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NSTX Mission Elements

« Advance ST as candidate for Fusion ST-FNSF

Nuclear Science Facility (FNSF)

» Develop solutions for
plasma-material interface

« Advance toroidal confinement
physics for ITER and beyond

* Develop ST as fusion energy system
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Mission of ST-FNSF

From M. Peng, ORNL

* Provide a continuous fusion nuclear
environment of copious neutrons to

develop an experimental database on:

— Nuclear-nonnuclear coupling phenomena in materials
in components for plasma-material interactions

— Tritium fuel cycle
— Power extraction

ST-FNSF

« Complement ITER, prepare for

. Low-aspect-ratio
component test facility (CTF): P

“spherical” tokamak

— Low Q (< 3): 0.3x ITER .

— Neutron flux <2 MW/m?: 3 x (ST)is _mOSt compact
— Fluence = 1 MW-yr/m2  5x embodiment of FNSF
— thuse S 2 WKs! 1000 x

— Duty factor = 10%: 3 X
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High-Priority Research Areas for ST-FNSF

ReNeW Thrust 16 (2009): “Develop the ST to advance fusion nuclear science”

1. Develop MA-level plasma current formation and ramp-up

2. Advance innovative magnetic geometries, first wall solutions

3. Understand ST confinement and stability at fusion-relevant parameters
4. Develop stability control technigues for long-pulse, disruption-free ops

5. Sustain current, control profiles with beams, waves, pumping, fueling

6.Develop normally-conducting radiation-tolerant magnets for ST applications

7. Extend ST performance to near-burning-plasma conditions

This talk will focus on how NSTX and NSTX Upgrade
address the ST-FNSF physics research needs (1-5) above
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Access to reduced collisionality is needed to understand
underlying causes of ST transport, scaling to next-steps

* Future ST's are projected to operate at
10-100x lower normalized collisionality v*

1.0g ST-CTF

\ constant ]

[ a, B, p* | .. :

_ N[ N&TX Upgrad _ Electron collisionality v,* «c n /T2
pgraae |

I_‘P  Conventional tokamaks observe weak

— o1l Inverse dependence of confinement on v*
w [ ITER-like

t—|>_ - scaling

m

—JSTs observe much stronger v* scaling
' — Does favorable scaling extend to lower v* ?
—What modes dominate e-transport in ST ?

—e— Total
—&— Thermal

0.01 :
0.001

« NSTX H-mode thermal confinement scaling differs from higher aspect ratio scaling:
Tenstx © B2 1504 > strong By scaling T ggyp o B121915,9-93 > weak B, scaling

» Upgrade: Double field and current for 3-6x decrease in collisionality
-> require 3-5x increase in pulse duration for profile equilibration
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Increased auxiliary heating and current drive are needed to
fully exploit increased field, current, and pulse duration

*Higher heating power to access high T and 3 at low collisionality
— Need additional 4-10MW, depending on confinement scaling

Increased external current drive to access and study 100% non-inductive
— Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas

Upgrade: double neutral beam power + more tangential injection
— More tangential injection = up to 2 times higher efficiency, current profile control
— ITER-level high-heat-flux plasma boundary physics capabilities & challenges

NBI current drive proflles [MA/mZ]

T T e e e L

- PresentNBI o ! _ ond NB R
. TTAN G 8 B0KA/MW _TAR T
. ~A0KA/MW,, 50cm ] osl INJ 110c:m'
60cm 120cm

0.4 70cm 0.4 130cm-

B2 N | N
0.0 . . | ] 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Normalized minor radius
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NSTX Upgrade consists of two major elements that together
bridge the device and performance gaps toward next-steps

New 2nd NBI

. LY

Present 'NBI

Upper B cyic- lates ]

