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● How  much  does  reconnection  heat 
ions and electrons? How is it useful?

    TS-3, UTST, MAST, based on UK-J collaborations

 Significant rec. heating of ions MAST Ti > 1keV
1)  Closed field exp. vs Open field exp. 
2)  Downstream heating of ions MAST,TS-3, PIC, Solar

3) X-point heating of electrons MAST, TS-3, PIC

4) Effect of Bt on reconnection heating MAST, TS-3, PIC

5) Upgrade of TS merging exp. for high B rec. heating

High guide field (high-q tokamak) reconnetion heating : 
Ono et al.  PPCF’12, PRL’11, POP’15, POP’93, Tanabe et al. PRL’15
Low guide field (low-q tokamak and spheroamk) reconnection heating:
 Ono, Kawamori et al. PRL’05, PRL’96, PPCF’92, PFR’86�
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2D Steady-State Physics of Magnetic Reconnection
-The Sweet-Parker 2-D Model for Magnetic Reconnection-  �
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Open flux experiment �

Closed flux experiment �



Univ. Tokyo�Merging/ Reconnection Experiments 
1985〜 TS-3 (R=0.2m)    2000〜 TS-4 (R=0.5m)  
2006〜UTST (R=0.45m)  
for physics and application of reconnection heating  
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Stop hobby work!
Establish some
application study 
for Electr. Eng.

Start application 
of huge reconn-
ection heating!
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X-point  

Lab. Exp.: RFP Sawtooth 

Heating  Mag. Island  

   Closed fluxes surrounding X-point can confine rec. heating energy. �

MAST high-Rm 
 Merging Exp. 

X-point  
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Number of merging/ reconnection experiments is over 10 now. 	
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"Open Current , Closed Flux”

U. Tokyo TS-3,TS-4(’86~)MIT VTF('00~) START, MAST (’90~), NASA (‘01~), 
Colorad FRC (‘07), Try-Alpha C-2 (‘10), 
Texas A&M(’09), Soul U. VEST(‘11)
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Just the closed-current+closed flux experiments have high T & Rm. 	
 

Closed Flux

U. Tokyo TS-3,TS-4(’86~)
START, MAST (’90~), NASA (‘01~), 
Colorad FRC (‘07), Try-Alpha C-2 (‘10), 
Texas A&M(’09), Soul U. VEST(‘11)

”Closed Current ,  
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 Significant ion 
heating of no-guide 
field reconnection  
   (Merging of two 
toroidal plasma with 
opposing Bt)   
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Watanabe (NIFS) PFR00 made the global MHD simulation of 
couterhelicity reconnection, including its heating effect. 
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1) Down-stream 
heating of ions 

2) X-point heat-
ing of electrons 

 High power heating 
suppresses paramag. 

Bt, increasing 
plasma beta. 
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Outflow
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Shock?

Sheet Current 

TS-3: High-Rm�:
 Pi,heat>>Pi,loss �

High  Guide-Field 

 Y. Ono PRL2011 
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Shock-like 
�����pileup 

In the downstream, hot Ti spot, steep 
increase in ne B and dumping of flow 
appear, indicating fast shock form. 
n1/n2~B1/B2~v1/v2,  

High  Guide-
Field Rec. 

 Y. Ono 
PRL2011 
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Energy Flow during Reconnection with high Bt  

TS-3 High Guide field Bt≈5Brec, Bt≈0 

Outflow�Energy Current Sheet Heating

€ 

E • J∫ dV∫ dt
Small localized          
    electron heating 

>>>>  Ion heating�Energy
       ≈ 0.88, 0.85

≈0.09, 0.10

   Ion Acceleration   

Magnetic Energy Dissipation ≈ 1, 1

Shock-like (pile-up) & viscosity
damping mechanisms?

vion ≈ vpol.Alf .

(cf. No-Guide field: Ono PRL96) 

Electron heating�
Energy ≈ 0.07, 0.07



Brec
2-scaling for direct ion heating of reconnection 

ITER Regime

ΔWm/Wm=1%

ΔW /W ~100%mm

TS-3 (R~.2m)
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high Bt  rec.  (tokamak plasma)
     low Bt  rec. (spheromak) 

zero Bt rec. (counter) 
MAST
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 Using MAST exp., we extended the Brec
2-scaling to 1.2keV (1.5kG). 

