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Motivation: control of divertor head loads

@ Control of divertor heat loads (both steady state and transient) remains
one of the key challenges for a fusion based reactor and for a compact
fusion nuclear science development facility (FSNF)

@ Resonant magnetic perturbations (RMPs) are a promising method for
ELM control — breaking of axisymmetry

@ Advanced divertors (specialized divertor geometry): Snowflake,
X-divertor) for steady state heat flux reduction

@ Likely, both concepts will have to work together, and NSTX-U is a well
suited device to study this: What is the impact on neutral fueling and
exhaust (density control), and how does this affect high recycling and
transition to detachment?
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o Introduction to magnetic perturbations

@ The snowflake divertor configuration

e Edge transport modeling
@ Introduction to EMC3-EIRENE
@ First simulation results
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Perturbation of the magnetic separatrix — lobes

@ The separatrix associated with X has 2
branches (set of field line trajectories):

W+

{p| /Iim Fo(l) — X}
w- = {p|l lim  Fo(l) — X}
Fo(1): field line through p

@ Both branches overlap in the
unperturbed configuration

(arrows indicate field direction)
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Perturbation of the magnetic separatrix — lobes

@ The separatrix associated with X has 2
branches (set of field line trajectories):

w+ {p| fim Fo(l) = x}

w- = {p|/jmoc Fp(/)—>x}

Fo(1): field line through p
@ Both branches overlap in the
unperturbed configuration

@ Magnetic perturbations result in a
splitting, and both branches may
intersect each other transversely

(arrows indicate field direction) @ This opens up a connection between
the plasma interior and the divertor
targets
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Lobe density increases with lower aspect ratio
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@ Lobes become smaller and more frequent towards the X-point
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@ Higher density may facilitate heat flux spreading between lobes
@ Radial extension of lobes depends on perturbation strength
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Radial size of lobes defines poloidal extend of the
magnetic footprint, lobe density not affected by /.
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@ The snowflake divertor configuration
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The snowflake divertor configuration

@ Second order null of the poloidal magnetic z/a
field = the separatrix acquires a 19
characteristic hexagonal form
@ This results in a flux expansion near the
null-point, and
0.5
BésQr;owflake) ~ I’2
while
BF(;)tlandard divertor) ~r - x/a
r: distance from the null-point
@ SF facilitates longer connection lengths and ° °
two additional strike points .

@ Generalization: two first order nulls in
(close) proximity
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The 'snowflake’ configuration allows for a variety of
magnetic topologies at NSTX-U

Nearly exact Snowflake (SF0)
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@ ’Nearly exact snowflake’: approximation to ’classical’ snowflake
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The 'snowflake’ configuration allows for a variety of
magnetic topologies at NSTX-U

Nearly exact Snowflake (SF0)
-120

Normalized poloidal flux
5
3

@ ’Nearly exact snowflake’: approximation to ’classical’ snowflake

@ Here SFO is actually 'snowflake minus’, which is topologically equivalent
to ‘connected double null’ (CDN)
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The 'snowflake’ configuration allows for a variety of
magnetic topologies at NSTX-U

Nearly exact Snowflake (SF0) Tilted Snowflake Minus (SF-) Snowflake Plus (SF+)

Normalized poloidal flux
5
3

Major Radius [em]

@ 'Nearly exact snowflake’: approximation to ‘classical’ snowflake

@ Here SFO is actually 'snowflake minus’, which is topologically equivalent
to ‘connected double null’ (CDN)

@ The secondary X-points in the (tilted) SF- and SF+ configurations here
are outside the divertor targets — topology is ’lower single null’ (LSN)
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SFO has increased connection length, but flux
compression on target (with respect to SD)

Outer Strike Point Flux surface connection
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@ Both SFO and SF- feature longer connection lengths then SD at the outer
strike point: may result in lower divertor temperatures

@ SFO features flux compression while SF- features flux expansion with
respect to standard divertor (SD) configuration: can impact heat flux
spreading
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SFO has increased connection length, but flux
compression on target (with respect to SD)
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@ Both SFO and SF- feature longer connection lengths then SD at the outer
strike point: may result in lower divertor temperatures

@ SFO features flux compression while SF- features flux expansion with
respect to standard divertor (SD) configuration: can impact heat flux
spreading
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Lobe size and extension depends on equilibrium
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@ Lobe density is much higher in SF0, i.e. /|8 —
lobe size is smaller ([, = 1 MA) e
£ 5
@ Lobe size scales with r? near the X-point § 4
in SFO, because By does k! Z
— very small change in size between .

