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Abstract

First-principle predictive models based on flux averaged transport equations
often yield complex expressions not suitable for real-time control. As an
alternative to first-principle modeling, data-driven modeling techniques
involving system identification have the potential to obtain low-complexity,
dynamic models without the need for ad hoc assumptions. This work focuses
on the evolution of the toroidal rotation and safety factor profiles in response
to magnetic, heating and current-drive systems. Experiments are conducted
during the current flattop, in which the actuators are modulated in open-loop
to obtain data for the model identification. The plasma profiles are discretized
in the spatial coordinate by Galerkin projection. Then a linear model is
generated by the prediction error method to relate the rotation and safety
factor profiles to the actuators according to a least squares fit.
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Objectives

Simple linear models based on system identification (data-driven
modelling) are desired for control implementations
Models of magnetic profile and toroidal rotation profile in response to
certain inputs; the neutral beams, the gyrotron power, and the plasma
current.
A model for coupled evolution of the magnetic profile and rotation profile

William Wehner (Lehigh University) Modeling & Control November 17, 2011 3 / 24



Why magnetic profile control?

Achieving sustained tokamak operation.
Non-inductive sources of current are required for steady state operation.
Setting up a suitable toroidal current profile can lead to self-generated,
non inductive current (bootstrap current).
Controlling the current profile will therefore be important to achieving
steady-state reactor operation.
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Why rotation profile control?

Plasma performance while operating in high pressure conditions is limited
by transport phenomena and Magnetohydrodynamic (MHD) instabilities.
Optimizing some of the plasma profiles such as the toroidal rotation
profile can improve plasma performance.
For example, increasing bulk fluid rotation around the tokamak produces
a velocity gradient. The velocity results in a sheared plasma flow
reducing turbulence and improving heat confinement.

Understanding and controlling plasma rotation in tokamaks

lence. Empirically it is observed that the confinement decreases when the power input
is increased. It is generally agreed upon that this confinement degradation is a result of
increased turbulent transport. An important breakthrough in fusion physics was the dis-
covery of the H-mode – H stands for high confinement – in the early 80’s [87]. When the
power input reached a certain threshold the confinement suddenly almost doubled. One
of the observations made during this transition was a sudden change in plasma rotation in
the edge. More precisely the gradient in poloidal rotation vθ and the radial electric field
Er – which is linked with rotation – increased. This observation led to the question: Does
a sheared rotation reduce turbulent transport?

Figure 1.4 : A simulation of turbulence with (A) and without (B) sheared plasma flow. The
contours of the fluctuation potential in a poloidal cross section are plotted. Large turbulent
transport exists along the iso-potential contours. It is clearly seen that the turbulent cells in
the case of sheared flow are much smaller than in the case without flow, which means that
the overall radial transport is lower. [58]

Now, twenty years later, the mechanism of turbulence suppression by rotational shear
is widely accepted. The physical picture of turbulence suppression by flow shear can
be looked upon as follows: turbulent transport is a result of fluctuations with a radial
correlation length ∆rc and a decorrelation time τc. These fluctuations can be seen as
turbulent cells with a radial extension of ∆rc and a lifetime τc. The transport induced by
the turbulent cells is given by the diffusion coefficient Dturb ∝ ∆r2

c/τc. A sheared flow,
i.e. a different velocity at each radial point, will shred these turbulent cells apart, leading
to smaller cells ∆rsheared < ∆rc. Consequently the diffusion coefficient, hence the radial
transport, is smaller [7]. In figure 1.4 the fluctuation potential is shown for a simulation
with and without sheared flow [58]. It is clearly seen that the turbulent cells are much
smaller in the case with flow (A) than in the case without flow (B).

A sheared plasma flow will thus improve the confinement. A straightforward method
for increasing the velocity gradient is increasing the velocity. Because the vacuum vessel
of a tokamak does not move, a velocity gradient exist between the plasma and the wall.
This gradient will be large if the plasma rotates fast.