R
’ - ol

%
v

TF OD = 20cm

N .
Outline of new center-stack (CS)
NSTX | NSTX Upgrade | £o='© QeNF“acc'ﬁﬁ‘;
Aspect Ratio = R,/ a >1.3 >1.5 >1.5
Plasma Current (MA) 1 2 4->10
Toroidal Field (T) 0.5 1 2-3
P/R, P/S (MW/m,m?2) 10, 0.2* 20, 0.4* 30>60,0.6>1.2

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power
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Center Stack Upgrade analysis and design are
largely complete, and R&D activities are underway

B and J each increase 2x = electromagnetic forces increase 4x

Simpler Inner TF design

(single layer of TF conductors) Improved Joint Design

OH coll D ST ‘ L Reinforced Coil Supports|
wound on TF Nl T d |
(with 0.1”

gap)

Existing
outer TF
WITH water
cooling

A s i
| Successfully Tested
to 300,000 cycles
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2nd NBI requires relocation of a TFTR NBI system to NSTX,
diagnostic relocations, new port for more tangential NBI

e Decontamination of 2"d Beam line
successfully completed in 2010

* Reassembly of 2"d Beam line has started

Present NBI
Ran = 50,60,70cm

New 2nd NBI 3
Ryay = 110,120,130cm \J\¥

—

@ NSTX
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Plasma initiation with small or no transformer is unique
challenge for ST-based Fusion Nuclear Science Facility

ST-FNSF has no/small i Non-Inductive Strategy
central solenoid lo Target [KA]

~800

~400
~20
Time
< ‘ »le | » e | < | >
HHFW NBI+HHFW  gystain with
CHI, PF, Guns NBI+HHFW

W_J

* Near-term NSTX Goal: Generate ~0.3-0.4MA full non-inductive start-up
with Coaxial Helicity Injection + fast wave heating + NBI (need Upgrade)

« Upgrade goal: Provide physics basis for non-inductive ramp-up to high
performance 100% non-inductive ST plasma - prototype FNSF
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Achieved substantial progress on Coaxial Helicity Injection
(CHI) and fast wave heating of low-current plasmas in 2010

« Early in shot: produce 150-200kA

» Generated 1MA using 40% less
flux than induction-only case

— Low |, = 0.35, and high elongation > 2
-» suitable for advanced scenarios

Time after CHl starts

1200
1000 CHI + OH

OH only

800
600}

400

Current [kaA]

200|

Difference
0

=200

0.00 0.05 010 015 0.20
Time (sec)

* CHI-driven current scales linearly
with B; = 2x higher in Upgrade

» Achieved high T,(0) ~ 3keV at
|,.=300kA w/ only 1.4MW of HHFW

- Previous best was T,(0) ~ 1.5keV at
twice the RF power

- Enabled by 2009 antenna upgrades

Original 7. l

Feed ™ :_/é~ 4 T-E' [Hew
- [ 138506 (2010)

round = 15 117605 (2006)

Ground l*‘ 3.E |//'\ "..III
s | 2t [\

SE : ."II
1f ) _
N __:;::f R
BNCS 0 ———

| 0.2 0.4 0.6 0.8 1.0 1.2 1.4
R [m]

* Non-inductive fraction ~60-70% with
25-30% from RFCD from high T,(0)

*Projects to ~100% NI at Pge = 3-4MW

@ NSTX
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Non-inductive ramp-up from ~0.4MA to ~1MA projected
to be possible with new CS + more tangential 2"¢ NBI

NBICD efficiency [KA/MW]

New CS provides higher TF (improves stability), 3-5s needed for J(r) equilibration
More tangential injection provides 3-4x higher CD at low Ip:

— 2x higher absorption (40>80%) at low I, = 0.4MA

100

80

60

40

20

— 1.5-2x higher current drive efficiency

E,z=100keV, 1.=0.40MA, f,=0.62
n, =2.5x10"”m>, T, = 0.83keV

I Ineico / Pass

o
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I ]
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NSTX Upgrade will extend normalized divertor and
first-wall heat-loads much closer to FNS and Demo regimes

