:
T,n,%, and solving:

Alpha particles: 0 = — 7 4+ &, (7)
Ta

Deuterium: 0 = — Mo _ S, + Sp (8)
TD

Tritum: 0= — — — S, + St (9)
T

E _ _ _

Energy: 0 = — —+ Qo Sa — Prag + Paux (10)

E
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Stabilization of Energy Subsystem

Defining E = E — E, we can obtain

dE E E
7:7f7*+oasuipfad+PaUX (11)
at TE TE

we can cancel the terms in red and stabilize the subsystem by satisfying the
following condition: B
E
Qasa—Prad""Paux:* (12)
TE
This condition can be satisfied by modulating
@ P,y directly
@ P,y through impurity injection
@ S, through the tritium fraction

In this work we avoid using impurity injection and instead use modulation of
the tritium fraction.
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Isotopic Fuel Tailoring Controller Design

Desired tritium fraction

We first set P,,x = 0 and seek a tritium fraction v = +* that satisfies condition
(12). B
E

Quv* (1 — v*)Mf{ov) — Prag = (13)
@ Either two real solutions or two complex solutions
@ If real, we take the solution satisfying v* < 0.5

@ If complex, auxiliary heating is needed to satisfy the condition, so we set
~* = 0.5 and move on

Heating control law

We use the desired tritium ratio to calculate
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Isotopic Fuel Tailoring Controller Design

~ is a virtual input, so it has dynamics. We define the error

Y=v=7 (15)
which is governed by
: 1 n .
e (16)
Ny TT
n n
—y (—T - 225, +so+sr)}
TT D

The error between the actual and desired tritium ratio enters into the energy
dynamics:

dE E
— =——+4 17
o =t (17)
Finally, the dynamics of the plasma density deviations can be written as
H = _3&_2ﬂ_2@_(zl+1)ﬂ
Ta T D T

S, +25p+2Sr +(Z+1)S (18)
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Isotopic Fuel Tailoring Controller Design

We take the Lyapunov functional candidate
K2E? + k342 + P
2

where k; =~ 10" and k» ~ 102° (recall that E ~ 10°, 4 ~ 10—, and A =~ 102°).
We then compute the time derivative of V as

V:

V = KEE 1 K234 + Pnbu
KA K nHE¢ nr »
- nH k2 T - Sa + ST - nH'Y
nr
(T s s
TT D
h[-s”"‘-z”T—z’"’—(Z,H)”’
To T D T
KE®
—S5,+2S8p+25r+(Z+1)S] - = (19)

TE
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Isotopic Fuel Tailoring Controller Design

Tritium fueling control law

kanEgb n
Sr = k2 + - + So + nuy” — KA
3na Z+1)n (&4+1)
+ (_ Sat 3 > 7 >

S -1 Knh> (20)

Deuterium fueling control law

+
I
!
!
Nl

% g | oMo | HKEMHES

To ™D K3 2

Sp =

— Sa — Knn + 2K, 4

Ta Tl

—2nH"y*—’y< 3S, +3—+(Z,+1)<——S,> n)] 1)

where K, >0and K, >0
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Isotopic Fuel Tailoring Controller Design

The choice of control laws (20) and (21) reduces (19) to

V:

k2E? o k2
— — K,i® — —ZKWZ
TE Ny

@ This shows that the control laws guarantee asymptotic stability of the
energy, plasma density and requested tritium ratio.

@ Since no linearization of the model was used, the control laws globally
stabilize the model used for design

@ The scheme works for both ignited and sub-ignited operating points

@ The controller depends parametrically on the equilibrium, so it can be
used to go from one operating point to another
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Simulation Testing - Sub-ignition
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Simulation Testing - Sub-ignition
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Simulation Testing - Sub-ignition
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Simulation Testing - Sub-ignition
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Simulation Testing - Ignition
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Simulation Testing - Ignition
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Simulation Testing - Ignition
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Simulation Testing - Ignition

o 50 100 150 200 250 0 50 100 150 200 250
i(s) t(s)

(0) Tritium fueling (p) a-heating

Burn control via isotopic fueli November 17, 2011 23/24



Conclusions and Future Work

@ A multi-input nonlinear fusion burn controller has been proposed
@ Impurity injection is avoided by use of isotopic fuel tailoring

@ The controller depends parametrically on the operating point and works
for ignited and sub-ignited equilibria

@ Simulation results show good performance

e Stabilization of unstable equilibria
e Improved transient performance when moving between equilibria
e Successful transition between ignited and sub-ignited points

@ Future work will focus on dealing with model uncertainty and spatially
distributed effects
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