Apart from improving the confinement, a fast rotating plasma also increases the sta-
bility of the magnetic configuration. In an ideal world the plasma in a tokamak is confined
in a set of perfectly nested flux surfaces. In the real world sources of free energy in the
plasma can break up and reconnect a flux surface, hence changing the magnetic topology
(see figure 1.5). These reconnected flux surfaces are called tearing modes or magnetic
islands. Tearing modes have an unfavourable effect on plasma confinement and can even
cause minor and major disruptions. We therefore usually try to avoid them.

Section 1.3 - Importance of plasma rotation 5

Figure: Simulation of turbulence with (A) and without (B) sheared plasma flow.
[1] M. De Bock, Understanding and controlling plasma rotation in tokamaks, Doctoral Thesis,
Technische Universiteit Eindhoven, 2007
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Plasma profile

First-principle models based on transport equations yield complex
expressions not suitable for control.
Use linear models based on system identification instead.
By taking the surface average over the magnetic flux surfaces,
axisymmetric plasma transport equations can be represented by one
dimensional nonlinear parabolic PDEs whose variables are dependent on
both time and normalized radius ρ̂.
Around certain trajectories the PDEs can be linearized as

∂x(ρ̂, t)
∂t

= A(ρ̂)x(ρ̂, t) + B(ρ̂)u(t) +K(ρ̂, t)e(ρ̂, t), (1)

where x(ρ̂, t) represents a collection of physical variables such as the
poloidal magnetic flux profile ψ(ρ̂, t) or the rotation profile Vφ(ρ̂, t).

A(ρ̂),B(ρ̂), and K(ρ̂) are infinite dimensional operators.
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Model identification

To perform model Identification data is collected during high confinement
(H-mode).
The reference plasma state: Plasma current Ip = 0.9 MA, 65% boot strap
current, (H-mode): 3.5 < βN < 3.9 (βN : measure of pressure).
Actuators modulated in open loop according to predefined waveforms
around the values for the reference discharge.
During each discharge one actuator is modulated while the other
actuators are held constant and equal to the values for the reference
discharge.
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Actuators modulated to quantify plasma response
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Discretization by Galerkin projection

The infinite dimensional system (1) can be discretized by projecting the
distributed variable x(ρ̂, t) onto a basis function space.
The Galerkin projection reads

x(ρ̂, t) ≈
N∑

i=1

Gi (t)bi (ρ̂), (2)

where bi (ρ̂) are the basis functions. Piece-wise linear functions with
i = 1,2, ...N.
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Discretization by Galerkin projection

The expansion coefficients, Gi (t), called the Galerkin coefficients
represent the model points.
To determine the Galerkin coefficients, we multiply both sides of the
expansion equation (2) with any basis function bj (ρ̂), j = 1,2, ...N and
integrate over the spacial coordinate to obtain,

∫ 1

0
x(ρ̂, t)bj (ρ̂)d ρ̂ =

∫ 1

0

[ N∑
i=1

Gi (t)bi (ρ̂)
]
bj (ρ̂)d ρ̂, (3)

If the basis functions are orthonormal, i.e.
∫ 1

0 bi (ρ̂)bj (ρ̂)d ρ̂ = δij , then the
coefficients Gi can be computed explicitly. Otherwise the coefficients are
obtained by solving a matrix equation.
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Model identification

After discretization we have a lumped parameter model, which reads:

dX (t)
dt

= AX (t) + Bu(t) + Ke(t), (4)

where X (t) is the vector of Galerkin coefficients.

Control Actuators
1. Co-current NBI
2. Counter-current NBI
3. Balanced NBI
4. Total ECRH and ECCD power from all the gyrotrons
5. Loop voltage

Then the model is fit to experimental data according to a least squares fit.
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Model identification

System identification of the toroidal rotation profile carried out for 8
Galerkin coefficients computed at ρ̂ = 0.1,0.2, ...0.8.
Identification shots were organized into various groups; 1 group for little
modulation and 1 group for each set of shots with a particular actuator
modulated.
The identification was then carried out in a step-wise procedure.

1. Initial estimation of A was obtained using the group with little modulation
2. Holding the slowest eigenmodes constant, the columns of the B matrix
were estimated in subsequent steps, one column at at time.
3. Each column estimated with the actuator corresponding to that column.