Device heat-flux parameters

14 -
] * FDF (I
1.2 mENST (IV)
10 - * EDE {1
] WENST (Il)
0.8 -
Pheat IS i FOEO inst u: IFSNTS;nf::L
[MW/m? (g & TN
] EAST+ ( INST?-:MMW;
] NSTX-U
04 ] KSTAE ||
S DD * St
0.2 ] + T JIGUSA —
i JET (DT)
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NSTX has contributed strongly to divertor heat flux width

studies*, and is developing new heat-flux mitigation methods
3 ' - - _ *Joint Research Milestone (3 U.S. Facilities)
o« o.° A mid — | -1to-1.6 _ .
2.5/ :,.  Divertor heat flux width decreases with
S ) ".{! . . | g INncreased plasma current I
s .. P o o / — Potentially major implications for ITER
15 : . :
'f r A ‘e | - NSTX Upgrade with conventional
05! v divertor projects to very high peak
| - heat flux up to 30-45MW/m?
8.5 06 07 08 (OMQA) 1 1.1 1.2
IP

 Divertor heat flux inversely proportional
to flux expansion over a factor of five

1 — Snowflake-> high flux expansion 40-60,

7. larger divertor volume and radiation

— Standard diverto

e - U/D balanced snowflake divertor projects to
: acceptable heat flux < 10MW/m? in Upgrade
00 01 02 [ ]o.3 0.4 at highest expected I, = 2MA, P,,x=10-15MW
I NSTX ISFNT 2011 — NSTX (Menard)
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Upgrade CS design provides additional coils for flexible and
controllable divertor including snowflake, and supports CHI

NSTX Snowflake

S A

Inner PF1C P
= Ceramlc break assembly

B

Inner PF1B

Inner PF1A

Inner TF Bundle

N
\ sk ™

Plasma Fac:| ng Compon ents

N \ 6
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NSTX is a world leader in assessing lithium plasma facing
components as a possible PMI solution for magnetic fusion

Dual Liquid Lithium Evaporator

 Solid Li surface coatings: Pump D, increase |:> For Li wall coatings

confinement, stored energy, and pulse length,
eliminate ELMs, reduce core MHD instabilities

* Liquid Lithium Divertor (LLD) motivation:

Now routinely used

— Provide volume D pumping capacity (> solid Li
coatings) for increased pumping and duration

— Potential for handling high heat flux (longer term)

%%%%% =l i [
N _ .,/-“‘ f—%?j! b d “j:

N N

4 heatable LLD plates (Mo on C
Surface temp: 160 - 350+ °C

//.

u)

Average Mo
porosity: 45%

V30925 100um

LLD surfacé Cross Controlled scans of strike-point location:
section: plasma On inboard divertor
sprayed porous Mo On LLD (outboard divertor)

@ NSTX
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Solid Li surface coatings: pump D, increase energy
confinement, eliminate ELMs, but confine impurities too well

1.0 o | _ _ 1.0 Ha
g \ <« Without Li ne/nG fir
2 05 <« With Li 0-5_* s |} ‘:
00 001 oz | 1
E' 4 l < ELM-free, 8: N_e (x1e20) -f\’\\ ]
= o 4 reduced at \
': ¥ divertor taor24 |y
SR P o onssmn o #  recycling 0 s
6 47
2, R < Lower NBI L g o X1620)
= to avoid 2l N
22 [ limit S 130724 1
o 0 ' 0 A 130725
200 — = -
=5 ) - 5| N_C (xte19 AT
2 <« Similar A Fotr S
o stored 3 et .
2 [ i
2 energy i / s
3 80N L ;
PP . - N_Li(x1e17) JRP R
Jog o T ... <H-factor t b T
~ ' N . 4L ' o "_)(H Jr ]
21 T N L inoreasee et
0 -~ uptod0% Nal g
| 00 02 04 06 08 10 12
0.0 0.2 0.4 0.6 0.8 Time (s)
Time [sec]