The scaling does not 
depend on machine size,
 if Pi,heat>>Pi,loss(τE>>τrec). �
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Up-scaled Reconnection Experiment in MAST 

1D measurements of Ti and Te :
1)  130ch. Thomson scattering, 
2’) NPA 
2) 32ch Ion Doppler from UTokyo

The MAST plasma has higher 
reconnecting�B field than TS-3.  
 
UK-Japan Joint Experiment 
supervised by M. Gryaznevich 
and MAST team  

Rm �>105� >103�

 Brec
2 -Scaling of Rec. Heating          High-Brec Merging Exp. 



MAST �

Rec. startup CS startup 
MAST Reconnection Exp. 
The ST merging/reco-
nnection heats ions to 
1.2keV within 10 msec.	
  
Rec. startup CS startup 
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Significant Ion Heating in MAST Rec. 

T e
 [k

eV
]�

T i
 [k

eV
]�

MAST: Ultra-High-Rm�:
 Pi,heat>>Pi,loss , 
Pe,heat>>Pe,loss �

Ti 

Te 



R (m) 

z 
(m

) 

YAG @ 8 ms 

YAG @ 9 ms 

YAG @ 10 ms 

YAG @ 11 ms 

YAG @ 12 ms 

Te 

Ti 

Ti 

         15.33msec 

            20.65msec 

0.3 

0.3 

   0 

   0 

0.2 

0.1 

0.1 

0.4           0.5  R[m] 0.6         0.7 

0.2 
Ohmic heating 

of electrons �

Downstream 
heating of 
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Downstream 
heating of ions �

Initially, Ti and Te profiles have a 
double and a single peaks, respectively 
but finally have triple peaks due to 
ion-electron relaxation.

MAST: 
Pi,heat>>Pi,loss , Pe,heat>>Pe,loss �

Ion heating by e-i 
energy transfer �

Electron heating by 
i-e energy transfer. �

Electron heating by 
i-e energy transfer. �
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Ti and Te profiles agree with 
recent particle (PIC) 
simulation results by Inoue & 
Horiuchi�at NIFS. 
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Hinode Solar Satellite 
Hara et al. APJ 2011 �

Masuda et al. 
1994 

Shibata et al. 
1995 

Loop top hard X-ray sources 

First Hinode satellite measurement of Ti 
Cross-validation of experiment and observation!



1) Electron heating 
localized at X-point
2) Shock-like pile-up 
in downstream.
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Te profile is peaked 
locally at X-point.  

MAST Electron Heating �
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A significantly peaked Te 
profile was observed in 
MAST high Rm experiment. 
 
Q1: Thermal? Non-thermal? 
 
Q2:Round shape of high Te area 
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Bulk ion and electron heating does not depend 
on guide field Bt, while local electron heating at 
X-point does strongly on Bt. 	
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1) Rec. rate and ΔTi 
decreases with Bt  
before plasmoid ejection. 
2) Rec. rate and ΔTi are 
maintained under high Bt 
after plasmoid ejection. 
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 The combination of mass pileup and ejection 
increases effective mass ejection and rec. speed.      

u u2δ
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The Brec
2-scaling of reconnection heating indicates 

a direct access to alpha-heating without NBI, 
leading us to a new high-Brec heating exp.: TS-U. 
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Alpha heating �

ne~1.5x1019m-3 �Construction of TS-U: 
high-Brec merging dev. 
started in Jun, 2015. ��



Control coils �

Control coils �

 Upgrades of TS merging exps. were accepted by JSPS: 
  TS-3 (R=0.2m)     Brec< 1kG             �Brec > 5kG  
  TS-4 (R=0.5m)     Brec< 0.5kG           Brec> 3kG  
  UTST (R=0.45m) Brec< 0.2kG           Brec> 1.5kG   
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Summary and Conclusions
1)  Reconnection outflow heats ions in two shock-

like downstream regions. 
2)  Electron heating occurs inside current sheet and 

Te  peaks at X-point. 
3)  Triple peak Ti and Te profiles during reconnection 
4)  Ion heating power >> Electron heating power 
5)  Ion heating energy and Ti increase with Brec

2. 
The rec. heating exp. in MAST extended the Brec

2-scaling  
to Ti~1.2keV (Te~0.8keV) for the  Brec~0.15T. 
Direct ion heating by rec. is a promising method for 
heating ions > 10keV: direct access to alpha heating.  
The new JSPS project of high Brec ST merging  started in 
U. Tokyo for fusion plasma heating / rec. heating physics.  