The estimation process is carried out by fitting A and B to the data
according to a least squares fit by minimizing the norm h(Q) = 1

2 tr(Q)

Q(θ) =
1
N

N∑
k=1

ε(k , θ)εT (k , θ) (5)

where ε is the prediction error (X (k)|measured − X (k)|model), k is the
sample, and θ are the parameters to be determined.
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Fitted model describes rotation response accurately
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Fitted model describes ψ response accurately

The same identification process is carried out for the ψ profile (the
poloidal flux relative to the boundary value)
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Steady state gains: magnetic profile ψ

The estimated steady state gain matrix Ksg = −A−1B
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Steady state response of flux profile to unit change of the various inputs.
The plasma current and co-current NBI are the most capable in adjusting
the profile.
The opposing affects of co-current and counter-current NBI are expected.
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Two time scale coupled model

The linearized coupled model between the magnetic profile ψ and a
kinetic profile Vφ can be written as

∂ψ

∂t
= A11ψ(t) + A12Vφ(t) + B1u(t) (6)

ε
∂Vφ

∂t
= A21ψ(t) + A22Vφ(t) + B2u(t) (7)

ε is the ratio between energy confinement time and the characteristic
resistive diffusion time (ε� 1)
In the limit ε→ 0 the model can be decomposed into slow and fast
models of the form

∂ψ

∂t
= Aslow ψ + Bslow uslow and Vφ|slow = Cslow Vφ|slow + Dslow uslow (8)

∂Vφ|fast

∂t
= Afast Vφ|fast + Bfast ufast (9)
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Two time scale model: Vφ|slow + Vφ|fast, fitted model

Using the previous model determined for ψ as Aslow,Bslow
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Static gains: rotation profile (Vφ)

The estimated steady state gain matrix Ksg = −CslowA−1
slowBslow + Dslow
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Optimal state feedback controller with integral action
(Proportional + Integral control)

!

!!! !  !"#$% !! ! ! !! !

! !

!!! !
! !

To design the controller above, the plant is augmented with the integrator
states xc =

∫
r̄ − y :

˙̄x =

[
−C 0
A 0

]
x̄ +

[
−D
B

]
u +

[
1
0

]
r̄ (10)

Then using the augmented plant a simple state feedback control law of
the form u(t) = −Kr x̄(t) is determined to minimize the cost functional

J = E

{
lim

T→∞

1
T

∫ T

0

[
x̄T Q̄x̄ + uT R̄u

]
dt

}
(11)

William Wehner (Lehigh University) Modeling & Control November 17, 2011 19 / 24



Control simulation: successful disturbance rejection
Input disturbance at t = 3.5 s. The green period indicates the feedback is
turned on and the red period indicates the feedback is turned off.
The dash blue line is the target profile.
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Control simulation result

Input disturbances are applied to all the actuators except the
counter-current beam with a magnitude of about 10− 15 % of their
respective feedforward values.
The feedback is turned off for 0.5 s to allow time for the disturbance to
perturb the system.
At t = 4.5 s the feedback is turned back on to regulate the states back to
their reference trajectories.
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Experimental result
Input disturbance at t = 3.5 s. The green period indicates the feedback is
turned on and the red period indicates the feedback is turned off.
(left) The black dots represent the delivered inputs, the green-red line
represent the requested inputs. (Blue) target profile.
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Experimental result

The experimental procedure is identical to the simulation.
From 2.5− 3.5 s the control performs well, holding the ψ-profile tight with
the desired target.
At 3.5 s an input disturbance is introduced and allowed to perturb the
system for 0.5 s without feedback control (red portion).
At 3.5 s the feedback is turned back on.
Unfortunately, a mistake with the DIII-D settings disallowed the plasma
current from going down.
The neutral beams and gyrotrons are adjusted in the correct directions as
predicted by the model, but the failure in Ip actuation results in poor
control.
A second experimental attempt is scheduled for December 2011.
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Future Work

Incorporate coupled evolution of toroidal rotation profile with the poloidal
magnetic flux profile and the temperature profile.
Use identified models in conjunction with Magnetohydrodynamic (MHD)
stability models in development by Yongkyoon In (Fartech) to further
study the stabilizing affects of the profile optimization on MHD
instabilities.
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