Based on these results, NSTX is shifting emphasis
from D inventory control to C impurity reduction

<« Monotonic
increase in
electron
density

| < Deuterium

inventory
pumped out

<« But carbon
inventory

increases
(Zegs ~ 3-4)

<« Li inventory
rises slowly,
concentration
is very low

@ NSTX
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2010: Operation with outer strike-point on Molybdenum LLD
(coated w/ Li) successful, achieved high plasma performance

LLD FY2010 results:

« LLD did not increase D pumping
beyond that achieved with LITER

* No evidence of Mo from LLD in
plasma during normal operation

» Operation with strike-point on LLD
ETo2 142404 0700 can yield reduced core impurities

Sf ;

<4 Strike-point on inner C divertor (no ELMs)

<4 Strike-pointon LLD, T, 5 < T|iimert
4Strike—point on LLD, TLLD > TLi-meIt (+ fueling differences)

0.0 0.2 0.4 0.6 0.8 1.0 *No ELMs, no - small, small = larger
Time [s]

Li + plasma-facing component research will be continued, extended in NSTX-U
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New NSTX turbulence simulations are advancing
the understanding of ST energy confinement

* Non-linear gyrokinetic turbulence simulations of
micro-tearing instabilities predict t¢ oc 1/y, < 1/v *

* Predominantly electromagnetic

turbulence — result of high 3

« Candidate explanation for ST
confinement scaling observed 4" L
on NSTX and MAST :

1y (alp’c))

Lower v* accessible in Upgrade
will clarify roles of micro-tearing
vs. ETG, TEM in ST e-transport

B ~9%

B NSTX

GYRO
NSTX120968A02

- t=0.560 s r/a=0.6 yE=O

experiment

10

-2 -1

10
v, (CS/a)

@ NSTX
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NSTX is 15t tokamak to implement advanced resistive wall
mode state-space controller, utilized it to sustain high B~ 6

Full 3-D
model

- Device R, L, mutual inductances

- Instability B field / plasma response

- Modeled sensor response

« Controller can compensate for
wall currents
» Including mode-induced current
» Examined for ITER

« Successful initial experiments

» Suppressed disruption due to n
=1 applied error field

» Best feedback phase produced
long pulse, By = 6.4, B/, = 13

RWM
eigenfunction
(2 phases,

2 states)

(X, X,) R

State space feedback with 12

truncate

NSTX 140037/140035

1.2
n.azlp (M

0.4}
0.0

-
¥

—

Unfavorable feedback phas

e

| Favorable 7

e :

FB phase | |

N

5
— g
P

L

o B o O &
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Upgrade structural enhancements designed to support high 8
at full I, = 2MA, B=1T: By=5,i<land B,=8,1,£0.6

PF5 supply current vs. internal inductance New Umbrella

PF5 supply current (kA)

for 2MA plasma current and I, =0

NSTX Upgrade

UpperLid

——py=1

—&—fpy=5

NSTX PF:

High [;, high-B, scenarios determine the
maximum vertical field (PF5) current required

0.6

0.8

Internal inductance

Upper & Lower
Umbrella
Reinforcements

Additional PF2
Clamp, PF2/3
Support
Upgrades

New TF Leg
SupportRing

New (additional)
PF4/5 Supports

New Clevis &
Connecting
Rods

New Umbrella

l Lower Lid

New Pedestal

VVFoot
Reinforcement

@ NSTX
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In 2009-10, NSTX demonstrated sustained high-elongation
configurations over a range of currents and fields

