Li transport study in XGCO and XGC1 (C.S. Chang, et al)

o Simulation: as much first-principles as possible, diverted geometry

— XGCO0: Neoclassical guiding center, not simulating turbulence, but
modeling in the anomalous transport

— XGC1: gyrokinetic neoclassical and turbulence

— Both XGCO0 and XGC1 will include Li and impurities, neutral transport with
atomic physics, wall interaction coefficients, and radiation

— Li effect on ELM stability boundary, in coupling with M3D-C1 and Elite
— Li effect on the core plasma and impurity transport
— Li effect on divertor heat load width will also be studied simultaneously
o Diagnostics
— Measure Li and impurity profile time-dependence at all radii, 2D preferred

o Code development
— Move Li and impurity particle routine from XGCO0 to XGC1
— Add poloidal electric field routine to XGCO0
— Couple M3D-C1 and XGC1 into EFFIS framework
— Complete the kinetic electron capability to XGC1 across separatrix
(discussed elsewhere)



Comprehensive gyrokinetic code XGC1
(Unique in the world fusion program)

* Diverted magnetic field geometry with material wall BD condition

* Includes magnetic axis: wall-to-wall simulation
o Lagragian operation (particle time-advance) in cylindrical coordinates
o Eulerian operation (field solver) in field-following coordinates

* Wall-recycling of neutral particle with atomic physics
* Multiscale simulation of neoclassical, turbulence, neutral particle, and atomic physics
e Aim for 24 hour simulation by utilizing HPC

XGC1 performance on 3mm ITER grid
Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation
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XGCO0 says, at n./n_.=10%, Li moves outward
while C** moves in at y,<1.

Radial transport speed profiles
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Carbon depletion from pedestal strengthens ExB shearing
E -well depth/width at n./n_,=5% is stronger than at 10%

Weaker X-loss effect by C in pedestal
Viygx1/Z, v x1/m'2; Thus, Vyg/ v, «m'2/ Z: where Z;/Z,=6, (m/m,)"4=612

Radial electric field profiles on the outside midplane

Radial electric field profiles on the outside midplane
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Conjecture: Reduction of P, with abundance of Li in the scrape-off layer:

— XGCO observation: reduction in C*® in the pedestal by high Li population in
scrape-off layer (C*6 screening, but C° can still penetrate)

— Momentum conservation is not a constraint in scrape-off: Collisional transport
yields I'->0 just outside separatrix. = higher C collisionality by abundant Li,

-> higher I'c>0 just outside separatrix = more C depletion in pedestal 2>
Increased ExB shearing rate.in pedestal



Conclusion and Discussion, from Li Symposium 2011

« It appears that many of the Li behaviors and its influence on plasma

in the H-mode, as seen in NSTX, could be related to neoclassical
physics

— Blockage of Li influx, except in the early low-carbon stage, following
the L-H transition

— Enhanced flux of ionized C into core throughout H-discharge period
— Reduction of C and Li in a thin layer toward separatrix

— Lower P, with Li evaporation

— Broadening n_ pedestal

« The initial large drop of C into hollow profile appears to be outside of
neoclassical physics: A transient turbulence-neoclassical effect is
suspected

-> to be investigated from XGC1 gyrokinetic edge turbulence-
neoclassical code

A more realistic plasma “simulation,” as opposed to the “academic’
study, is needed

* Divertor heat load scaling with Li is to be studied. ADAS data to be
used, in collaboration with the Auburn group.



New Lithium Density Measurements in H-mode

(We will try to connect the blue items with XGCO0 simulation results.)
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Figures are from R. E. Bell.

* Large drop of n; at L-H transition into hollow
profile = Probably a transient, nonlocal
turbulence effect

arbon increases with Li evaporation
— C influx rate across pedestal is high
— C accumulation in core

 Li screening at later time, but not earlier
* P,y goes down with Li

Li influx rate across the pedestal is low
“No sign of Li accumulation in core”
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