neighboring lobes 0 . " p 2
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e Edge transport modeling
@ Introduction to EMC3-EIRENE
@ First simulation results
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A 3D steady state transport model for the edge plasma

@ Field lines are reconstructed from a
3D block-structured grid which can
be adapted to the topology at hand

H. Frerichs et al., Comp. Phys. Commun. 181 (2010) 61

@ Classical transport (Braginskii) along
field lines

@ Self-consistent solution by iterative
application

@ The following simulations are based on:

Particle in-flux Fin
Recycling coefficient Crec
Edge input power P,
Anomalous cross-field transport:
(particles) D,
(energy) Xel

Magpnetic field structure
FLARE: 3D field line grid

I

L

Plasma Transport
EMC3: Fluid model

Sources/Sinks

Monte Carlo method

Sp, Sm, See, Sei

Transport coefficients

n,u,Te, Ti

Neutral Gas Transport
Plasma Background EIRENE: Kinetic Model
Monte Carlo method

0.99
2MW

= 0.3m2s!

3.12.1005-1(50 A)

= xiL = 20m?s’

@ Impurity transport and radiation is neglected at this point
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No RMPs: SFO operates at higher divertor density
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RMPs: Lobes at the LFS, diffusion to strong at HFS
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Heat load analysis favours SF- configuration

Heat load in axisymmetric configuration
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@ Small reduction of peak heat load in SF+

@ Moderate reduction of peak heat load in SF-, peak is found at 10 — 20 cm
distance from the separatrix

@ Significant increase of peak heat load in SFO due to compression of flux
surfaces at the divertor target.
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Heat load analysis favours SF- configuration

Heat load in axisymmetric configuration Heat load in RMP configuration
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@ Small reduction of peak heat load in SF+

@ Moderate reduction of peak heat load in SF-, peak is found at 10 — 20 cm
distance from the separatrix

@ Significant increase of peak heat load in SFO due to compression of flux
surfaces at the divertor target.

@ No significant impact of RMPs on toroidally averaged heat loads
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Summary and conclusions

@ Application of RMPs results in the formation of helical lobes which have a
higher frequency at lower aspect ratio

@ The 'snowflake’ family of divertor configurations allows a variety of
magnetic topologies ranging from flux compression to flux expansion at
the divertor targets

@ First transport simulations favour the SF- configuration for heat load
reduction

Outlook:

@ How do RMPs and advanced divertor configurations impact neutral
fueling and exhaust, and how does this affect high recycling and
transition to detachment?

@ What is the impact of plasma response effects (use NIMROD, M3D-C1)
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w aspect ratio: A
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Radial lobe size depends on perturbation strength in
relation to equilibrium field
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Field lines can connect through the lobes from inside
the separatrix to the divertor targets
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Moiré pattern caused by small, similar sized lobes
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A 3D steady state fluid model for the edge plasma

Particle balance (n: plasma density)
V- [nuHeH — DLeLeL -Vn} = Sp

D, : anomalous cross-field diffusion, Sp: ionization of neutral particles
Momentum balance (v : fluid velocity parallel to magnetic field lines)
v {m,vnuuze” — njeje -VUH — D,e,e; -V (m,'nuH)] = —e- VH(TE + T,) + Sm

ny o< T,%/2: parallel viscosity, n1 = m;nD. : cross-field viscosity,
Sm: interaction (CX) with neutral particles

Energy balance (7., T;: electron and ion temperature)

5
V- [ETC (nujey — Dieres -Vn) — (nce e + xeneire.) -VTC} = +k(Ti—Te) + See
5
AV [ET, (nuHeH — D, e e, ~Vn) — (r;,eHeH + X,-neieL) VT} = 7k(7—f — Te) + Sei
Kei X Tg ,5/2: classical parallel heat conductivity, Xe, Xi: anomalous cross-field transport,

k oc n? T.~3%/2; energy exchange between el. and ions,
See, Sei: interaction with neutral particles and impurities (radiation)
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Field lines are reconstructed from a finite flux-tube grid

@ The 3D grid is generated by field lines tracing starting from 2D base grids

Grid nodes

Pre-calculated field lines -> 3D finite flux tube grid
Reconstructed field line

@ Discretization in the 'cross-field’
direction can be adapted to the
magnetic configuration at hand.

@ Unlike grids for 2D transport
modeling, the actual information
about the magnetic configuration is
not stored in the 2D base grid(s) but
in the 3D grid.

100 120 140 160 180 200 220 34D 120 140 160 180 200 220 240 20 40 60 80 100 120 140 160
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