iah- inh- 1.2
Hl*g_h Pr LOQQ Pulse ng_h e < 08- Plasma current |
q*=2.8 q*=3.9 q*=4.7 g0
1,=1100 kA 1,.=700 kA 1,.=700 kA .0/ 135129 133964 135445
2.0 Poloidal beta EFIT
2 W=y T T T 1D == S = O i S Sl = = i i
L 135129 | & 10—~ P s 2w s [ A, T
. o 135445 | el i
i 133064 | 8(1+ - )’TaBTo 0.5
1 30
\ ] ol Toroidal beta EFIT
| 29
10
0
— K ~2.6-2.7 1.5
s g 1:0
6 -~ 08 T 0.5
0.0
30 : -
Al Double 3 12 = Currentl/r:\central solenoid =
Null 3 g 7
| R ] -20
ik ] o 075 Pressure Driven TRANSP
20 0, e BEEE ), 3050_ - yapphctradly B
0.0 0.5 1.0 1.5 2.0 ‘_Z - -"_‘o",:::::_ ————— ‘_‘,_(_"\__'"\
R 5 0.25|- e ) _
“ 0.00 e Neutral Beam
Pulse-lengths limited by 00 03 06 09 12 15 18

time (sec.)

OH, TF coil heating limits
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NSTX Upgrade supports 5x longer pulses and 100%
non-inductive current drive, ultimately with g profile control

Fully non-inductive scenarios with

TF, OH, and Plasma Current q(r) profile will be controllable by:
Units: loy and I;¢ [KA], 1o [KA/10] — NBI source tangency radius
— plasma density
20 / \ — plasma position (not shown)
150 ] I B, = 1T, Pyg = 10MW, E,g = 110keV

4r— ;
/ \ \ C ne/nGreenwaId :',','

100 B - 0.95 S ]

iy - === NSTX . ]

K y NSTX Upgrade C A i

] » I A ]

50 :’ \ L /’ ,’ / ]
’/’ /, ,’

=". i - _ B i A Rran [cM]
: ’ 50, 60, 70, 130
-50 e R 60, 70,120,130
1 0 1 2 3 4 5 6 7 8 e 70,110,120,130
Time[s] L LS S S
0.0 0.2 0.4 0.6 0.8 1.0
ppol
I, =0.95MA, H =1.2, =5, = 10%, 4AMW RF
Changes from NSTX to NSTX Upgrade: g sy = 12 Pu=5, Br= 10%

I, and B; 2x higher, 3x OH flux, flat-top 5x longer, W4 up to 4x higher
Minimum Aspect Ratio A = 1.3 = 1.5, inter-shot time increased ~2x
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NSTX inner TF bundle experienced irreparable turn-to-turn
electrical short at beginning of FY2011-12 run (July 20, 2011)

e Fault accessed by dissecting TF bundle  <Cause of fault traced to solder
flux contamination of insulation

|

*NSTX Upgrade TF design has several improvements:
» Single layer instead of 2 layers - reduced turn-to-turn voltage
> VPl instead of B-stage (pre-preg) insulation

» Lesson learned from TF fault: will use rosin-based (organic) flux
instead of ZnCl-based flux, improve flux removal techniques

pgr
)

Plan: Start Upgrade ASAP, finish 6-9 mo. earlier than originally planned
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Summary: NSTX and NSTX Upgrade strongly
_support FNSF development, Materials/PMI, and ITER

« NSTX Research Highlights:

— CHI+OH plasma current savings up to 400kA, RF heating of low I, to 3keV
— Established divertor heat flux scalings, advancing snowflake divertor, Li

— Non-linear simulations suggest micro-tearing may influence ST transport
— High By ~ 6 sustained with advanced RWM control

— Long-pulse plasmas developed — duration limited by magnet capabillities

« NSTX Upgrade Progress:
— Design supports CHl/start-up, PMI, transport, high-3, 100% NICD research
— New center-stack design and analysis complete — fabrication beginning
— 2"d NBI relocation/installation — ready to begin during Upgrade outage

« NSTX Upgrade Schedule:
— Project base-lined (CD-2) December 2010
— Final Design Review held June 2011, CD-3 review to be held October 2011
— NSTX Upgrade outage to begin late 2011
— NSTX Upgrade first plasma - early 2014
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